메뉴 건너뛰기




Volumn 2, Issue 5, 2014, Pages

Double-strand DNA break repair in mycobacteria

Author keywords

[No Author keywords available]

Indexed keywords

DNA LIGASE; VIRULENCE FACTOR;

EID: 84958794312     PISSN: None     EISSN: 21650497     Source Type: Journal    
DOI: 10.1128/microbiolspec.MGM2-0024-2013     Document Type: Article
Times cited : (14)

References (69)
  • 2
    • 57349157777 scopus 로고    scopus 로고
    • RecBCD enzyme and the repair of double-stranded DNA breaks
    • Dillingham MS, Kowalczykowski SC. 2008. RecBCD enzyme and the repair of double-stranded DNA breaks. Microbiol Mol Biol Rev 72: 642-671.
    • (2008) Microbiol Mol Biol Rev , vol.72 , pp. 642-671
    • Dillingham, M.S.1    Kowalczykowski, S.C.2
  • 3
    • 77953229115 scopus 로고    scopus 로고
    • The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway
    • Lieber MR. 2010. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181-211.
    • (2010) Annu Rev Biochem , vol.79 , pp. 181-211
    • Lieber, M.R.1
  • 4
    • 35348890199 scopus 로고    scopus 로고
    • Bacterial DNA repair by nonhomologous end joining
    • Shuman S, Glickman MS. 2007. Bacterial DNA repair by nonhomologous end joining. Nat Rev Microbiol 5:852-861.
    • (2007) Nat Rev Microbiol , vol.5 , pp. 852-861
    • Shuman, S.1    Glickman, M.S.2
  • 5
    • 80755187806 scopus 로고    scopus 로고
    • Double-strand break end resection and repair pathway choice
    • Symington LS, Gautier J. 2011. Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247-271.
    • (2011) Annu Rev Genet , vol.45 , pp. 247-271
    • Symington, L.S.1    Gautier, J.2
  • 6
    • 76749090482 scopus 로고    scopus 로고
    • The processing of double-stranded DNA breaks for recombinational repair by helicase-nuclease complexes
    • Yeeles JT, Dillingham MS. 2010. The processing of double-stranded DNA breaks for recombinational repair by helicase-nuclease complexes. DNA Repair 9:276-285.
    • (2010) DNA Repair , vol.9 , pp. 276-285
    • Yeeles, J.T.1    Dillingham, M.S.2
  • 7
    • 84879682699 scopus 로고    scopus 로고
    • Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis
    • Ford CB, Shah RR, Maeda MK, Gagneux S, Murray MB, Cohen T, Johnston JC, Gardy J, Lipsitch M, Fortune SM. 2013. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat Genet 45:784-790.
    • (2013) Nat Genet , vol.45 , pp. 784-790
    • Ford, C.B.1    Shah, R.R.2    Maeda, M.K.3    Gagneux, S.4    Murray, M.B.5    Cohen, T.6    Johnston, J.C.7    Gardy, J.8    Lipsitch, M.9    Fortune, S.M.10
  • 9
    • 84860734902 scopus 로고    scopus 로고
    • Distinct mechanisms of DNA repair in mycobacteria and their implications in attenuation of the pathogen growth
    • Kurthkoti K, Varshney U. 2012. Distinct mechanisms of DNA repair in mycobacteria and their implications in attenuation of the pathogen growth. Mech Ageing Dev 133:138-146.
    • (2012) Mech Ageing Dev , vol.133 , pp. 138-146
    • Kurthkoti, K.1    Varshney, U.2
  • 10
    • 77956223304 scopus 로고    scopus 로고
    • DNA repair systems and the pathogenesis of Mycobacterium tuberculosis: varying activities at different stages of infection
    • Gorna AE, Bowater RP, Dziadek J. 2010. DNA repair systems and the pathogenesis of Mycobacterium tuberculosis: varying activities at different stages of infection. Clin Sci 119:187-202.
