메뉴 건너뛰기




Volumn 5, Issue 4, 2014, Pages 579-597

A nonlinear least squares quasi-Newton strategy for LP-SVR hyper-parameters selection

Author keywords

Hyper parameters; Large scale LP SVR; Support vector regression

Indexed keywords

ESTIMATION; LINEAR PROGRAMMING; REGRESSION ANALYSIS;

EID: 84904459530     PISSN: 18688071     EISSN: 1868808X     Source Type: Journal    
DOI: 10.1007/s13042-013-0153-9     Document Type: Article
Times cited : (7)

References (71)
  • 2
    • 0242320493 scopus 로고    scopus 로고
    • Hyperparameter design criteria for support vector classifiers
    • Anguita D, Ridella S, Rivieccio F, Zunino R (2003) Hyperparameter design criteria for support vector classifiers. Neurocomputing 55(1-2): 109-134.
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 109-134
    • Anguita, D.1    Ridella, S.2    Rivieccio, F.3    Zunino, R.4
  • 3
    • 77952898788 scopus 로고    scopus 로고
    • A new infeasible interior-point algorithm for linear programming
    • TAPIA '03, ACM, New York. doi: 10. 1145/948542. 948545
    • Argáez M, Velázquez L (2003) A new infeasible interior-point algorithm for linear programming. In: Proceedings of the 2003 conference on diversity in computing, TAPIA '03, ACM, New York, pp 12-14. doi: 10. 1145/948542. 948545.
    • (2003) In: Proceedings of the 2003 conference on diversity in computing , pp. 12-14
    • Argáez, M.1    Velázquez, L.2
  • 4
    • 84966275544 scopus 로고
    • Minimization of functions having lipschitz continuous first partial derivatives
    • Armijo L (1966) Minimization of functions having lipschitz continuous first partial derivatives. Pac J Math 16(1): 1-3.
    • (1966) Pac J Math , vol.16 , Issue.1 , pp. 1-3
    • Armijo, L.1
  • 5
    • 0033400675 scopus 로고    scopus 로고
    • Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables
    • Blackard J, Dean D (1999) Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables. Comput Electr Agric 24(3): 131-151.
    • (1999) Comput Electr Agric , vol.24 , Issue.3 , pp. 131-151
    • Blackard, J.1    Dean, D.2
  • 7
    • 17444398555 scopus 로고    scopus 로고
    • Leave-one-out bounds for support vector regression model selection
    • Chang M, Lin C (2005) Leave-one-out bounds for support vector regression model selection. Neural Comput 17(5): 1188-1222.
    • (2005) Neural Comput , vol.17 , Issue.5 , pp. 1188-1222
    • Chang, M.1    Lin, C.2
  • 8
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of svm parameters and noise estimation for svm regression
    • Cherkassky V, Ma Y (2004) Practical selection of svm parameters and noise estimation for svm regression. Neural Netw 17(1): 113-126.
    • (2004) Neural Netw , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 9
    • 0000913324 scopus 로고    scopus 로고
    • Svmtorch: support vector machines for large-scale regression problems
    • doi:10.1162/15324430152733142
    • Collobert R, Bengio S (2001) Svmtorch: support vector machines for large-scale regression problems. J Mach Learn Res 1: 143-160. doi: 10. 1162/15324430152733142.
    • (2001) J Mach Learn Res , vol.1 , pp. 143-160
    • Collobert, R.1    Bengio, S.2
  • 12
    • 0037382208 scopus 로고    scopus 로고
    • Evaluation of simple performance measures for tuning SVM hyperparameters
    • Duan K, Keerthi S, Poo A (2003) Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing 51: 41-59.
    • (2003) Neurocomputing , vol.51 , pp. 41-59
    • Duan, K.1    Keerthi, S.2    Poo, A.3
  • 13
    • 26944454497 scopus 로고    scopus 로고
    • Roc graphs: notes and practical considerations for researchers
    • Fawcett T (2004) Roc graphs: notes and practical considerations for researchers. Mach Learn 31: 1-38.
