메뉴 건너뛰기




Volumn 5, Issue 2, 2016, Pages 43-53

A model qualification method for mechanistic physiological QSP models to support model-informed drug development

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; DRUG DEVELOPMENT; DRUG INDUSTRY; DRUG MECHANISM; NONBIOLOGICAL MODEL; PHARMACOLOGY; PRIORITY JOURNAL; QUANTITATIVE ANALYSIS; QUANTITATIVE SYSTEMS PHARMACOLOGY; SENSITIVITY ANALYSIS; BIOLOGICAL MODEL; HUMAN; PROCEDURES; SYSTEMS BIOLOGY;

EID: 84959159927     PISSN: None     EISSN: 21638306     Source Type: Journal    
DOI: 10.1002/psp4.12056     Document Type: Article
Times cited : (65)

References (87)
  • 1
    • 84922676565 scopus 로고    scopus 로고
    • U.S. Food and Drug Administration
    • U.S. Food and Drug Administration. Pharmacometrics at FDA. http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/default.htm (2009
    • (2009) Pharmacometrics at FDA
  • 3
    • 78449266624 scopus 로고    scopus 로고
    • Pharmacometrics 2020
    • suppl
    • Gobburu, J.V. Pharmacometrics 2020. J. Clin. Pharmacol. 50(9 suppl.), 151S-157S (2010
    • (2010) J. Clin. Pharmacol , vol.50 , Issue.9 , pp. 151S-157S
    • Gobburu, J.V.1
  • 5
    • 78449279738 scopus 로고    scopus 로고
    • Model-based drug development survey finds pharmacometrics impacting decision making in the pharmaceutical industry
    • suppl
    • Stone, J.A., et al. Model-based drug development survey finds pharmacometrics impacting decision making in the pharmaceutical industry. J. Clin. Pharmacol. 50(9 suppl.), 20S-30S (2010
    • (2010) J. Clin. Pharmacol , vol.50 , Issue.9 , pp. 20S-30S
    • Stone, J.A.1
  • 6
    • 34250749661 scopus 로고    scopus 로고
    • Model-based drug development
    • Lalonde, R.L., et al. Model-based drug development. Clin. Pharmacol. Ther. 82, 21-32 (2007
    • (2007) Clin. Pharmacol. Ther , vol.82 , pp. 21-32
    • Lalonde, R.L.1
  • 7
    • 28244501254 scopus 로고    scopus 로고
    • How modeling and simulation have enhanced decision making in new drug development
    • Miller, R., et al. How modeling and simulation have enhanced decision making in new drug development. J. Pharmacokinet. Pharmacodyn. 32, 185-197 (2005
    • (2005) J. Pharmacokinet. Pharmacodyn , vol.32 , pp. 185-197
    • Miller, R.1
  • 8
    • 84878238854 scopus 로고    scopus 로고
    • Model-based drug development: A rational approach to efficiently accelerate drug development
    • Milligan, P.A., et al. Model-based drug development: a rational approach to efficiently accelerate drug development. Clin. Pharmacol. Ther. 93, 502-514 (2013
    • (2013) Clin. Pharmacol. Ther , vol.93 , pp. 502-514
    • Milligan, P.A.1
  • 9
    • 84927681963 scopus 로고    scopus 로고
    • The future is now: Model-based clinical trial design for Alzheimer s disease
    • Romero, K., et al. The future is now: model-based clinical trial design for Alzheimer s disease. Clin. Pharmacol. Ther. 97, 210-214 (2015
    • (2015) Clin. Pharmacol. Ther , vol.97 , pp. 210-214
    • Romero, K.1
  • 11
    • 78449292215 scopus 로고    scopus 로고
    • Fostering culture and optimizing organizational structure for implementing model-based drug development
    • Suppl
    • Zhang, L., Allerheiligen, S.R., Lalonde, R.L., Stanski, D.R., & Pfister, M. Fostering culture and optimizing organizational structure for implementing model-based drug development. J. Clin. Pharmacol. 50(9 Suppl), 146S-150S (2010
    • (2010) J. Clin. Pharmacol , vol.50 , Issue.9 , pp. 146S-150S
    • Zhang, L.1    Allerheiligen, S.R.2    Lalonde, R.L.3    Stanski, D.R.4    Pfister, M.5
  • 12
    • 33749244440 scopus 로고    scopus 로고
    • Target validation in silico: Does the virtual patient cure the pharma pipeline?
