-
1
-
-
2042437650
-
Initial sequencing, and analysis of the human genome
-
Lander E. S., et al. Initial sequencing, and analysis of the human genome. Nature 409, 860-921 (2001
-
(2001)
Nature
, vol.409
, pp. 860-921
-
-
Lander, E.S.1
-
3
-
-
53649106195
-
Next-generation DNA sequencing
-
Shendure J., & Ji H. Next-generation DNA sequencing. Nature Biotechnol. 26, 1135-1145 (2008
-
(2008)
Nature Biotechnol
, vol.26
, pp. 1135-1145
-
-
Shendure, J.1
Ji, H.2
-
4
-
-
72849144434
-
Sequencing technologies -the next generation
-
Metzker M. L. Sequencing technologies -the next generation. Nature Rev. Genet. 11, 31-46 (2010
-
(2010)
Nature Rev. Genet
, vol.11
, pp. 31-46
-
-
Metzker, M.L.1
-
5
-
-
67349209853
-
Next-generation DNA sequencing techniques
-
Ansorge W. J. Next-generation DNA sequencing techniques. New Biotechnol. 25, 195-203 (2009
-
(2009)
New Biotechnol
, vol.25
, pp. 195-203
-
-
Ansorge, W.J.1
-
6
-
-
84964286114
-
The emergence of nanopores in next-generation sequencing
-
Steinbock L. J., & Radenovic A. The emergence of nanopores in next-generation sequencing. Nanotechnology 26, 074003 (2015
-
(2015)
Nanotechnology
, vol.26
, pp. 074003
-
-
Steinbock, L.J.1
Radenovic, A.2
-
7
-
-
0037474152
-
Zero-mode waveguides for single-molecule analysis at high concentrations
-
Levene M. J., et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682-686 (2003
-
(2003)
Science
, vol.299
, pp. 682-686
-
-
Levene, M.J.1
-
8
-
-
84865591846
-
A tale of three next generation sequencing platforms: Comparison of ion torrent pacific biosciences, and illumina miseq sequencers
-
Quail M. A., et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences, and Illumina MiSeq sequencers. BMC Genomics 13, 341 (2012
-
(2012)
BMC Genomics
, vol.13
, pp. 341
-
-
Quail, M.A.1
-
9
-
-
84884752351
-
An evaluation of the PacBio RS platform for sequencing and de novo assembly of a chloroplast genome
-
Ferrarini M., et al. An evaluation of the PacBio RS platform for sequencing, and De novo assembly of a chloroplast genome. BMC Genomics 14, 670 (2013
-
(2013)
BMC Genomics
, vol.14
, pp. 670
-
-
Ferrarini, M.1
-
10
-
-
84887412533
-
A single-molecule long-read survey of the human transcriptome
-
Sharon D., Tilgner H., Grubert F., & Snyder M. A single-molecule long-read survey of the human transcriptome. Nature Biotechnol. 31, 1009-1014 (2013
-
(2013)
Nature Biotechnol
, vol.31
, pp. 1009-1014
-
-
Sharon, D.1
Tilgner, H.2
Grubert, F.3
Snyder, M.4
-
11
-
-
84907952658
-
A first look at the oxford nanopore minion sequencer
-
Mikheyev A. S., & Tin M. M. A first look at the Oxford Nanopore MinION sequencer. Mol. Ecol. Resour. 14, 1097-1102 (2014
-
(2014)
Mol. Ecol. Resour
, vol.14
, pp. 1097-1102
-
-
Mikheyev, A.S.1
Tin, M.M.2
-
12
-
-
84926472171
-
Improved data analysis for the MinION nanopore sequencer
-
Jain M., et al. Improved data analysis for the MinION nanopore sequencer. Nature Methods 12, 351-356 (2015
-
(2015)
Nature Methods
, vol.12
, pp. 351-356
-
-
Jain, M.1
-
13
-
-
7444220645
-
Electric field effect in atomically thin carbon films
-
Novoselov K. S., et al. Electric field effect in atomically thin carbon films. Science 306, 666-669 (2004
-
(2004)
Science
, vol.306
, pp. 666-669
-
-
Novoselov, K.S.1
-
14
-
-
23044442056
-
Two-dimensional atomic crystals
-
Novoselov K. S., et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451-10453 (2005
-
(2005)
Proc. Natl Acad. Sci. USA
, vol.102
, pp. 10451-10453
-
-
Novoselov, K.S.1
-
16
-
-
47749150628
-
Measurement of the elastic properties, and intrinsic strength of monolayer graphene
-
Lee C., Wei X., Kysar J. W., & Hone J. Measurement of the elastic properties, and intrinsic strength of monolayer graphene. Science 321, 385-388 (2008
-
(2008)
Science
, vol.321
, pp. 385-388
-
-
Lee, C.1
Wei, X.2
Kysar, J.W.3
Hone, J.4
-
17
-
-
34548388792
-
Detection of individual gas molecules adsorbed on graphene
-
Schedin F., et al. Detection of individual gas molecules adsorbed on graphene. Nature Mater. 6, 652-655 (2007
-
(2007)
Nature Mater
, vol.6