    • (2010) Clin Sci , vol.119 , pp. 187-202
    • Gorna, A.E.1    Bowater, R.P.2    Dziadek, J.3
  • 12
    • 84866462296 scopus 로고    scopus 로고
    • Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity
    • Hiller B, Achleitner M, Glage S, Naumann R, Behrendt R, Roers A. 2012. Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity. J Exp Med 209:1419-1426.
    • (2012) J Exp Med , vol.209 , pp. 1419-1426
    • Hiller, B.1    Achleitner, M.2    Glage, S.3    Naumann, R.4    Behrendt, R.5    Roers, A.6
  • 13
    • 84871340015 scopus 로고    scopus 로고
    • Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB
    • Wigley DB. 2013. Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB. Nat Rev Microbiol 11:9-13.
    • (2013) Nat Rev Microbiol , vol.11 , pp. 9-13
    • Wigley, D.B.1
  • 14
    • 78651083451 scopus 로고    scopus 로고
    • Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways
    • Gupta R, Barkan D, Redelman-Sidi G, Shuman S, Glickman MS. 2011. Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways. Mol Microbiol 79:316-330.
    • (2011) Mol Microbiol , vol.79 , pp. 316-330
    • Gupta, R.1    Barkan, D.2    Redelman-Sidi, G.3    Shuman, S.4    Glickman, M.S.5
  • 15
    • 34447508310 scopus 로고    scopus 로고
    • Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks
    • Stephanou NC, Gao F, Bongiorno P, Ehrt S, Schnappinger D, Shuman S, Glickman MS. 2007. Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks. J Bacteriol 189:5237-5246.
    • (2007) J Bacteriol , vol.189 , pp. 5237-5246
    • Stephanou, N.C.1    Gao, F.2    Bongiorno, P.3    Ehrt, S.4    Schnappinger, D.5    Shuman, S.6    Glickman, M.S.7
  • 16
    • 67149121060 scopus 로고    scopus 로고
    • AdnAB: a new DSB-resecting motor-nuclease from mycobacteria
    • Sinha KM, Unciuleac MC, Glickman MS, Shuman S. 2009. AdnAB: a new DSB-resecting motor-nuclease from mycobacteria. Genes Dev 23: 1423-1437.
    • (2009) Genes Dev , vol.23 , pp. 1423-1437
    • Sinha, K.M.1    Unciuleac, M.C.2    Glickman, M.S.3    Shuman, S.4
  • 17
    • 0347725697 scopus 로고    scopus 로고
    • Analysis of the Bacillus subtilis recO gene: RecO forms part of the RecFLOR function
    • Fernandez S, Kobayashi Y, Ogasawara N, Alonso JC. 1999. Analysis of the Bacillus subtilis recO gene: RecO forms part of the RecFLOR function. Mol Gen Genet 261:567-573.
    • (1999) Mol Gen Genet , vol.261 , pp. 567-573
    • Fernandez, S.1    Kobayashi, Y.2    Ogasawara, N.3    Alonso, J.C.4
  • 18
    • 84876347637 scopus 로고    scopus 로고
    • A dual role for mycobacterial RecO in RecAdependent homologous recombination and RecA-independent singlestrand annealing
    • Gupta R, Ryzhikov M, Koroleva O, Unciuleac M, Shuman S, Korolev S, Glickman MS. 2013. A dual role for mycobacterial RecO in RecAdependent homologous recombination and RecA-independent singlestrand annealing. Nucleic Acids Res 41:2284-2295.
    • (2013) Nucleic Acids Res , vol.41 , pp. 2284-2295
    • Gupta, R.1    Ryzhikov, M.2    Koroleva, O.3    Unciuleac, M.4    Shuman, S.5    Korolev, S.6    Glickman, M.S.7
  • 19
    • 78651379486 scopus 로고    scopus 로고
    • DNA binding, coprotease, and strand exchange activities of mycobacterial RecA proteins: implications for functional diversity among RecA nucleoprotein filaments
    • Patil KN, Singh P, Muniyappa K. 2011. DNA binding, coprotease, and strand exchange activities of mycobacterial RecA proteins: implications for functional diversity among RecA nucleoprotein filaments. Biochemistry 50:300-311.