    • (2004) Mach Learn , vol.31 , pp. 1-38
    • Fawcett, T.1
  • 14
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher R (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7(2): 179-188.
    • (1936) Ann Eugen , vol.7 , Issue.2 , pp. 179-188
    • Fisher, R.1
  • 17
    • 0023843391 scopus 로고
    • Analysis of hidden units in a layered network trained to classify sonar targets
    • Gorman R, Sejnowski T (1988) Analysis of hidden units in a layered network trained to classify sonar targets. Neural Netw 1(1): 75-89.
    • (1988) Neural Netw , vol.1 , Issue.1 , pp. 75-89
    • Gorman, R.1    Sejnowski, T.2
  • 20
    • 79952929457 scopus 로고    scopus 로고
    • Separating theorem of samples in banach space for support vector machine learning
    • He Q, Wu C (2011) Separating theorem of samples in banach space for support vector machine learning. Int J Mach Learn Cybern 2(1): 49-54.
    • (2011) Int J Mach Learn Cybern , vol.2 , Issue.1 , pp. 49-54
    • He, Q.1    Wu, C.2
  • 21
    • 0016423894 scopus 로고
    • Pseudoinversus and conjugate gradients
    • Hestenes M (1975) Pseudoinversus and conjugate gradients. Commun ACM 18(1): 40-43.
    • (1975) Commun ACM , vol.18 , Issue.1 , pp. 40-43
    • Hestenes, M.1
  • 22
    • 84904473732 scopus 로고    scopus 로고
    • Method for selecting parameters of least squares support vector machines based on GA and bootstrap
    • doi:cnki:sun:xtfz.0.2008-12-058
    • Hui-ren Z, Pi-e Z (2008) Method for selecting parameters of least squares support vector machines based on GA and bootstrap. J Syst Simul 12: 58. doi: http://en. cnki. com. cn/Article_en/CJFDTOTAL-XTFZ200607074. htm.
    • (2008) J Syst Simul , vol.12 , pp. 58
    • Hui-Ren, Z.1    Pi-E, Z.2
  • 25
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • MIT Press, Cambridge
    • Joachims T (1999) Making large-scale support vector machine learning practical. In: Advances in kernel methods, MIT Press, Cambridge, pp 169-184.
    • (1999) In: Advances in kernel methods , pp. 169-184
    • Joachims, T.1
  • 28
    • 77949566791 scopus 로고    scopus 로고
    • Market clearing price and load forecasting using cooperative co-evolutionary approach
    • Karsaz A, Mashhadi H, Mirsalehi M (2010) Market clearing price and load forecasting using cooperative co-evolutionary approach. Int J Electr Power Energy Syst 32(5): 408-415.
    • (2010) Int J Electr Power Energy Syst , vol.32 , Issue.5 , pp. 408-415
    • Karsaz, A.1    Mashhadi, H.2    Mirsalehi, M.3
  • 30
    • 84872356815 scopus 로고    scopus 로고
    • Twin support vector regression for the simultaneous learning of a function and its derivatives
    • Springer doi: 10. 1007/s13042-012-0072-1
    • Khemchandani R, Karpatne A, Chandra S (2012) Twin support vector regression for the simultaneous learning of a function and its derivatives. Int J Mach Learn Cybern, Springer, pp 1-13. doi: 10. 1007/s13042-012-0072-1.
    • (2012) Int J Mach Learn Cybern , pp. 1-13
    • Khemchandani, R.1    Karpatne, A.2    Chandra, S.3
  • 31
    • 58349084966 scopus 로고    scopus 로고
    • Using numerical simplification to control bloat in genetic programming
    • doi:10.1007/978-3-540-89694-4_50
    • Kinzett D, Zhang M, Johnston M (2008) Using numerical simplification to control bloat in genetic programming. Simul Evol Learn 5361: 493-502. doi: 10. 1007/978-3-540-89694-4_50.