    • Alkema, W., Rullmann, T., & van Elsas, A. Target validation in silico: does the virtual patient cure the pharma pipeline?. Expert Opin. Ther. Targets 10, 635-638 (2006
    • (2006) Expert Opin. Ther. Targets , vol.10 , pp. 635-638
    • Alkema, W.1    Rullmann, T.2    Van Elsas, A.3
  • 16
    • 79959900575 scopus 로고    scopus 로고
    • Systems pharmacology: Bridging systems biology and pharmacokinetics-pharmacodynamics (PKPD) in drug discovery and development
    • van der Graaf, P.H., & Benson, N. Systems pharmacology: bridging systems biology and pharmacokinetics-pharmacodynamics (PKPD) in drug discovery and development. Pharm. Res. 28, 1460-1464 (2011
    • (2011) Pharm. Res , vol.28 , pp. 1460-1464
    • Van Der Graaf, P.H.1    Benson, N.2
  • 17
    • 84881616812 scopus 로고    scopus 로고
    • Moving from basic toward systems pharmacodynamic models
    • Jusko, W.J. Moving from basic toward systems pharmacodynamic models. J. Pharm. Sci. 102, 2930-2940 (2013
    • (2013) J. Pharm. Sci , vol.102 , pp. 2930-2940
    • Jusko, W.J.1
  • 18
    • 0038826703 scopus 로고    scopus 로고
    • Mechanistic models for myelosuppression
    • Friberg, L.E., & Karlsson, M.O. Mechanistic models for myelosuppression. Invest. New Drugs 21, 183-194 (2003
    • (2003) Invest. New Drugs , vol.21 , pp. 183-194
    • Friberg, L.E.1    Karlsson, M.O.2
  • 19
    • 84884777019 scopus 로고    scopus 로고
    • A comprehensive map of the influenza A virus replication cycle
    • Matsuoka, Y., et al. A comprehensive map of the influenza A virus replication cycle. BMC Syst. Biol. 7, 97 (2013
    • (2013) BMC Syst. Biol , vol.7 , Issue.97
    • Matsuoka, Y.1
  • 20
    • 84882725930 scopus 로고    scopus 로고
    • Proteomic and systems biology analysis of the monocyte response to Coxiella burnetii infection
    • Shipman, M., et al. Proteomic and systems biology analysis of the monocyte response to Coxiella burnetii infection. PLoS One 8, e69558 (2013
    • (2013) PLoS One , vol.8 , pp. e69558
    • Shipman, M.1
  • 21
    • 73449130181 scopus 로고    scopus 로고
    • Nutritional systems biology modeling: From molecular mechanisms to physiology
    • de Graaf, A.A., et al. Nutritional systems biology modeling: from molecular mechanisms to physiology. PLoS Comput. Biol. 5, e1000554 (2009
    • (2009) PLoS Comput. Biol , vol.5 , pp. e1000554
    • De Graaf, A.A.1
  • 22
    • 33845410054 scopus 로고    scopus 로고
    • Dynamic modelling and analysis of biochemical networks: Mechanismbased models and model-based experiments
    • van Riel, N.A. Dynamic modelling and analysis of biochemical networks: mechanismbased models and model-based experiments. Brief. Bioinform. 7, 364-374 (2006
    • (2006) Brief. Bioinform , vol.7 , pp. 364-374
    • Van Riel, N.A.1
  • 23
    • 66249140972 scopus 로고    scopus 로고
    • SysBioMed report: Advancing systems biology for medical applications
    • Wolkenhauer, O., et al. SysBioMed report: advancing systems biology for medical applications. IET Syst. Biol. 3, 131-136 (2009
    • (2009) IET Syst. Biol , vol.3 , pp. 131-136
    • Wolkenhauer, O.1
  • 24
    • 33947507091 scopus 로고    scopus 로고
    • Computational systems biology in drug discovery and development: Methods and applications
    • Materi, W., & Wishart, D.S. Computational systems biology in drug discovery and development: methods and applications. Drug Discov. Today 12, 295-303 (2007
    • (2007) Drug Discov. Today , vol.12 , pp. 295-303
    • Materi, W.1    Wishart, D.S.2
  • 25
    • 84887139130 scopus 로고    scopus 로고
    • Systems biology: The case for a systems science approach to diabetes
    • Petrasek, D. Systems biology: the case for a systems science approach to diabetes. J. Diabetes Sci. Technol. 2, 131-134 (2008
