-
1
-
-
27744468493
-
Theoretical and practical model selection methods for support vector classifiers
-
Springer, Berlin
-
Anguita D, Boni A, Ridella S, Rivieccio F, Sterpi D (2005) Theoretical and practical model selection methods for support vector classifiers. In: Support vector machines: theory and applications, Springer, Berlin, pp 159-179.
-
(2005)
In: Support vector machines: Theory and applications
, pp. 159-179
-
-
Anguita, D.1
Boni, A.2
Ridella, S.3
Rivieccio, F.4
Sterpi, D.5
-
2
-
-
0242320493
-
Hyperparameter design criteria for support vector classifiers
-
Anguita D, Ridella S, Rivieccio F, Zunino R (2003) Hyperparameter design criteria for support vector classifiers. Neurocomputing 55(1-2): 109-134.
-
(2003)
Neurocomputing
, vol.55
, Issue.1-2
, pp. 109-134
-
-
Anguita, D.1
Ridella, S.2
Rivieccio, F.3
Zunino, R.4
-
3
-
-
77952898788
-
A new infeasible interior-point algorithm for linear programming
-
TAPIA '03, ACM, New York. doi: 10. 1145/948542. 948545
-
Argáez M, Velázquez L (2003) A new infeasible interior-point algorithm for linear programming. In: Proceedings of the 2003 conference on diversity in computing, TAPIA '03, ACM, New York, pp 12-14. doi: 10. 1145/948542. 948545.
-
(2003)
In: Proceedings of the 2003 conference on diversity in computing
, pp. 12-14
-
-
Argáez, M.1
Velázquez, L.2
-
4
-
-
84966275544
-
Minimization of functions having lipschitz continuous first partial derivatives
-
Armijo L (1966) Minimization of functions having lipschitz continuous first partial derivatives. Pac J Math 16(1): 1-3.
-
(1966)
Pac J Math
, vol.16
, Issue.1
, pp. 1-3
-
-
Armijo, L.1
-
5
-
-
0033400675
-
Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables
-
Blackard J, Dean D (1999) Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables. Comput Electr Agric 24(3): 131-151.
-
(1999)
Comput Electr Agric
, vol.24
, Issue.3
, pp. 131-151
-
-
Blackard, J.1
Dean, D.2
-
7
-
-
17444398555
-
Leave-one-out bounds for support vector regression model selection
-
Chang M, Lin C (2005) Leave-one-out bounds for support vector regression model selection. Neural Comput 17(5): 1188-1222.
-
(2005)
Neural Comput
, vol.17
, Issue.5
, pp. 1188-1222
-
-
Chang, M.1
Lin, C.2
-
8
-
-
0346250790
-
Practical selection of svm parameters and noise estimation for svm regression
-
Cherkassky V, Ma Y (2004) Practical selection of svm parameters and noise estimation for svm regression. Neural Netw 17(1): 113-126.
-
(2004)
Neural Netw
, vol.17
, Issue.1
, pp. 113-126
-
-
Cherkassky, V.1
Ma, Y.2
-
9
-
-
0000913324
-
Svmtorch: support vector machines for large-scale regression problems
-
doi:10.1162/15324430152733142
-
Collobert R, Bengio S (2001) Svmtorch: support vector machines for large-scale regression problems. J Mach Learn Res 1: 143-160. doi: 10. 1162/15324430152733142.
-
(2001)
J Mach Learn Res
, vol.1
, pp. 143-160
-
-
Collobert, R.1
Bengio, S.2
-
12
-
-
0037382208
-
Evaluation of simple performance measures for tuning SVM hyperparameters
-
Duan K, Keerthi S, Poo A (2003) Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing 51: 41-59.
-
(2003)
Neurocomputing
, vol.51
, pp. 41-59
-
-
Duan, K.1
Keerthi, S.2
Poo, A.3
-
13
-
-
26944454497
-
Roc graphs: notes and practical considerations for researchers
-
Fawcett T (2004) Roc graphs: notes and practical considerations for researchers. Mach Learn 31: 1-38.
-
(2004)
Mach Learn
, vol.31
, pp. 1-38
-
-
Fawcett, T.1
-
14
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
Fisher R (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7(2): 179-188.
-
(1936)
Ann Eugen
, vol.7
, Issue.2
, pp. 179-188
-
-
Fisher, R.1
-
15
-
-
0003908693
-
-
Institute of Pharmaceutical and Food Analysis Technologies, Genoa, Italy
-
Forina M, Leardi R, Armanino C, Lanteri S (1998) PARVUS: an extendable package of programs for data exploration, classification and correlation. Institute of Pharmaceutical and Food Analysis Technologies, Genoa, Italy.
