메뉴 건너뛰기




Volumn 103, Issue , 2013, Pages 328-340

Kernel ridge regression with active learning for wind speed prediction

Author keywords

Active learning; Forecasting; Kernel ridge regression; Wind speed

Indexed keywords

FORECASTING; REGRESSION ANALYSIS; SAMPLING;

EID: 84871712040     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2012.09.055     Document Type: Article
Times cited : (133)

References (42)
  • 2
    • 78650082610 scopus 로고    scopus 로고
    • Promotion of renewable energies in Algeria: strategies and perspectives
    • Stambouli A.B. Promotion of renewable energies in Algeria: strategies and perspectives. Renew Sustain Energy Rev 2011, 15:1169-1181.
    • (2011) Renew Sustain Energy Rev , vol.15 , pp. 1169-1181
    • Stambouli, A.B.1
  • 6
    • 71849084254 scopus 로고    scopus 로고
    • A methodology to generate statistically dependent wind speed scenarios
    • Morales J.M., Minguez R., Conejo A.J. A methodology to generate statistically dependent wind speed scenarios. Appl Energy 2010, 87(3):843-855.
    • (2010) Appl Energy , vol.87 , Issue.3 , pp. 843-855
    • Morales, J.M.1    Minguez, R.2    Conejo, A.J.3
  • 7
    • 78149358777 scopus 로고    scopus 로고
    • Comprehensive evaluation of ARMA-GARCH(-M) approaches for modeling the mean and volatility of wind speed
    • Liu H., Erdem E., Shi J. Comprehensive evaluation of ARMA-GARCH(-M) approaches for modeling the mean and volatility of wind speed. Appl Energy 2011, 88(3):724-732.
    • (2011) Appl Energy , vol.88 , Issue.3 , pp. 724-732
    • Liu, H.1    Erdem, E.2    Shi, J.3
  • 8
    • 78650562310 scopus 로고    scopus 로고
    • ARMA based approaches for forecasting the tuple of wind speed and direction
    • Erdem E., Shi J. ARMA based approaches for forecasting the tuple of wind speed and direction. Appl Energy 2011, 88(4):1405-1414.
    • (2011) Appl Energy , vol.88 , Issue.4 , pp. 1405-1414
    • Erdem, E.1    Shi, J.2
  • 10
    • 60049084645 scopus 로고    scopus 로고
    • A review on forecasting wind data and wind output
    • Lei M., Jiang C., Liu H., Zhang Y. A review on forecasting wind data and wind output. Renew Sustain Energy Rev 2009, 13(4):915-920.
    • (2009) Renew Sustain Energy Rev , vol.13 , Issue.4 , pp. 915-920
    • Lei, M.1    Jiang, C.2    Liu, H.3    Zhang, Y.4
  • 11
    • 71849085127 scopus 로고    scopus 로고
    • The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria
    • Fadare D.A. The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria. Appl Energy 2010, 87(3):934-942.
    • (2010) Appl Energy , vol.87 , Issue.3 , pp. 934-942
    • Fadare, D.A.1
  • 12
    • 77953137822 scopus 로고    scopus 로고
    • On comparing three artificial neural networks for wind speed forecasting
    • Li G., Shi J. On comparing three artificial neural networks for wind speed forecasting. Appl Energy 2010, 87(7):2313-2320.
    • (2010) Appl Energy , vol.87 , Issue.7 , pp. 2313-2320
    • Li, G.1    Shi, J.2
  • 13
    • 74449091026 scopus 로고    scopus 로고
    • Application of Bayesian model averaging in modeling long-term wind speed distributions
    • Li G., Shi J. Application of Bayesian model averaging in modeling long-term wind speed distributions. Renew Energy 2010, 35(6):1192-1202.
    • (2010) Renew Energy , vol.35 , Issue.6 , pp. 1192-1202
    • Li, G.1    Shi, J.2
  • 14
    • 79959826777 scopus 로고    scopus 로고
    • Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS)
    • Mohandes M., Rehman S., Rahman S.M. Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS). Appl Energy 2011, 88(11):4024-4032.
    • (2011) Appl Energy , vol.88 , Issue.11 , pp. 4024-4032
    • Mohandes, M.1    Rehman, S.2    Rahman, S.M.3
  • 16
    • 0032029065 scopus 로고    scopus 로고