    • (2008) J. Diabetes Sci. Technol , vol.2 , pp. 131-134
    • Petrasek, D.1
  • 27
    • 4444250258 scopus 로고    scopus 로고
    • Guidelines for computer modeling of diabetes and its complications
    • American Diabetes Association Consensus Panel
    • American Diabetes Association Consensus Panel. Guidelines for computer modeling of diabetes and its complications. Diabetes Care 27, 2262-2265 (2004
    • (2004) Diabetes Care , vol.27 , pp. 2262-2265
  • 28
  • 29
    • 70049116237 scopus 로고    scopus 로고
    • Strong inference for systems biology
    • Beard, D.A., & Kushmerick, M.J. Strong inference for systems biology. PLoS Comput. Biol. 5, e1000459 (2009
    • (2009) PLoS Comput. Biol , vol.5 , pp. e1000459
    • Beard, D.A.1    Kushmerick, M.J.2
  • 30
    • 0036500834 scopus 로고    scopus 로고
    • Reverse engineering of biological complexity
    • Csete, M.E., & Doyle, J.C. Reverse engineering of biological complexity. Science 295, 1664-1669 (2002
    • (2002) Science , vol.295 , pp. 1664-1669
    • Csete, M.E.1    Doyle, J.C.2
  • 31
    • 0036729047 scopus 로고    scopus 로고
    • Can a biologist fix a radio Or, what i learned while studying apoptosis
    • Lazebnik, Y. Can a biologist fix a radio?. Or, what I learned while studying apoptosis. Cancer Cell 2, 179-182 (2002
    • (2002) Cancer Cell , vol.2 , pp. 179-182
    • Lazebnik, Y.1
  • 32
    • 0031003468 scopus 로고    scopus 로고
    • Learning versus confirming in clinical drug development
    • Sheiner, L.B. Learning versus confirming in clinical drug development. Clin. Pharmacol. Ther. 61, 275-291 (1997
    • (1997) Clin. Pharmacol. Ther , vol.61 , pp. 275-291
    • Sheiner, L.B.1
  • 34
    • 34249087204 scopus 로고    scopus 로고
    • Dosing and timing effects of anti-CD40L therapy: Predictions from a mathematical model of type 1 diabetes
    • Gadkar, K.G., et al. Dosing and timing effects of anti-CD40L therapy: predictions from a mathematical model of type 1 diabetes. Ann. NY Acad. Sci. 1103, 63-68 (2007
    • (2007) Ann. NY Acad. Sci , vol.1103 , pp. 63-68
    • Gadkar, K.G.1
  • 35
    • 1242298712 scopus 로고    scopus 로고
    • Modeling approaches to type 2 diabetes
    • Kansal, A.R. Modeling approaches to type 2 diabetes. Diabetes Technol. Ther. 6, 39-47 (2004
    • (2004) Diabetes Technol. Ther , vol.6 , pp. 39-47
    • Kansal, A.R.1
  • 36
    • 83455264185 scopus 로고    scopus 로고
    • Treatment with sitagliptin or metformin does not increase body weight despite predicted reductions in urinary glucose excretion
    • Waters, S.B., Topp, B.G., Siler, S.Q., & Alexander, C.M. Treatment with sitagliptin or metformin does not increase body weight despite predicted reductions in urinary glucose excretion. J. Diabetes Sci. Technol. 3, 68-82 (2009
    • (2009) J. Diabetes Sci. Technol , vol.3 , pp. 68-82
    • Waters, S.B.1    Topp, B.G.2    Siler, S.Q.3    Alexander, C.M.4
  • 37
    • 0037107986 scopus 로고    scopus 로고
    • Small-And large-scale biosimulation applied to drug discovery and development
    • Suppl
    • Musante, C.J., Lewis, A.K., & Hall, K. Small-And large-scale biosimulation applied to drug discovery and development. Drug Discov. Today 7(20 Suppl), S192-S196 (2002
    • (2002) Drug Discov. Today , vol.7 , Issue.20 , pp. S192-S196
    • Musante, C.J.1    Lewis, A.K.2    Hall, K.3
  • 38
    • 84959076947 scopus 로고    scopus 로고
    • Application of a physiologically based model incorporating drug-specific PK modules to support optimization of GLP-1 receptor agonist combination therapies for type 2 diabetes
    • San Antonio TX