    • (2008) Simul Evol Learn , vol.5361 , pp. 493-502
    • Kinzett, D.1    Zhang, M.2    Johnston, M.3
  • 35
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • doi:10.1109/5.726791
    • LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11): 2278-2324. doi: 10. 1109/5. 726791.
    • (1998) Proc IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 36
    • 79952937863 scopus 로고    scopus 로고
    • Adaptive least squares support vector machines filter for hand tremor canceling in microsurgery
    • doi:10.1007/s13042-011-0012-5
    • Liu Z, Wu Q, Zhang Y, Philip Chen C (2011) Adaptive least squares support vector machines filter for hand tremor canceling in microsurgery. Int J Mach Learn Cybern 2(1): 37-47. doi: 10. 1007/s13042-011-0012-5.
    • (2011) Int J Mach Learn Cybern , vol.2 , Issue.1 , pp. 37-47
    • Liu, Z.1    Wu, Q.2    Zhang, Y.3    Philip Chen, C.4
  • 37
    • 61449246384 scopus 로고    scopus 로고
    • Linear programming support vector regression with wavelet kernel: a new approach to nonlinear dynamical systems identification
    • doi:10.1016/j.matcom.2008.10.011
    • Lu Z, Sun J, Butts KR (2009) Linear programming support vector regression with wavelet kernel: a new approach to nonlinear dynamical systems identification. Math Comput Simul 79(7): 2051-2063. doi: 10. 1016/j. matcom. 2008. 10. 011.
    • (2009) Math Comput Simul , vol.79 , Issue.7 , pp. 2051-2063
    • Lu, Z.1    Sun, J.2    Butts, K.R.3
  • 38
    • 0141765796 scopus 로고    scopus 로고
    • Accurate on-line support vector regression
    • doi:10.1162/089976603322385117
    • Ma J, Theiler J, Perkins S (2003) Accurate on-line support vector regression. Neural Comput 15(11): 2683-2703. doi: 10. 1162/089976603322385117.
    • (2003) Neural Comput , vol.15 , Issue.11 , pp. 2683-2703
    • Ma, J.1    Theiler, J.2    Perkins, S.3
  • 39
    • 0015810240 scopus 로고
    • Instabilities of regression estimates relating air pollution to mortality
    • doi:10.2307/1266852
    • McDonald G, Schwing R (1973) Instabilities of regression estimates relating air pollution to mortality. Technometrics 15(3): 463-481. doi: 10. 2307/1266852.
    • (1973) Technometrics , vol.15 , Issue.3 , pp. 463-481
    • McDonald, G.1    Schwing, R.2
  • 40
    • 0001500115 scopus 로고
    • Functions of positive and negative type, and their connection with the theory of integral equations
    • doi: 10. 1098/rsta. 1909. 0016
    • Mercer J (1909) Functions of positive and negative type, and their connection with the theory of integral equations. Philos Trans R Soc Lond Ser A (containing papers of a mathematical or physical character) 209: 415-446. doi: 10. 1098/rsta. 1909. 0016.
    • (1909) Philos Trans R Soc Lond Ser A (containing papers of a mathematical or physical character) , vol.209 , pp. 415-446
    • Mercer, J.1
  • 42
    • 84872352584 scopus 로고    scopus 로고
    • Comparative study on classification performance between support vector machine and logistic regression
    • doi: 10. 1007/s13042-012-0068-x
    • Musa A (2012) Comparative study on classification performance between support vector machine and logistic regression. Int J Mach Learn Cybern, 1-12. doi: 10. 1007/s13042-012-0068-x.
    • (2012) Int J Mach Learn Cybern , pp. 1-12
    • Musa, A.1
  • 43
    • 0024349941 scopus 로고
    • Determinants of plasma levels of beta-carotene and retinol. Skin cancer prevention study group
    • Nierenberg D, Stukel T, Baron J, Dain B, Greenberg E (1989) Determinants of plasma levels of beta-carotene and retinol. Skin cancer prevention study group. Am J Epidemiol 130(3): 511-521.