    • A neural networks approach for wind speed prediction
    • Mohandes M.A., Rehman S., Halawani T.O. A neural networks approach for wind speed prediction. Renew Energy 1998, 13(3):345-354.
    • (1998) Renew Energy , vol.13 , Issue.3 , pp. 345-354
    • Mohandes, M.A.1    Rehman, S.2    Halawani, T.O.3
  • 18
    • 0037224608 scopus 로고    scopus 로고
    • Forecasting wind with neural networks
    • More A., Deo M.C. Forecasting wind with neural networks. Mar Struct 2003, 16(1):35-49.
    • (2003) Mar Struct , vol.16 , Issue.1 , pp. 35-49
    • More, A.1    Deo, M.C.2
  • 19
    • 78651245741 scopus 로고    scopus 로고
    • Wind speed parameter estimation from 1-month sample via Bayesian approach
    • Erto P., Lanzotti A., Lepore A. Wind speed parameter estimation from 1-month sample via Bayesian approach. Qual Rel Eng Int 2010, 26(8):853-862.
    • (2010) Qual Rel Eng Int , vol.26 , Issue.8 , pp. 853-862
    • Erto, P.1    Lanzotti, A.2    Lepore, A.3
  • 20
    • 79952454042 scopus 로고    scopus 로고
    • Multiple architecture system for wind speed prediction
    • Bouzgou H., Benoudjit N. Multiple architecture system for wind speed prediction. Appl Energy 2011, 88(7):2463-2471.
    • (2011) Appl Energy , vol.88 , Issue.7 , pp. 2463-2471
    • Bouzgou, H.1    Benoudjit, N.2
  • 22
    • 33847369874 scopus 로고    scopus 로고
    • A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation
    • Barbounis T.G., Theocharis J.B. A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation. Neurocomputing 2007, 70(7-9):1525-1542.
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1525-1542
    • Barbounis, T.G.1    Theocharis, J.B.2
  • 23
    • 34648852323 scopus 로고    scopus 로고
    • Locally recurrent neural networks for wind speed prediction using spatial correlation
    • Barbounis T.G., Theocharis J.B. Locally recurrent neural networks for wind speed prediction using spatial correlation. Inform Sci 2007, 177(24):5775-5797.
    • (2007) Inform Sci , vol.177 , Issue.24 , pp. 5775-5797
    • Barbounis, T.G.1    Theocharis, J.B.2
  • 24
    • 34250846518 scopus 로고    scopus 로고
    • Uncertainty analysis in wind resource assessment and wind energy production estimation
    • 45th AIAA aerospace sciences meeting exhibit. Reno;
    • Lackner MA, Rogers AL, Manwell JF. Uncertainty analysis in wind resource assessment and wind energy production estimation. In: 45th AIAA aerospace sciences meeting exhibit. Reno; 2007.
    • (2007)
    • Lackner, M.A.1    Rogers, A.L.2    Manwell, J.F.3
  • 25
    • 0034161613 scopus 로고    scopus 로고
    • Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis
    • Seguro J.V., Lambert T.W. Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis. J Wind Eng Ind Aerod 2000, 85(1):75-84.
    • (2000) J Wind Eng Ind Aerod , vol.85 , Issue.1 , pp. 75-84
    • Seguro, J.V.1    Lambert, T.W.2
  • 26
    • 67349247564 scopus 로고    scopus 로고
    • A new method to estimate Weibull parameters for wind energy applications
    • Akdag S.A., Dinler A. A new method to estimate Weibull parameters for wind energy applications. Energy Convers Manage 2009, 50(7):1761-1766.
    • (2009) Energy Convers Manage , vol.50 , Issue.7 , pp. 1761-1766
    • Akdag, S.A.1    Dinler, A.2
  • 27
    • 19144369129 scopus 로고    scopus 로고
    • On the uncertainty of wind power predictions-analysis of the forecast accuracy and statistical distribution of errors
    • Lange M. On the uncertainty of wind power predictions-analysis of the forecast accuracy and statistical distribution of errors. J Sol Energy Eng 2005, 127:177-184.
    • (2005) J Sol Energy Eng , vol.127 , pp. 177-184
    • Lange, M.1
  • 28
    • 50849131688 scopus 로고    scopus 로고