    • Bartlett, D.W., Friedrich, C., Reed, M., & Baillie, R. Application of a physiologically based model incorporating drug-specific PK modules to support optimization of GLP-1 receptor agonist combination therapies for type 2 diabetes. AAPS. San Antonio, TX http://abstracts.aaps.org/Verify/aaps2013/postersubmissions/T3173.pdf (2013
    • (2013) AAPS
    • Bartlett, D.W.1    Friedrich, C.2    Reed, M.3    Baillie, R.4
  • 39
    • 84959122597 scopus 로고    scopus 로고
    • Designing optimal basal insulin analogs using a quantitative systems pharmacology model
    • Las Vegas NV
    • Kumar, R., Geiser, J., Leohr, J., Leishman, D., & Topp, B. Designing optimal basal insulin analogs using a quantitative systems pharmacology model. ACoP. http://www.vantageresearch. net/wp-content/uploads/2015/10/diabetes-Acop-rk.pdf Las Vegas, NV (2014
    • (2014) ACoP
    • Kumar, R.1    Geiser, J.2    Leohr, J.3    Leishman, D.4    Topp, B.5
  • 40
    • 84959105716 scopus 로고    scopus 로고
    • Impact of modeling on GPR119 agonist development
    • San Diego CA
    • Tess, D., et al. Impact of modeling on GPR119 agonist development. ACoP. http://www.rosaandco.com/posters/rosaACoP2011Pfizerabstract.pdfSan Diego, CA (2011
    • (2011) ACoP
    • Tess, D.1
  • 41
    • 77954637421 scopus 로고    scopus 로고
    • The type 1 diabetes PhysioLab platform: A validated physiologically based mathematical model of pathogenesis in the non-obese diabetic mouse
    • Shoda, L., et al. The type 1 diabetes PhysioLab platform: a validated physiologically based mathematical model of pathogenesis in the non-obese diabetic mouse. Clin. Exp. Immunol. 161, 250-267 (2010
    • (2010) Clin. Exp. Immunol , vol.161 , pp. 250-267
    • Shoda, L.1
  • 42
    • 78650061905 scopus 로고    scopus 로고
    • Virtual optimization of nasal insulin therapy predicts immunization frequency to be crucial for diabetes protection
    • Fousteri, G., et al. Virtual optimization of nasal insulin therapy predicts immunization frequency to be crucial for diabetes protection. Diabetes 59, 3148-3158 (2010
    • (2010) Diabetes , vol.59 , pp. 3148-3158
    • Fousteri, G.1
  • 43
    • 79955564865 scopus 로고    scopus 로고
    • Identification of CXCL13 as a marker for rheumatoid arthritis outcome using an in silico model of the rheumatic joint
    • Meeuwisse, C.M., et al. Identification of CXCL13 as a marker for rheumatoid arthritis outcome using an in silico model of the rheumatic joint. Arthritis Rheum. 63, 1265-1273 (2011
    • (2011) Arthritis Rheum , vol.63 , pp. 1265-1273
    • Meeuwisse, C.M.1
  • 46
    • 58149349853 scopus 로고    scopus 로고
    • Application of a systems biology approach to skin allergy risk assessment
    • Maxwell, G., & Mackay, C. Application of a systems biology approach to skin allergy risk assessment. Altern. Lab. Anim. 36, 521-556 (2008
    • (2008) Altern. Lab. Anim , vol.36 , pp. 521-556
    • Maxwell, G.1    Mackay, C.2
  • 47
    • 79952635364 scopus 로고    scopus 로고
    • Assuring safety without animal testing: Unilever s ongoing research programme to deliver novel ways to assure consumer safety
    • Westmoreland, C., et al. Assuring safety without animal testing: Unilever s ongoing research programme to deliver novel ways to assure consumer safety. ALTEX 27, 61-65 (2010
    • (2010) ALTEX , vol.27 , pp. 61-65
    • Westmoreland, C.1
  • 50
    • 84896040442 scopus 로고    scopus 로고
    • Use of a systems model of drug-induced liver injury (DILIsym(VR )) to elucidate the mechanistic differences between acetaminophen and its less-Toxic isomer, AMAP, in mice
    • Howell, B.A., Siler, S.Q., & Watkins, P.B. Use of a systems model of drug-induced liver injury (DILIsym(VR )) to elucidate the mechanistic differences between acetaminophen and its less-Toxic isomer, AMAP, in mice. Toxicol. Lett. 226, 163-172 (2014