    • (2011) Biochemistry , vol.50 , pp. 300-311
    • Patil, K.N.1    Singh, P.2    Muniyappa, K.3
  • 20
    • 0038470002 scopus 로고    scopus 로고
    • Characterization ofDNAstrand transfer promoted by Mycobacterium smegmatis RecA reveals functional diversity with Mycobacterium tuberculosis RecA
    • Ganesh N, Muniyappa K. 2003. Characterization ofDNAstrand transfer promoted by Mycobacterium smegmatis RecA reveals functional diversity with Mycobacterium tuberculosis RecA. Biochemistry 42:7216-7225.
    • (2003) Biochemistry , vol.42 , pp. 7216-7225
    • Ganesh, N.1    Muniyappa, K.2
  • 21
  • 22
    • 0035824667 scopus 로고    scopus 로고
    • Characterization of single-stranded DNA-binding proteins from mycobacteria. The carboxylterminal of domain of SSB is essential for stable association with its cognate RecA protein
    • Reddy MS, Guhan N, Muniyappa K. 2001. Characterization of single-stranded DNA-binding proteins from mycobacteria. The carboxylterminal of domain of SSB is essential for stable association with its cognate RecA protein. J Biol Chem 276:45959-45968.
    • (2001) J Biol Chem , vol.276 , pp. 45959-45968
    • Reddy, M.S.1    Guhan, N.2    Muniyappa, K.3
  • 23
    • 73649109198 scopus 로고    scopus 로고
    • RecA-independent DNA damage induction of Mycobacterium tuberculosis ruvC despite an appropriately located SOS box
    • Dawson LF, Dillury J, Davis EO. 2010. RecA-independent DNA damage induction of Mycobacterium tuberculosis ruvC despite an appropriately located SOS box. J Bacteriol 192:599-603.
    • (2010) J Bacteriol , vol.192 , pp. 599-603
    • Dawson, L.F.1    Dillury, J.2    Davis, E.O.3
  • 24
    • 84856894233 scopus 로고    scopus 로고
    • A TetR-like regulator broadly affects the expressions of diverse genes in Mycobacterium smegmatis
    • Yang M, Gao C, Cui T, An J, He ZG. 2012. A TetR-like regulator broadly affects the expressions of diverse genes in Mycobacterium smegmatis. Nucleic Acids Res 40:1009-1020.
    • (2012) Nucleic Acids Res , vol.40 , pp. 1009-1020
    • Yang, M.1    Gao, C.2    Cui, T.3    An, J.4    He, Z.G.5
  • 26
    • 0036267340 scopus 로고    scopus 로고
    • Definition of the mycobacterial SOS box and use to identify LexA-regulated genes in Mycobacterium tuberculosis
    • Davis EO, Dullaghan EM, Rand L. 2002. Definition of the mycobacterial SOS box and use to identify LexA-regulated genes in Mycobacterium tuberculosis. J Bacteriol 184:3287-3295.
    • (2002) J Bacteriol , vol.184 , pp. 3287-3295
    • Davis, E.O.1    Dullaghan, E.M.2    Rand, L.3
  • 27
    • 0034931138 scopus 로고    scopus 로고
    • Identification of some DNA damage-inducible genes of Mycobacterium tuberculosis: apparent lack of correlation with LexA binding
    • Brooks PC, Movahedzadeh F, Davis EO. 2001. Identification of some DNA damage-inducible genes of Mycobacterium tuberculosis: apparent lack of correlation with LexA binding. J Bacteriol 183:4459-4467.