-
(1998)
PARVUS: An extendable package of programs for data exploration, classification and correlation
-
-
Forina, M.1
Leardi, R.2
Armanino, C.3
Lanteri, S.4
-
17
-
-
0023843391
-
Analysis of hidden units in a layered network trained to classify sonar targets
-
Gorman R, Sejnowski T (1988) Analysis of hidden units in a layered network trained to classify sonar targets. Neural Netw 1(1): 75-89.
-
(1988)
Neural Netw
, vol.1
, Issue.1
, pp. 75-89
-
-
Gorman, R.1
Sejnowski, T.2
-
20
-
-
79952929457
-
Separating theorem of samples in banach space for support vector machine learning
-
He Q, Wu C (2011) Separating theorem of samples in banach space for support vector machine learning. Int J Mach Learn Cybern 2(1): 49-54.
-
(2011)
Int J Mach Learn Cybern
, vol.2
, Issue.1
, pp. 49-54
-
-
He, Q.1
Wu, C.2
-
21
-
-
0016423894
-
Pseudoinversus and conjugate gradients
-
Hestenes M (1975) Pseudoinversus and conjugate gradients. Commun ACM 18(1): 40-43.
-
(1975)
Commun ACM
, vol.18
, Issue.1
, pp. 40-43
-
-
Hestenes, M.1
-
22
-
-
84904473732
-
Method for selecting parameters of least squares support vector machines based on GA and bootstrap
-
doi:cnki:sun:xtfz.0.2008-12-058
-
Hui-ren Z, Pi-e Z (2008) Method for selecting parameters of least squares support vector machines based on GA and bootstrap. J Syst Simul 12: 58. doi: http://en. cnki. com. cn/Article_en/CJFDTOTAL-XTFZ200607074. htm.
-
(2008)
J Syst Simul
, vol.12
, pp. 58
-
-
Hui-Ren, Z.1
Pi-E, Z.2
-
25
-
-
0002714543
-
Making large-scale support vector machine learning practical
-
MIT Press, Cambridge
-
Joachims T (1999) Making large-scale support vector machine learning practical. In: Advances in kernel methods, MIT Press, Cambridge, pp 169-184.
-
(1999)
In: Advances in kernel methods
, pp. 169-184
-
-
Joachims, T.1
-
28
-
-
77949566791
-
Market clearing price and load forecasting using cooperative co-evolutionary approach
-
Karsaz A, Mashhadi H, Mirsalehi M (2010) Market clearing price and load forecasting using cooperative co-evolutionary approach. Int J Electr Power Energy Syst 32(5): 408-415.
-
(2010)
Int J Electr Power Energy Syst
, vol.32
, Issue.5
, pp. 408-415
-
-
Karsaz, A.1
Mashhadi, H.2
Mirsalehi, M.3
-
30
-
-
84872356815
-
Twin support vector regression for the simultaneous learning of a function and its derivatives
-
Springer doi: 10. 1007/s13042-012-0072-1
-
Khemchandani R, Karpatne A, Chandra S (2012) Twin support vector regression for the simultaneous learning of a function and its derivatives. Int J Mach Learn Cybern, Springer, pp 1-13. doi: 10. 1007/s13042-012-0072-1.
-
(2012)
Int J Mach Learn Cybern
, pp. 1-13
-
-
Khemchandani, R.1
Karpatne, A.2
Chandra, S.3
-
31
-
-
58349084966
-
Using numerical simplification to control bloat in genetic programming
-
doi:10.1007/978-3-540-89694-4_50
-
Kinzett D, Zhang M, Johnston M (2008) Using numerical simplification to control bloat in genetic programming. Simul Evol Learn 5361: 493-502. doi: 10. 1007/978-3-540-89694-4_50.
-
(2008)
Simul Evol Learn
, vol.5361
, pp. 493-502
-
-
Kinzett, D.1
Zhang, M.2
Johnston, M.3
-
32
-
-
33745933843
-
Yet faster method to optimize svr hyperparameters based on minimizing cross-validation error
-
doi: 10. 1109/IJCNN. 2005. 1555967
-
Kobayashi K, Kitakoshi D, Nakano R (2005) Yet faster method to optimize svr hyperparameters based on minimizing cross-validation error. In: Proceedings of the 2005 IEEE international joint conference on neural networks, IJCNN'05, vol 2, pp 871-876. doi: 10. 1109/IJCNN. 2005. 1555967.