    • (2014) Toxicol. Lett , vol.226 , pp. 163-172
    • Howell, B.A.1    Siler, S.Q.2    Watkins, P.B.3
  • 51
    • 84870395485 scopus 로고    scopus 로고
    • In vitro to in vivo extrapolation and species response comparisons for drug-induced liver injury (Dili) using DilisymTM: A mechanistic, mathematical model of Dili
    • Howell, B.A., et al. In vitro to in vivo extrapolation and species response comparisons for drug-induced liver injury (DILI) using DILIsymTM: a mechanistic, mathematical model of DILI. J. Pharmacokinet. Pharmacodyn. 39, 527-541 (2012
    • (2012) J. Pharmacokinet. Pharmacodyn , vol.39 , pp. 527-541
    • Howell, B.A.1
  • 52
    • 84892368859 scopus 로고    scopus 로고
    • Linking physiology to toxicity using DILIsymVR , a mechanistic mathematical model of drug-induced liver injury
    • Shoda, L.K., Woodhead, J.L., Siler, S.Q., Watkins, P.B., & Howell, B.A. Linking physiology to toxicity using DILIsymVR , a mechanistic mathematical model of drug-induced liver injury. Biopharm. Drug Dispos. 35, 33-49 (2014
    • (2014) Biopharm. Drug Dispos , vol.35 , pp. 33-49
    • Shoda, L.K.1    Woodhead, J.L.2    Siler, S.Q.3    Watkins, P.B.4    Howell, B.A.5
  • 53
    • 84864120350 scopus 로고    scopus 로고
    • An analysis of N-Acetylcysteine treatment for acetaminophen overdose using a systems model of drug-induced liver injury
    • Woodhead, J.L., et al. An analysis of N-Acetylcysteine treatment for acetaminophen overdose using a systems model of drug-induced liver injury. J. Pharmacol. Exp. Ther. 342, 529-540 (2012
    • (2012) J. Pharmacol. Exp. Ther , vol.342 , pp. 529-540
    • Woodhead, J.L.1
  • 54
    • 84905375362 scopus 로고    scopus 로고
    • Mechanistic modeling reveals the critical knowledge gaps in bile acid-mediated Dili
    • Woodhead, J.L., et al. Mechanistic modeling reveals the critical knowledge gaps in bile acid-mediated DILI. CPT Pharmacometrics Syst. Pharmacol. 3, e123 (2014
    • (2014) CPT Pharmacometrics Syst. Pharmacol , vol.3 , pp. e123
    • Woodhead, J.L.1
  • 55
    • 84885115975 scopus 로고    scopus 로고
    • Systems pharmacology models can be used to understand complex pharmacokinetic-pharmacodynamic behavior: An example using 5-lipoxygenase inhibitors
    • Demin, O., et al. Systems pharmacology models can be used to understand complex pharmacokinetic-pharmacodynamic behavior: an example using 5-lipoxygenase inhibitors. CPT Pharmacometrics Syst. Pharmacol. 2, e74 (2013
    • (2013) CPT Pharmacometrics Syst. Pharmacol , vol.2 , pp. e74
    • Demin, O.1
  • 57
    • 72149104599 scopus 로고    scopus 로고
    • A physiologically based mathematical model of integrated calcium homeostasis and bone remodeling
    • Peterson, M.C., & Riggs, M.M. A physiologically based mathematical model of integrated calcium homeostasis and bone remodeling. Bone 46, 49-63 (2010
    • (2010) Bone , vol.46 , pp. 49-63
    • Peterson, M.C.1    Riggs, M.M.2
  • 60
    • 72249115598 scopus 로고    scopus 로고
    • Use of virtual patient populations for rescuing discontinued drug candidates and for reducing the number of patients in clinical trials
    • Kleiman, M., Sagi, Y., Bloch, N., & Agur, Z. Use of virtual patient populations for rescuing discontinued drug candidates and for reducing the number of patients in clinical trials. Altern. Lab. Anim. 37 Suppl 1, 39-45 (2009
    • (2009) Altern. Lab. Anim. 37 Suppl , vol.1 , pp. 39-45
    • Kleiman, M.1    Sagi, Y.2    Bloch, N.3    Agur, Z.4
  • 66
    • 84936753153 scopus 로고    scopus 로고
    • FDA advisory meeting clinical pharmacology review utilizes a quantitative systems pharmacology (QSP) model: A watershed moment?