    • (2001) J Bacteriol , vol.183 , pp. 4459-4467
    • Brooks, P.C.1    Movahedzadeh, F.2    Davis, E.O.3
  • 28
  • 30
    • 84855481783 scopus 로고    scopus 로고
    • Functional analysis of DNA replication fork reversal catalyzed by Mycobacterium tuberculosis RuvAB proteins
    • Khanduja JS, Muniyappa K. 2012. Functional analysis of DNA replication fork reversal catalyzed by Mycobacterium tuberculosis RuvAB proteins. J Biol Chem 287:1345-1360.
    • (2012) J Biol Chem , vol.287 , pp. 1345-1360
    • Khanduja, J.S.1    Muniyappa, K.2
  • 31
    • 58549087167 scopus 로고    scopus 로고
    • Mycobacterium tuberculosis RuvA induces two distinct types of structural distortions between the homologous and heterologous Holliday junctions
    • Khanduja JS, Tripathi P, Muniyappa K. 2009. Mycobacterium tuberculosis RuvA induces two distinct types of structural distortions between the homologous and heterologous Holliday junctions. Biochemistry 48:27-40.
    • (2009) Biochemistry , vol.48 , pp. 27-40
    • Khanduja, J.S.1    Tripathi, P.2    Muniyappa, K.3
  • 32
    • 0034889360 scopus 로고    scopus 로고
    • Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system
    • Aravind L, Koonin EV. 2001. Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. Genome Res 11:1365-1374.
    • (2001) Genome Res , vol.11 , pp. 1365-1374
    • Aravind, L.1    Koonin, E.V.2
  • 33
    • 34247279304 scopus 로고    scopus 로고
    • Last stop on the road to repair: structure of E. coli DNA ligase bound to nicked DNA-adenylate
    • Nandakumar J, Nair PA, Shuman S. 2007. Last stop on the road to repair: structure of E. coli DNA ligase bound to nicked DNA-adenylate. Mol Cell 26:257-271.
    • (2007) Mol Cell , vol.26 , pp. 257-271
    • Nandakumar, J.1    Nair, P.A.2    Shuman, S.3
  • 36
    • 39449129496 scopus 로고    scopus 로고
    • The pathways and outcomes of mycobacterial NHEJ depend on the structure of the broken DNA ends
    • Aniukwu J, Glickman MS, Shuman S. 2008. The pathways and outcomes of mycobacterial NHEJ depend on the structure of the broken DNA ends. Genes Dev 22:512-527.
    • (2008) Genes Dev , vol.22 , pp. 512-527
    • Aniukwu, J.1    Glickman, M.S.2    Shuman, S.3
  • 37
    • 18744380665 scopus 로고    scopus 로고
    • Mechanism of nonhomologous end-joining in mycobacteria: a low-fidelity repair system driven by Ku, ligase D and ligase C
    • Gong C, Bongiorno P, Martins A, Stephanou NC, Zhu H, Shuman S, Glickman MS. 2005. Mechanism of nonhomologous end-joining in mycobacteria: a low-fidelity repair system driven by Ku, ligase D and ligase C. Nat Struct Mol Biol 12:304-312.
    • (2005) Nat Struct Mol Biol , vol.12 , pp. 304-312
    • Gong, C.1    Bongiorno, P.2    Martins, A.3    Stephanou, N.C.4    Zhu, H.5    Shuman, S.6    Glickman, M.S.7
  • 38
    • 2442717521 scopus 로고    scopus 로고
    • Biochemical and genetic analysis of the four DNA ligases of mycobacteria
    • Gong C, Martins A, Bongiorno P, Glickman M, Shuman S. 2004. Biochemical and genetic analysis of the four DNA ligases of mycobacteria. J Biol Chem 279:20594-20606.
    • (2004) J Biol Chem , vol.279 , pp. 20594-20606
    • Gong, C.1    Martins, A.2    Bongiorno, P.3    Glickman, M.4    Shuman, S.5
  • 41
    • 33744964530 scopus 로고    scopus 로고
    • Crystal structure and nonhomologous end-joining function of the ligase component of mycobacterium DNA ligase D
    • Akey D, Martins A, Aniukwu J, Glickman MS, Shuman S, Berger JM. 2006. Crystal structure and nonhomologous end-joining function of the ligase component of mycobacterium DNA ligase D. J Biol Chem 281: 13412-13423.