-
(2005)
In: Proceedings of the 2005 IEEE international joint conference on neural networks, IJCNN'05
, vol.2
, pp. 871-876
-
-
Kobayashi, K.1
Kitakoshi, D.2
Nakano, R.3
-
35
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
doi:10.1109/5.726791
-
LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11): 2278-2324. doi: 10. 1109/5. 726791.
-
(1998)
Proc IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
36
-
-
79952937863
-
Adaptive least squares support vector machines filter for hand tremor canceling in microsurgery
-
doi:10.1007/s13042-011-0012-5
-
Liu Z, Wu Q, Zhang Y, Philip Chen C (2011) Adaptive least squares support vector machines filter for hand tremor canceling in microsurgery. Int J Mach Learn Cybern 2(1): 37-47. doi: 10. 1007/s13042-011-0012-5.
-
(2011)
Int J Mach Learn Cybern
, vol.2
, Issue.1
, pp. 37-47
-
-
Liu, Z.1
Wu, Q.2
Zhang, Y.3
Philip Chen, C.4
-
37
-
-
61449246384
-
Linear programming support vector regression with wavelet kernel: a new approach to nonlinear dynamical systems identification
-
doi:10.1016/j.matcom.2008.10.011
-
Lu Z, Sun J, Butts KR (2009) Linear programming support vector regression with wavelet kernel: a new approach to nonlinear dynamical systems identification. Math Comput Simul 79(7): 2051-2063. doi: 10. 1016/j. matcom. 2008. 10. 011.
-
(2009)
Math Comput Simul
, vol.79
, Issue.7
, pp. 2051-2063
-
-
Lu, Z.1
Sun, J.2
Butts, K.R.3
-
38
-
-
0141765796
-
Accurate on-line support vector regression
-
doi:10.1162/089976603322385117
-
Ma J, Theiler J, Perkins S (2003) Accurate on-line support vector regression. Neural Comput 15(11): 2683-2703. doi: 10. 1162/089976603322385117.
-
(2003)
Neural Comput
, vol.15
, Issue.11
, pp. 2683-2703
-
-
Ma, J.1
Theiler, J.2
Perkins, S.3
-
39
-
-
0015810240
-
Instabilities of regression estimates relating air pollution to mortality
-
doi:10.2307/1266852
-
McDonald G, Schwing R (1973) Instabilities of regression estimates relating air pollution to mortality. Technometrics 15(3): 463-481. doi: 10. 2307/1266852.
-
(1973)
Technometrics
, vol.15
, Issue.3
, pp. 463-481
-
-
McDonald, G.1
Schwing, R.2
-
40
-
-
0001500115
-
Functions of positive and negative type, and their connection with the theory of integral equations
-
doi: 10. 1098/rsta. 1909. 0016
-
Mercer J (1909) Functions of positive and negative type, and their connection with the theory of integral equations. Philos Trans R Soc Lond Ser A (containing papers of a mathematical or physical character) 209: 415-446. doi: 10. 1098/rsta. 1909. 0016.
-
(1909)
Philos Trans R Soc Lond Ser A (containing papers of a mathematical or physical character)
, vol.209
, pp. 415-446
-
-
Mercer, J.1
-
42
-
-
84872352584
-
Comparative study on classification performance between support vector machine and logistic regression
-
doi: 10. 1007/s13042-012-0068-x
-
Musa A (2012) Comparative study on classification performance between support vector machine and logistic regression. Int J Mach Learn Cybern, 1-12. doi: 10. 1007/s13042-012-0068-x.
-
(2012)
Int J Mach Learn Cybern
, pp. 1-12
-
-
Musa, A.1
-
43
-
-
0024349941
-
Determinants of plasma levels of beta-carotene and retinol. Skin cancer prevention study group
-
Nierenberg D, Stukel T, Baron J, Dain B, Greenberg E (1989) Determinants of plasma levels of beta-carotene and retinol. Skin cancer prevention study group. Am J Epidemiol 130(3): 511-521.