    • (1989) Am J Epidemiol , vol.130 , Issue.3 , pp. 511-521
    • Nierenberg, D.1    Stukel, T.2    Baron, J.3    Dain, B.4    Greenberg, E.5
  • 45
    • 69249202329 scopus 로고    scopus 로고
    • Improving the training time of support vector regression algorithms through novel hyper-parameters search space reductions
    • doi:10.1016/j.neucom.2009.07.009
    • Ortiz-García E, Salcedo-Sanz S, Pérez-Bellido Á, Portilla-Figueras J (2009) Improving the training time of support vector regression algorithms through novel hyper-parameters search space reductions. Neurocomputing 72(16): 3683-3691. doi: 10. 1016/j. neucom. 2009. 07. 009.
    • (2009) Neurocomputing , vol.72 , Issue.16 , pp. 3683-3691
    • Ortiz-García, E.1    Salcedo-Sanz, S.2    Pérez-Bellido, Á.3    Portilla-Figueras, J.4
  • 47
    • 76849100708 scopus 로고    scopus 로고
    • Tsvr: an efficient twin support vector machine for regression
    • doi:10.1016/j.neunet.2009.07.002
    • Peng X (2010) Tsvr: an efficient twin support vector machine for regression. Neural Netw 23(3): 365-372. doi: 10. 1016/j. neunet. 2009. 07. 002.
    • (2010) Neural Netw , vol.23 , Issue.3 , pp. 365-372
    • Peng, X.1
  • 48
    • 0042622454 scopus 로고
    • Generalized body composition prediction equation for men using simple measurement techniques
    • Penrose K, Nelson A, Fisher A (1985) Generalized body composition prediction equation for men using simple measurement techniques. Med Sci Sports Exerc 2(17): 189.
    • (1985) Med Sci Sports Exerc , vol.2 , Issue.17 , pp. 189
    • Penrose, K.1    Nelson, A.2    Fisher, A.3
  • 51
    • 78651542954 scopus 로고    scopus 로고
    • Determination of optimal svm parameters by using ga/pso
    • doi:10.4304/jcp.5.8.1160-1168
    • Ren Y, Bai G (2010) Determination of optimal svm parameters by using ga/pso. J Comput 5(8): 1160-1168. doi: 10. 4304/jcp. 5. 8. 1160-1168.
    • (2010) J Comput , vol.5 , Issue.8 , pp. 1160-1168
    • Ren, Y.1    Bai, G.2
  • 55
    • 84874684237 scopus 로고    scopus 로고
    • An algorithm for training a large scale support vector machine for regression based on linear programming and decomposition methods
    • (In Press). doi: 10. 1016/j. patrec. 2012. 10. 026
    • Rivas-Perea P, Cota-Ruiz J (2012) An algorithm for training a large scale support vector machine for regression based on linear programming and decomposition methods. Pattern Recogn Lett (In Press). doi: 10. 1016/j. patrec. 2012. 10. 026.
    • (2012) Pattern Recogn Lett
    • Rivas-Perea, P.1    Cota-Ruiz, J.2
  • 56
    • 17444438778 scopus 로고    scopus 로고
    • New support vector algorithms
    • doi:10.1162/089976600300015565
    • Schölkopf B, Smola A, Williamson R, Bartlett P (2000) New support vector algorithms. Neural Comput 12(5): 1207-1245. doi: 10. 1162/089976600300015565.
    • (2000) Neural Comput , vol.12 , Issue.5 , pp. 1207-1245
    • Schölkopf, B.1    Smola, A.2    Williamson, R.3    Bartlett, P.4
  • 57
    • 79952312481 scopus 로고    scopus 로고
    • Margin-based active learning for structured predictions
    • doi:10.1007/s13042-010-0003-y
    • Small K, Roth D (2010) Margin-based active learning for structured predictions. Int J Mach Learn Cybern 1(1-4): 3-25. doi: 10. 1007/s13042-010-0003-y.