    • Peterson, M.C., & Riggs, M.M. FDA advisory meeting clinical pharmacology review utilizes a quantitative systems pharmacology (QSP) model: a watershed moment?. CPT Pharmacometrics Syst. Pharmacol. 4, e00020 (2015
    • (2015) CPT Pharmacometrics Syst. Pharmacol , vol.4 , pp. e00020
    • Peterson, M.C.1    Riggs, M.M.2
  • 67
    • 74049122828 scopus 로고    scopus 로고
    • Cancer systems biology: A network modeling perspective
    • Kreeger, P.K., & Lauffenburger, D.A. Cancer systems biology: a network modeling perspective. Carcinogenesis 31, 2-8 (2010
    • (2010) Carcinogenesis , vol.31 , pp. 2-8
    • Kreeger, P.K.1    Lauffenburger, D.A.2
  • 68
    • 4644249962 scopus 로고    scopus 로고
    • In silico predictions of target clinical efficacy
    • Friedrich, C.M., & Paterson, T.S. In silico predictions of target clinical efficacy. Drug Discov. Today 3, 216-222 (2004
    • (2004) Drug Discov. Today , vol.3 , pp. 216-222
    • Friedrich, C.M.1    Paterson, T.S.2
  • 69
    • 34249933861 scopus 로고    scopus 로고
    • Computer modeling of diabetes and its complications: A report on the fourth mount hood challenge meeting
    • Mount Hood 4 Modeling Group
    • Mount Hood 4 Modeling Group. Computer modeling of diabetes and its complications: a report on the Fourth Mount Hood Challenge Meeting. Diabetes Care 30, 1638-1646 (2007
    • (2007) Diabetes Care , vol.30 , pp. 1638-1646
  • 70
    • 84896765551 scopus 로고    scopus 로고
    • Evaluating systems pharmacology models is different from evaluating standard pharmacokinetic-pharmacodynamic models
    • Agoram, B. Evaluating systems pharmacology models is different from evaluating standard pharmacokinetic-pharmacodynamic models. CPT Pharmacometrics Syst. Pharmacol. 3, e101 (2014
    • (2014) CPT Pharmacometrics Syst. Pharmacol , vol.3 , pp. e101
    • Agoram, B.1
  • 72
    • 85035221677 scopus 로고    scopus 로고
    • Statistical mechanical approaches to models with many poorly known parameters
    • Brown, K.S., & Sethna, J.P. Statistical mechanical approaches to models with many poorly known parameters. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(2 Pt 1), 021904 (2003
    • (2003) Phys. Rev. e Stat. Nonlin. Soft Matter Phys , vol.68 , Issue.2 PT 1 , pp. 021904
    • Brown, K.S.1    Sethna, J.P.2
  • 75
    • 79952200518 scopus 로고    scopus 로고
    • Standards databases, and modeling tools in systems biology
    • Kohl, M. Standards, databases, and modeling tools in systems biology. Methods Mol. Biol. 696, 413-427 (2011
    • (2011) Methods Mol. Biol , vol.696 , pp. 413-427
    • Kohl, M.1
  • 76
    • 33750016873 scopus 로고    scopus 로고
    • Sloppy-model universality class and the Vandermonde matrix
    • Waterfall, J.J., et al. Sloppy-model universality class and the Vandermonde matrix. Phys. Rev. Lett. 97, 150601 (2006
    • (2006) Phys. Rev. Lett , vol.97 , pp. 150601
    • Waterfall, J.J.1
  • 77
    • 77958536828 scopus 로고    scopus 로고
    • Quantifying uncertainty, variability and likelihood for ordinary differential equation models
    • Weisse, A.Y., Middleton, R.H., & Huisinga, W. Quantifying uncertainty, variability and likelihood for ordinary differential equation models. BMC Syst. Biol. 4, 144 (2010
    • (2010) BMC Syst. Biol , vol.4 , pp. 144