    • Uncertainty analysis in MCP-based wind resource assessment and energy production estimation
    • Lackner M.A., Rogers A.L., Manwell J.F. Uncertainty analysis in MCP-based wind resource assessment and energy production estimation. J Sol Energy Eng 2008, 130.
    • (2008) J Sol Energy Eng , vol.130
    • Lackner, M.A.1    Rogers, A.L.2    Manwell, J.F.3
  • 29
    • 78650574886 scopus 로고    scopus 로고
    • Wind speed prediction accuracy and expected errors of RANS equations in low relief inland terrain for wind resource assessment purposes
    • Milashuk S., Crane W.A. Wind speed prediction accuracy and expected errors of RANS equations in low relief inland terrain for wind resource assessment purposes. Environ Model Software 2011, 26(4):429-433.
    • (2011) Environ Model Software , vol.26 , Issue.4 , pp. 429-433
    • Milashuk, S.1    Crane, W.A.2
  • 31
    • 34249816831 scopus 로고    scopus 로고
    • Semisupervised PSO-SVM regression for biophysical parameter estimation
    • Bazi Y., Melgani F. Semisupervised PSO-SVM regression for biophysical parameter estimation. IEEE Trans Geosci Remote Sens 2007, 45(6):1887-1895.
    • (2007) IEEE Trans Geosci Remote Sens , vol.45 , Issue.6 , pp. 1887-1895
    • Bazi, Y.1    Melgani, F.2
  • 32
    • 78650852827 scopus 로고    scopus 로고
    • Semisupervised Gaussian process regression for biophysical parameter estimation
    • Geosci remote sens symposium IGARSS
    • Bazi Y, Melgani F. Semisupervised Gaussian process regression for biophysical parameter estimation. In: Geosci remote sens symposium IGARSS 2010. p. 4248-51.
    • (2010) , pp. 4248-4251
    • Bazi, Y.1    Melgani, F.2
  • 34
    • 78249264429 scopus 로고    scopus 로고
    • Active learning methods for electrocardiographic signal classification
    • Pasolli E., Melgani F. Active learning methods for electrocardiographic signal classification. IEEE Trans Inform Technol Biomed 2010, 14(6):1405-1416.
    • (2010) IEEE Trans Inform Technol Biomed , vol.14 , Issue.6 , pp. 1405-1416
    • Pasolli, E.1    Melgani, F.2
  • 35
    • 79955522957 scopus 로고    scopus 로고
    • Support vector machine active learning through significance space construction
    • Pasolli E., Melgani F., Bazi Y. Support vector machine active learning through significance space construction. IEEE Geosci Remote Sens Lett 2011, 8(3):431-435.
    • (2011) IEEE Geosci Remote Sens Lett , vol.8 , Issue.3 , pp. 431-435
    • Pasolli, E.1    Melgani, F.2    Bazi, Y.3
  • 38
    • 84858337868 scopus 로고    scopus 로고
    • Kernel ridge regression for out-of-sample mapping in supervised manifold learning
    • Orsenigo C., Vercellis C. Kernel ridge regression for out-of-sample mapping in supervised manifold learning. Expert Syst Appl 2012, 39(9):7757-7762.
    • (2012) Expert Syst Appl , vol.39 , Issue.9 , pp. 7757-7762
    • Orsenigo, C.1    Vercellis, C.2
  • 39
    • 0142104187 scopus 로고    scopus 로고
    • Forecasting electricity spot-prices using linear univariate time-series models
    • Cuaresma J.C., Hlouskova J., Kossmeier S., Obersteiner M. Forecasting electricity spot-prices using linear univariate time-series models. Appl Energy 2004, 77(1):87-106.
    • (2004) Appl Energy , vol.77 , Issue.1 , pp. 87-106
    • Cuaresma, J.C.1    Hlouskova, J.2    Kossmeier, S.3    Obersteiner, M.4
  • 42
    • 80053622629 scopus 로고    scopus 로고
    • A two-stage regression approach for spectroscopic quantitative analysis
    • Douak F., Benoudjit N., Melgani F. A two-stage regression approach for spectroscopic quantitative analysis. Chemom Intell Lab Syst 2011, 109(1):34-41.
    • (2011) Chemom Intell Lab Syst , vol.109 , Issue.1 , pp. 34-41
    • Douak, F.1    Benoudjit, N.2    Melgani, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.