    • (2006) J Biol Chem , vol.281 , pp. 13412-13423
    • Akey, D.1    Martins, A.2    Aniukwu, J.3    Glickman, M.S.4    Shuman, S.5    Berger, J.M.6
  • 43
  • 44
    • 21244476766 scopus 로고    scopus 로고
    • Biochemical properties of Saccharomyces cerevisiae DNA polymerase IV
    • Bebenek K, Garcia-Diaz M, Patishall SR, Kunkel TA. 2005. Biochemical properties of Saccharomyces cerevisiae DNA polymerase IV. J Biol Chem 280:20051-20058.
    • (2005) J Biol Chem , vol.280 , pp. 20051-20058
    • Bebenek, K.1    Garcia-Diaz, M.2    Patishall, S.R.3    Kunkel, T.A.4
  • 46
    • 77955590825 scopus 로고    scopus 로고
    • Structure of bacterial LigD 3'-phosphoesterase unveils a DNA repair superfamily
    • Nair PA, Smith P, Shuman S. 2010. Structure of bacterial LigD 3'-phosphoesterase unveils a DNA repair superfamily. Proc Natl Acad Sci USA 107:12822-12827.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 12822-12827
    • Nair, P.A.1    Smith, P.2    Shuman, S.3
  • 47
    • 33744929414 scopus 로고    scopus 로고
    • Substrate specificity and structure-function analysis of the 3'-phosphoesterase component of the bacterial NHEJ protein, DNA ligase D
    • Zhu H, Shuman S. 2006. Substrate specificity and structure-function analysis of the 3'-phosphoesterase component of the bacterial NHEJ protein, DNA ligase D. J Biol Chem 281:13873-13881.
    • (2006) J Biol Chem , vol.281 , pp. 13873-13881
    • Zhu, H.1    Shuman, S.2
  • 48
    • 26644442141 scopus 로고    scopus 로고
    • Essential constituents of the 3'-phosphoesterase domain of bacterial DNA ligase D, a nonhomologous end-joining enzyme
    • Zhu H, Wang LK, Shuman S. 2005. Essential constituents of the 3'-phosphoesterase domain of bacterial DNA ligase D, a nonhomologous end-joining enzyme. J Biol Chem 280:33707-33715.
    • (2005) J Biol Chem , vol.280 , pp. 33707-33715
    • Zhu, H.1    Wang, L.K.2    Shuman, S.3
  • 49
    • 22544469168 scopus 로고    scopus 로고
    • Novel 3'-ribonuclease and 3'-phosphatase activities of the bacterial non-homologous end-joining protein, DNA ligase D
    • Zhu H, Shuman S. 2005. Novel 3'-ribonuclease and 3'-phosphatase activities of the bacterial non-homologous end-joining protein, DNA ligase D. J Biol Chem 280:25973-25981.
    • (2005) J Biol Chem , vol.280 , pp. 25973-25981
    • Zhu, H.1    Shuman, S.2
  • 50
    • 84871589113 scopus 로고    scopus 로고
    • Characterization of Mycobacterium smegmatis PolD2 and PolD1 as RNA/DNA polymerases homologous to the POL domain of bacterial DNA ligase D
    • Zhu H, Bhattarai H, Yan HG, Shuman S, Glickman MS. 2012. Characterization of Mycobacterium smegmatis PolD2 and PolD1 as RNA/DNA polymerases homologous to the POL domain of bacterial DNA ligase D. Biochemistry 51:10147-10158.
    • (2012) Biochemistry , vol.51 , pp. 10147-10158
    • Zhu, H.1    Bhattarai, H.2    Yan, H.G.3    Shuman, S.4    Glickman, M.S.5
  • 51
    • 34447515950 scopus 로고    scopus 로고
    • Mycobacterial UvrD1 is a Ku-dependent DNA helicase that plays a role in multiple DNA repair events, including double-strand break repair
    • Sinha KM, Stephanou NC, Gao F, Glickman MS, Shuman S. 2007. Mycobacterial UvrD1 is a Ku-dependent DNA helicase that plays a role in multiple DNA repair events, including double-strand break repair. J Biol Chem 282:15114-15125.