    • Weisse, A.Y.1    Middleton, R.H.2    Huisinga, W.3
  • 78
    • 45449094504 scopus 로고    scopus 로고
    • A methodology for performing global uncertainty and sensitivity analysis in systems biology
    • Marino, S., Hogue, I.B., Ray, C.J., & Kirschner, D.E. A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254, 178-196 (2008
    • (2008) J. Theor. Biol , vol.254 , pp. 178-196
    • Marino, S.1    Hogue, I.B.2    Ray, C.J.3    Kirschner, D.E.4
  • 79
    • 34548825690 scopus 로고    scopus 로고
    • Towards a theory of biological robustness
    • Kitano, H. Towards a theory of biological robustness. Mol. Syst. Biol. 3, 137 (2007
    • (2007) Mol. Syst. Biol , vol.3 , pp. 137
    • Kitano, H.1
  • 80
    • 23844548028 scopus 로고    scopus 로고
    • Predictive biosimulation and virtual patients in pharmaceutical R and D
    • Bangs, A. Predictive biosimulation and virtual patients in pharmaceutical R and D. Stud. Health Technol. Inform. 111, 37-42 (2005
    • (2005) Stud. Health Technol. Inform , vol.111 , pp. 37-42
    • Bangs, A.1
  • 81
    • 0010596118 scopus 로고    scopus 로고
    • Ch 27. (ed. Doherty, A.) Annual Reports in Medicinal Chemistry, 1st Edition Academic Press, New York, NY
    • Hall, K., Baillie, R., & Michelson, S. Biosimulation: dynamic modeling of biological systems. Ch 27, Vol. 37. (ed. Doherty, A.) Annual Reports in Medicinal Chemistry, 1st Edition. pp 279-288 (Academic Press, New York, NY, 2002
    • (2002) Biosimulation Dynamic Modeling of Biological Systems , vol.37 , pp. 279-288
    • Hall, K.1    Baillie, R.2    Michelson, S.3
  • 82
    • 84875438924 scopus 로고    scopus 로고
    • Systems pharmacology of the nerve growth factor pathway: Use of a systems biology model for the identification of key drug targets using sensitivity analysis and the integration of physiology and pharmacology
    • Benson, N., et al. Systems pharmacology of the nerve growth factor pathway: use of a systems biology model for the identification of key drug targets using sensitivity analysis and the integration of physiology and pharmacology. Interface Focus 3, 20120071 (2013
    • (2013) Interface Focus , vol.3 , pp. 20120071
    • Benson, N.1
  • 84
    • 33644813010 scopus 로고    scopus 로고
    • A new equivalence based metric for predictive check to qualify mixed-effects models
    • Jadhav, P.R., & Gobburu, J.V. A new equivalence based metric for predictive check to qualify mixed-effects models. AAPS J. 7, E523-E531 (2005
    • (2005) AAPS J. , vol.7 , pp. E523-E531
    • Jadhav, P.R.1    Gobburu, J.V.2
  • 86
    • 0347511691 scopus 로고    scopus 로고
    • Next generation simulation tools: The Systems Biology Workbench and BioSPICE integration
    • Sauro, H.M., et al. Next generation simulation tools: the Systems Biology Workbench and BioSPICE integration. OMICS 7, 355-372 (2003
    • (2003) OMICS , vol.7 , pp. 355-372
    • Sauro, H.M.1
  • 87
    • 79959312575 scopus 로고    scopus 로고
    • Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival
    • Topp, M.S., et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J. Clin. Oncol. 29, 2493-2498 (2011
    • (2011) J. Clin. Oncol , vol.29 , pp. 2493-2498
    • Topp, M.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.