메뉴 건너뛰기




Volumn 6, Issue 1, 2015, Pages 155-166

A fast algorithm for training support vector regression via smoothed primal function minimization

Author keywords

Conjugate gradient; Quadratic programming; Smooth approximation; Support vector regression; Insensitive loss function

Indexed keywords

COMPUTATIONAL EFFICIENCY; CONJUGATE GRADIENT METHOD; EFFICIENCY; QUADRATIC PROGRAMMING;

EID: 84921052011     PISSN: 18688071     EISSN: 1868808X     Source Type: Journal    
DOI: 10.1007/s13042-013-0200-6     Document Type: Article
Times cited : (18)

References (31)
  • 1
    • 84966275544 scopus 로고
    • Minimization of functions having Lipschitz-continuous first partial derivatives
    • Armijo L (1966) Minimization of functions having Lipschitz-continuous first partial derivatives. Pac J Math 16:1-3
    • (1966) Pac J Math , vol.16 , pp. 1-3
    • Armijo, L.1
  • 5
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines
    • Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):27:1–27:27
    • (2011) ACM Trans Intell Syst Technol , vol.2 , Issue.3 , pp. 27:1-27:27
    • Chang, C.C.1    Lin, C.J.2
  • 6
    • 34247849152 scopus 로고    scopus 로고
    • Training a support vector machine in the primal
    • Chapelle O (2007) Training a support vector machine in the primal. Neural Comput 19:1155–1178
    • (2007) Neural Comput , vol.19 , pp. 1155-1178
    • Chapelle, O.1
  • 7
    • 0030104686 scopus 로고    scopus 로고
    • A class of smoothing functions for nonlinear and mixed complementarity problems
    • Chen C, Mangasarian OL (1996) A class of smoothing functions for nonlinear and mixed complementarity problems. Comput Optim Appl 5:97–138
    • (1996) Comput Optim Appl , vol.5 , pp. 97-138
    • Chen, C.1    Mangasarian, O.L.2
  • 8
    • 3543109140 scopus 로고    scopus 로고
    • A feature selection Newton method for support vector machine classification
    • Fung G, Mangasarian OL (2004) A feature selection Newton method for support vector machine classification. Comput Optim Appl 28(2):185–202
    • (2004) Comput Optim Appl , vol.28 , Issue.2 , pp. 185-202
    • Fung, G.1    Mangasarian, O.L.2
  • 9
    • 0003425664 scopus 로고    scopus 로고
    • Support vector machines for classification and regression. Technical Report, Image Speech and Intelligent Systems Research Group
    • Gunn SR (1997) Support vector machines for classification and regression. Technical Report, Image Speech and Intelligent Systems Research Group, University of Southampton. http://users.ecs.soton.ac.uk/srg/publications/pdf/SVM.pdf
    • (1997) University of Southampton
    • Gunn, S.R.1
  • 11
    • 84883081326 scopus 로고    scopus 로고
    • Large-scale linear support vector regression. Technical report of Department of Computer Science and Information Engineering
    • Ho C-H, Lin C-J (2012) Large-scale linear support vector regression. Technical report of Department of Computer Science and Information Engineering, National Taiwan University. http://www.csie.ntu.edu.tw/cjlin/papers/linear-svr.pdf
    • (2012) National Taiwan University
    • Ho, C.-H.1    Lin, C.-J.2
  • 12
    • 56449086680 scopus 로고    scopus 로고
    • A dual coordinate descent method for large-scale linear SVM. In: Proceedings of the 25th international conference on machine learning
    • Hsieh C-J, Chang K-W, Lin C-J, Keerthi SS, Sundararajan S (2008) A dual coordinate descent method for large-scale linear SVM. In: Proceedings of the 25th international conference on machine learning, pp 408–415
    • (2008) pp 408–415
    • Hsieh, C.-J.1    Chang, K.-W.2    Lin, C.-J.3    Keerthi, S.S.4    Sundararajan, S.5
  • 14
    • 0015000439 scopus 로고
    • Some results on Tchebycheffian spline functions
    • Kimeldorf GS, Wahba G (1971) Some results on Tchebycheffian spline functions. J Math Anal Appl 33(1):82–95
    • (1971) J Math Anal Appl , vol.33 , Issue.1 , pp. 82-95
    • Kimeldorf, G.S.1    Wahba, G.2
  • 15
    • 0035479871 scopus 로고    scopus 로고
    • SSVM: a smooth support vector machine for classification