-
(1989)
Am J Epidemiol
, vol.130
, Issue.3
, pp. 511-521
-
-
Nierenberg, D.1
Stukel, T.2
Baron, J.3
Dain, B.4
Greenberg, E.5
-
45
-
-
69249202329
-
Improving the training time of support vector regression algorithms through novel hyper-parameters search space reductions
-
doi:10.1016/j.neucom.2009.07.009
-
Ortiz-García E, Salcedo-Sanz S, Pérez-Bellido Á, Portilla-Figueras J (2009) Improving the training time of support vector regression algorithms through novel hyper-parameters search space reductions. Neurocomputing 72(16): 3683-3691. doi: 10. 1016/j. neucom. 2009. 07. 009.
-
(2009)
Neurocomputing
, vol.72
, Issue.16
, pp. 3683-3691
-
-
Ortiz-García, E.1
Salcedo-Sanz, S.2
Pérez-Bellido, Á.3
Portilla-Figueras, J.4
-
46
-
-
79952262111
-
Convex hull in feature space for support vector machines
-
Springer, Berlin doi: 10. 1007/3-540-36131-6_42
-
Osuna E, Castro O (2002) Convex hull in feature space for support vector machines. In: Advances in artificial intelligence IBERAMIA 2002, lecture notes in computer science, vol 2527, Springer, Berlin, pp 411-419. doi: 10. 1007/3-540-36131-6_42.
-
(2002)
In: Advances in artificial intelligence IBERAMIA 2002, lecture notes in computer science
, vol.2527
, pp. 411-419
-
-
Osuna, E.1
Castro, O.2
-
47
-
-
76849100708
-
Tsvr: an efficient twin support vector machine for regression
-
doi:10.1016/j.neunet.2009.07.002
-
Peng X (2010) Tsvr: an efficient twin support vector machine for regression. Neural Netw 23(3): 365-372. doi: 10. 1016/j. neunet. 2009. 07. 002.
-
(2010)
Neural Netw
, vol.23
, Issue.3
, pp. 365-372
-
-
Peng, X.1
-
48
-
-
0042622454
-
Generalized body composition prediction equation for men using simple measurement techniques
-
Penrose K, Nelson A, Fisher A (1985) Generalized body composition prediction equation for men using simple measurement techniques. Med Sci Sports Exerc 2(17): 189.
-
(1985)
Med Sci Sports Exerc
, vol.2
, Issue.17
, pp. 189
-
-
Penrose, K.1
Nelson, A.2
Fisher, A.3
-
49
-
-
84898983292
-
Using analytic qp and sparseness to speed training of support vector machines
-
MIT Press, Cambridge, MA, USA
-
Platt J (1999) Using analytic qp and sparseness to speed training of support vector machines. In: Proceedings of the 1998 conference on Advances in neural information processing systems II, MIT Press, Cambridge, MA, USA, pp 557-563.
-
(1999)
In: Proceedings of the 1998 conference on Advances in neural information processing systems II
, pp. 557-563
-
-
Platt, J.1
-
51
-
-
78651542954
-
Determination of optimal svm parameters by using ga/pso
-
doi:10.4304/jcp.5.8.1160-1168
-
Ren Y, Bai G (2010) Determination of optimal svm parameters by using ga/pso. J Comput 5(8): 1160-1168. doi: 10. 4304/jcp. 5. 8. 1160-1168.
-
(2010)
J Comput
, vol.5
, Issue.8
, pp. 1160-1168
-
-
Ren, Y.1
Bai, G.2
-
55
-
-
84874684237
-
An algorithm for training a large scale support vector machine for regression based on linear programming and decomposition methods
-
(In Press). doi: 10. 1016/j. patrec. 2012. 10. 026
-
Rivas-Perea P, Cota-Ruiz J (2012) An algorithm for training a large scale support vector machine for regression based on linear programming and decomposition methods. Pattern Recogn Lett (In Press). doi: 10. 1016/j. patrec. 2012. 10. 026.
-
(2012)
Pattern Recogn Lett
-
-
Rivas-Perea, P.1
Cota-Ruiz, J.2
-
56
-
-
17444438778
-
New support vector algorithms
-
doi:10.1162/089976600300015565
-
Schölkopf B, Smola A, Williamson R, Bartlett P (2000) New support vector algorithms. Neural Comput 12(5): 1207-1245. doi: 10. 1162/089976600300015565.
-
(2000)
Neural Comput
, vol.12
, Issue.5
, pp. 1207-1245
-
-
Schölkopf, B.1
Smola, A.2
Williamson, R.3
Bartlett, P.4
-
57
-
-
79952312481
-
Margin-based active learning for structured predictions
-
doi:10.1007/s13042-010-0003-y
-
Small K, Roth D (2010) Margin-based active learning for structured predictions. Int J Mach Learn Cybern 1(1-4): 3-25. doi: 10. 1007/s13042-010-0003-y.