    • (2007) J Biol Chem , vol.282 , pp. 15114-15125
    • Sinha, K.M.1    Stephanou, N.C.2    Gao, F.3    Glickman, M.S.4    Shuman, S.5
  • 53
    • 0030000946 scopus 로고    scopus 로고
    • Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae
    • Ivanov EL, Sugawara N, Fishman-Lobell J, Haber JE. 1996. Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics 142:693-704.
    • (1996) Genetics , vol.142 , pp. 693-704
    • Ivanov, E.L.1    Sugawara, N.2    Fishman-Lobell, J.3    Haber, J.E.4
  • 54
    • 84859342693 scopus 로고    scopus 로고
    • Comparative analysis of Mycobacterium tuberculosis pe and ppe genes reveals high sequence variation and an apparent absence of selective constraints
    • McEvoyCR, CloeteR, MullerB, SchurchAC, van Helden PD, Gagneux S, Warren RM, Gey van Pittius NC. 2012. Comparative analysis of Mycobacterium tuberculosis pe and ppe genes reveals high sequence variation and an apparent absence of selective constraints. PloS One 7:e30593.
    • (2012) PloS One , vol.7
    • McEvoy, C.R.1    Cloete, R.2    Muller, B.3    Schurch, A.C.4    van Helden, P.D.5    Gagneux, S.6    Warren, R.M.7    Gey van Pittius, N.C.8
  • 55
    • 70350499473 scopus 로고    scopus 로고
    • Evidence for a rapid rate of molecular evolution at the hypervariable and immunogenic Mycobacterium tuberculosis PPE38 gene region
    • McEvoy CR, van Helden PD, Warren RM, Gey van Pittius NC. 2009. Evidence for a rapid rate of molecular evolution at the hypervariable and immunogenic Mycobacterium tuberculosis PPE38 gene region. BMC Evol Biol 9:237.
    • (2009) BMC Evol Biol , vol.9 , pp. 237
    • McEvoy, C.R.1    van Helden, P.D.2    Warren, R.M.3    Gey van Pittius, N.C.4
  • 56
    • 26944437440 scopus 로고    scopus 로고
    • Variation of the Mycobacterium tuberculosis PE_PGRS 33 gene among clinical isolates
    • Talarico S, Cave MD, Marrs CF, Foxman B, Zhang L, Yang Z. 2005. Variation of the Mycobacterium tuberculosis PE_PGRS 33 gene among clinical isolates. J Clin Microbiol 43:4954-4960.
    • (2005) J Clin Microbiol , vol.43 , pp. 4954-4960
    • Talarico, S.1    Cave, M.D.2    Marrs, C.F.3    Foxman, B.4    Zhang, L.5    Yang, Z.6
  • 57
    • 45849108709 scopus 로고    scopus 로고
    • Mycobacterium tuberculosis PE_PGRS16 and PE_PGRS26 genetic polymorphism among clinical isolates
    • Talarico S, Zhang L, Marrs CF, Foxman B, Cave MD, Brennan MJ, Yang Z. 2008. Mycobacterium tuberculosis PE_PGRS16 and PE_PGRS26 genetic polymorphism among clinical isolates. Tuberculosis 88:283-294.
    • (2008) Tuberculosis , vol.88 , pp. 283-294
    • Talarico, S.1    Zhang, L.2    Marrs, C.F.3    Foxman, B.4    Cave, M.D.5    Brennan, M.J.6    Yang, Z.7
  • 58
  • 59
    • 0348017149 scopus 로고    scopus 로고
    • The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide
    • Darwin KH, Ehrt S, Gutierrez-Ramos JC, Weich N, Nathan CF. 2003. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302:1963-1966.