    • Lee Y-J, Mangasarian OL (2001) SSVM: a smooth support vector machine for classification. Comput Optim Appl 20(1):5–22
    • (2001) Comput Optim Appl , vol.20 , Issue.1 , pp. 5-22
    • Lee, Y.-J.1    Mangasarian, O.L.2
  • 16
    • 71149111015 scopus 로고    scopus 로고
    • Blockwise coordinate descent procedures for the multi-task Lasso, with applications to neural semantic basis discovery. In: Proceedings of the 26th international conference on machine learning
    • Liu H, Palatucci M, Zhang J (2009) Blockwise coordinate descent procedures for the multi-task Lasso, with applications to neural semantic basis discovery. In: Proceedings of the 26th international conference on machine learning, pp 649–656
    • (2009) pp 649–656
    • Liu, H.1    Palatucci, M.2    Zhang, J.3
  • 17
    • 0036161035 scopus 로고    scopus 로고
    • Large scale kernel regression via linear programming
    • Mangasarian OL, Musicant DR (2002) Large scale kernel regression via linear programming. Mach Learn 46(1/3):255-269
    • (2002) Mach Learn , vol.46 , Issue.1-3 , pp. 255-269
    • Mangasarian, O.L.1    Musicant, D.R.2
  • 19
    • 0031334889 scopus 로고    scopus 로고
    • An improved training algorithm for support vector machines. In: Proceedings of IEEE workshop on neural networks for signal processing
    • Osuna E, Freund R, Girosi F (1997a) An improved training algorithm for support vector machines. In: Proceedings of IEEE workshop on neural networks for signal processing, pp 276–285
    • (1997) pp 276–285
    • Osuna, E.1    Freund, R.2    Girosi, F.3
  • 23
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14(3):199–222
    • (2004) Stat Comput , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 24
    • 0033339941 scopus 로고    scopus 로고
    • Linear programs for automatic accuracy control in regression. In: Proceedings of ninth international conference on artificial neural networks
    • Smola AJ, Schölkopf B, Rätsch G (1999) Linear programs for automatic accuracy control in regression. In: Proceedings of ninth international conference on artificial neural networks, pp 575–580
    • (1999) pp 575–580
    • Smola, A.J.1    Schölkopf, B.2    Rätsch, G.3
  • 25
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B 58(1): 267-288
    • (1996) J R Stat Soc Ser B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 26
    • 0003450542 scopus 로고    scopus 로고
    • Statistical learning theory. Wiley
    • Vapnik V (1998) Statistical learning theory. Wiley, NY
    • (1998) NY
    • Vapnik, V.1
  • 27
    • 84921063008 scopus 로고
    • Methods of optimization. Wiley
    • Walsh GR (1975) Methods of optimization. Wiley, NY
    • (1975) NY
    • Walsh, G.R.1
  • 28
    • 0032295215 scopus 로고    scopus 로고
    • Modeling of strength of high performance concrete using artificial neural networks
    • Yeh I-C (1998) Modeling of strength of high performance concrete using artificial neural networks. Cement Concrete Res 28(12):1797–1808
    • (1998) Cement Concrete Res , vol.28 , Issue.12 , pp. 1797-1808
    • Yeh, I.-C.1
  • 29
    • 1942420344 scopus 로고    scopus 로고
    • Modified logistic regression: an approximation to SVM and its applications in large-scale text categorization. In: Proceedings of the 20th international conference on machine learning
    • Zhang J, Jin R, Yang Y, Hauptmann AG (2003) Modified logistic regression: an approximation to SVM and its applications in large-scale text categorization. In: Proceedings of the 20th international conference on machine learning, pp 888–895
    • (2003) pp 888–895
    • Zhang, J.1    Jin, R.2    Yang, Y.3    Hauptmann, A.G.4
  • 30
    • 80052061786 scopus 로고    scopus 로고
    • Gradient descent algorithms for quantile regression with smooth approximation
    • Zheng S (2011) Gradient descent algorithms for quantile regression with smooth approximation. Int J Mach Learn Cybern 2(3):191–207
    • (2011) Int J Mach Learn Cybern , vol.2 , Issue.3 , pp. 191-207
    • Zheng, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.