-
(2010)
Int J Mach Learn Cybern
, vol.1
, Issue.1-4
, pp. 3-25
-
-
Small, K.1
Roth, D.2
-
59
-
-
4043137356
-
A tutorial on support vector regression
-
doi:10.1023/B:STCO.0000035301.49549.88
-
Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14(3): 199-222. doi: 10. 1023/B: STCO. 0000035301. 49549. 88.
-
(2004)
Stat Comput
, vol.14
, Issue.3
, pp. 199-222
-
-
Smola, A.J.1
Schölkopf, B.2
-
61
-
-
58149461165
-
Decomposition techniques for training linear programming support vector machines
-
doi:10.1016/j.neucom.2008.04.008
-
Torii Y, Abe S (2009) Decomposition techniques for training linear programming support vector machines. Neurocomputing 72(4-6): 973-984. doi: 10. 1016/j. neucom. 2008. 04. 008.
-
(2009)
Neurocomputing
, vol.72
, Issue.4-6
, pp. 973-984
-
-
Torii, Y.1
Abe, S.2
-
62
-
-
84887252594
-
Support vector method for function approximation, regression estimation, and signal processing
-
Vapnik V, Golowich S, Smola A (1997) Support vector method for function approximation, regression estimation, and signal processing. Adv Neural Inf Process Syst 9: 281-287.
-
(1997)
Adv Neural Inf Process Syst
, vol.9
, pp. 281-287
-
-
Vapnik, V.1
Golowich, S.2
Smola, A.3
-
65
-
-
84863293814
-
Multiple faults diagnosis in motion system based on svm
-
doi:10.1007/s13042-011-0035-y
-
Xiao JZ, Wang HR, Yang XC, Gao Z (2012) Multiple faults diagnosis in motion system based on svm. Int J Mach Learn Cybern 3(1): 77-82. doi: 10. 1007/s13042-011-0035-y.
-
(2012)
Int J Mach Learn Cybern
, vol.3
, Issue.1
, pp. 77-82
-
-
Xiao, J.Z.1
Wang, H.R.2
Yang, X.C.3
Gao, Z.4
-
66
-
-
39649114069
-
Parameter selection of support vector machine for function approximation based on chaos optimization
-
doi:10.1016/S1004-4132(08)60066-3
-
Xiaofang Y, Yaonan W (2008) Parameter selection of support vector machine for function approximation based on chaos optimization. J Syst Eng Electr 19(1): 191-197. doi: 10. 1016/S1004-4132(08)60066-3.
-
(2008)
J Syst Eng Electr
, vol.19
, Issue.1
, pp. 191-197
-
-
Xiaofang, Y.1
Yaonan, W.2
-
67
-
-
69449099279
-
A novel kernel-based maximum a posteriori classification method
-
doi:10.1016/j.neunet.2008.11.005
-
Xu Z, Huang K, Zhu J, King I, Lyu MR (2009) A novel kernel-based maximum a posteriori classification method. Neural Netw 22(7): 977-987. doi: 10. 1016/j. neunet. 2008. 11. 005.
-
(2009)
Neural Netw
, vol.22
, Issue.7
, pp. 977-987
-
-
Xu, Z.1
Huang, K.2
Zhu, J.3
King, I.4
Lyu, M.R.5
-
68
-
-
0032295215
-
Modeling of strength of high-performance concrete using artificial neural networks
-
doi:10.1016/S0008-8846(98)00165-3
-
Yeh I (1998) Modeling of strength of high-performance concrete using artificial neural networks. Cement and Concrete research 28(12): 1797-1808. doi: 10. 1016/S0008-8846(98)00165-3.
-
(1998)
Cement Concr Res
, vol.28
, Issue.12
, pp. 1797-1808
-
-
Yeh, I.1
-
70
-
-
76849107689
-
On the sparseness of 1-norm support vector machines
-
doi:10.1016/j.neunet.2009.11.012
-
Zhang L, Zhou W (2010) On the sparseness of 1-norm support vector machines. Neural Netw 23(3): 373-385. doi: 10. 1016/j. neunet. 2009. 11. 012.
-
(2010)
Neural Netw
, vol.23
, Issue.3
, pp. 373-385
-
-
Zhang, L.1
Zhou, W.2
|