    • (2003) Science , vol.302 , pp. 1963-1966
    • Darwin, K.H.1    Ehrt, S.2    Gutierrez-Ramos, J.C.3    Weich, N.4    Nathan, C.F.5
  • 60
    • 22344447816 scopus 로고    scopus 로고
    • Role for nucleotide excision repair in virulence of Mycobacterium tuberculosis
    • Darwin KH, Nathan CF. 2005. Role for nucleotide excision repair in virulence of Mycobacterium tuberculosis. Infect Immun 73:4581-4587.
    • (2005) Infect Immun , vol.73 , pp. 4581-4587
    • Darwin, K.H.1    Nathan, C.F.2
  • 61
    • 84864012560 scopus 로고    scopus 로고
    • Important role for Mycobacterium tuberculosis UvrD1 in pathogenesis and persistence apart from its function in nucleotide excision repair
    • Houghton J, Townsend C, Williams AR, Rodgers A, Rand L, Walker KB, Bottger EC, Springer B, Davis EO. 2012. Important role for Mycobacterium tuberculosis UvrD1 in pathogenesis and persistence apart from its function in nucleotide excision repair. J Bacteriol 194:2916-2923.
    • (2012) J Bacteriol , vol.194 , pp. 2916-2923
    • Houghton, J.1    Townsend, C.2    Williams, A.R.3    Rodgers, A.4    Rand, L.5    Walker, K.B.6    Bottger, E.C.7    Springer, B.8    Davis, E.O.9
  • 62
    • 51549091830 scopus 로고    scopus 로고
    • Domain requirements for DNA unwinding by mycobacterial UvrD2, an essential DNA helicase
    • Sinha KM, Stephanou NC, Unciuleac MC, Glickman MS, Shuman S. 2008. Domain requirements for DNA unwinding by mycobacterial UvrD2, an essential DNA helicase. Biochemistry 47:9355-9364.
    • (2008) Biochemistry , vol.47 , pp. 9355-9364
    • Sinha, K.M.1    Stephanou, N.C.2    Unciuleac, M.C.3    Glickman, M.S.4    Shuman, S.5
  • 63
    • 80052315960 scopus 로고    scopus 로고
    • UvrD2 is essential in Mycobacterium tuberculosis, but its helicase activity is not required
    • Williams A, Guthlein C, Beresford N, Bottger EC, Springer B, Davis EO. 2011. UvrD2 is essential in Mycobacterium tuberculosis, but its helicase activity is not required. J Bacteriol 193:4487-4494.
    • (2011) J Bacteriol , vol.193 , pp. 4487-4494
    • Williams, A.1    Guthlein, C.2    Beresford, N.3    Bottger, E.C.4    Springer, B.5    Davis, E.O.6
  • 64
    • 0037453719 scopus 로고    scopus 로고
    • DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis
    • Boshoff HI, Reed MB, Barry CE, 3rd, Mizrahi V. 2003. DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis. Cell 113:183-193.
    • (2003) Cell , vol.113 , pp. 183-193
    • Boshoff, H.I.1    Reed, M.B.2    Barry, C.E.3    Mizrahi, V.4
  • 65
    • 0035002098 scopus 로고    scopus 로고
    • Mycobacterium bovis BCG recA deletion mutant shows increased susceptibility to DNA-damaging agents but wild-type survival in a mouse infection model
    • Sander P, Papavinasasundaram KG, Dick T, Stavropoulos E, Ellrott K, Springer B, Colston MJ, Bottger EC. 2001. Mycobacterium bovis BCG recA deletion mutant shows increased susceptibility to DNA-damaging agents but wild-type survival in a mouse infection model. Infect Immun 69:3562-3568.
    • (2001) Infect Immun , vol.69 , pp. 3562-3568
    • Sander, P.1    Papavinasasundaram, K.G.2    Dick, T.3    Stavropoulos, E.4    Ellrott, K.5    Springer, B.6    Colston, M.J.7    Bottger, E.C.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.