    • (2010) Int J Mach Learn Cybern , vol.1 , Issue.1-4 , pp. 3-25
    • Small, K.1    Roth, D.2
  • 59
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • doi:10.1023/B:STCO.0000035301.49549.88
    • Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14(3): 199-222. doi: 10. 1023/B: STCO. 0000035301. 49549. 88.
    • (2004) Stat Comput , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 61
    • 58149461165 scopus 로고    scopus 로고
    • Decomposition techniques for training linear programming support vector machines
    • doi:10.1016/j.neucom.2008.04.008
    • Torii Y, Abe S (2009) Decomposition techniques for training linear programming support vector machines. Neurocomputing 72(4-6): 973-984. doi: 10. 1016/j. neucom. 2008. 04. 008.
    • (2009) Neurocomputing , vol.72 , Issue.4-6 , pp. 973-984
    • Torii, Y.1    Abe, S.2
  • 62
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • Vapnik V, Golowich S, Smola A (1997) Support vector method for function approximation, regression estimation, and signal processing. Adv Neural Inf Process Syst 9: 281-287.
    • (1997) Adv Neural Inf Process Syst , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 65
    • 84863293814 scopus 로고    scopus 로고
    • Multiple faults diagnosis in motion system based on svm
    • doi:10.1007/s13042-011-0035-y
    • Xiao JZ, Wang HR, Yang XC, Gao Z (2012) Multiple faults diagnosis in motion system based on svm. Int J Mach Learn Cybern 3(1): 77-82. doi: 10. 1007/s13042-011-0035-y.
    • (2012) Int J Mach Learn Cybern , vol.3 , Issue.1 , pp. 77-82
    • Xiao, J.Z.1    Wang, H.R.2    Yang, X.C.3    Gao, Z.4
  • 66
    • 39649114069 scopus 로고    scopus 로고
    • Parameter selection of support vector machine for function approximation based on chaos optimization
    • doi:10.1016/S1004-4132(08)60066-3
    • Xiaofang Y, Yaonan W (2008) Parameter selection of support vector machine for function approximation based on chaos optimization. J Syst Eng Electr 19(1): 191-197. doi: 10. 1016/S1004-4132(08)60066-3.
    • (2008) J Syst Eng Electr , vol.19 , Issue.1 , pp. 191-197
    • Xiaofang, Y.1    Yaonan, W.2
  • 67
    • 69449099279 scopus 로고    scopus 로고
    • A novel kernel-based maximum a posteriori classification method
    • doi:10.1016/j.neunet.2008.11.005
    • Xu Z, Huang K, Zhu J, King I, Lyu MR (2009) A novel kernel-based maximum a posteriori classification method. Neural Netw 22(7): 977-987. doi: 10. 1016/j. neunet. 2008. 11. 005.
    • (2009) Neural Netw , vol.22 , Issue.7 , pp. 977-987
    • Xu, Z.1    Huang, K.2    Zhu, J.3    King, I.4    Lyu, M.R.5
  • 68
    • 0032295215 scopus 로고    scopus 로고
    • Modeling of strength of high-performance concrete using artificial neural networks
    • doi:10.1016/S0008-8846(98)00165-3
    • Yeh I (1998) Modeling of strength of high-performance concrete using artificial neural networks. Cement and Concrete research 28(12): 1797-1808. doi: 10. 1016/S0008-8846(98)00165-3.
    • (1998) Cement Concr Res , vol.28 , Issue.12 , pp. 1797-1808
    • Yeh, I.1
  • 70
    • 76849107689 scopus 로고    scopus 로고
    • On the sparseness of 1-norm support vector machines
    • doi:10.1016/j.neunet.2009.11.012
    • Zhang L, Zhou W (2010) On the sparseness of 1-norm support vector machines. Neural Netw 23(3): 373-385. doi: 10. 1016/j. neunet. 2009. 11. 012.
    • (2010) Neural Netw , vol.23 , Issue.3 , pp. 373-385
    • Zhang, L.1    Zhou, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.