, pp. 652-655
-
-
Schedin, F.1
-
18
-
-
45349092986
-
Fine structure constant defines visual transparency of graphene
-
Nair R. R., et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008
-
(2008)
Science
, vol.320
, pp. 1308
-
-
Nair, R.R.1
-
19
-
-
68949135918
-
Tight-binding approach to uniaxial strain in graphene
-
Pereira V., Castro Neto A., & Peres N. Tight-binding approach to uniaxial strain in graphene. Phys. Rev. B 80, 045401 (2009
-
(2009)
Phys. Rev. B
, vol.80
, pp. 045401
-
-
Pereira, V.1
Castro Neto, A.2
Peres, N.3
-
20
-
-
42349087225
-
Superior thermal conductivity of single-layer graphene
-
Balandin A. A., et Al. Superior Thermal Conductivity of Single-layer Graphene. Nano Lett. 8, 902-907 (2008
-
(2008)
Nano Lett
, vol.8
, pp. 902-907
-
-
Balandin, A.A.1
-
21
-
-
40749140712
-
Giant intrinsic carrier mobilities in graphene, and its bilayer
-
Morozov S., et al. Giant intrinsic carrier mobilities in graphene, and its bilayer. Phys. Rev. Lett. 100, 016602 (2008
-
(2008)
Phys. Rev. Lett
, vol.100
, pp. 016602
-
-
Morozov, S.1
-
22
-
-
84923776518
-
Science, and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems
-
Ferrari A. C., et al. Science, and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598-4810 (2015
-
(2015)
Nanoscale
, vol.7
, pp. 4598-4810
-
-
Ferrari, A.C.1
-
23
-
-
0017258698
-
Single-channel currents recorded from membrane of denervated frog muscle fibres
-
Neher E., & Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799-802 (1976
-
(1976)
Nature
, vol.260
, pp. 799-802
-
-
Neher, E.1
Sakmann, B.2
-
24
-
-
0018956403
-
Pore size, and properties of channels from mitochondria isolated from neurospora crassa
-
Colombini M. Pore size, and properties of channels from mitochondria isolated from Neurospora crassa. J. Membrane Biol. 53, 79-84 (1980
-
(1980)
J. Membrane Biol
, vol.53
, pp. 79-84
-
-
Colombini, M.1
-
25
-
-
0026924325
-
A simple method for the determination of the pore radius of ion channels in planar lipid bilayer membranes
-
Krasilnikov O., Sabirov R., Ternovsky V., Merzliak P., & Muratkhodjaev J. A simple method for the determination of the pore radius of ion channels in planar lipid bilayer membranes. FEMS Microbiol. Lett. 105, 93-100 (1992
-
(1992)
FEMS Microbiol. Lett
, vol.105
, pp. 93-100
-
-
Krasilnikov, O.1
Sabirov, R.2
Ternovsky, V.3
Merzliak, P.4
Muratkhodjaev, J.5
-
26
-
-
0030465241
-
Characterization of individual polynucleotide molecules using a membrane channel
-
Kasianowicz J. J., Brandin E., Branton D., & Deamer D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770-13773 (1996
-
(1996)
Proc. Natl Acad. Sci. USA
, vol.93
, pp. 13770-13773
-
-
Kasianowicz, J.J.1
Brandin, E.2
Branton, D.3
Deamer, D.W.4
-
27
-
-
84859175970
-
Automated forward, and reverse ratcheting of DNA in a nanopore at 5-å precision
-
Cherf G. M., et al. Automated forward, and reverse ratcheting of DNA in a nanopore at 5-Å precision. Nature Biotechnol. 30, 344-348 (2012
-
(2012)
Nature Biotechnol
, vol.30
, pp. 344-348
-
-
Cherf, G.M.1
-
28
-
-
84859629295
-
Reading DNA at single-nucleotide resolution with a mutant MspA nanopore, and phi29 DNA polymerase
-
Manrao E. A., et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore, and phi29 DNA polymerase. Nature Biotechnol. 30, 349-53 (2012
-
(2012)
Nature Biotechnol
, vol.30
, pp. 349-353
-
-
Manrao, E.A.1
-
29
-
-
34248351114
-
Solid-state nanopores
-
Dekker C. Solid-state nanopores. Nature Nanotech. 2, 209-215 (2007
-
(2007)
Nature Nanotech
, vol.2
, pp. 209-215
-
-
Dekker, C.1
-
30
-
-
77956556804
-
Graphene as a subnanometre trans-electrode membrane
-
Garaj S., et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190-193 (2010
-
(2010)
Nature
, vol.467
, pp. 190-193
-
-
Garaj, S.1
-
31
-
-
84880679610
-
Molecule-hugging graphene nanopores
-
Garaj S., Liu S., Golovchenko J. A., & Branton D. Molecule-hugging graphene nanopores. Proc. Natl Acad. Sci. USA 110, 12192-12196 (2013
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 12192-12196
-
-
Garaj, S.1
Liu, S.2
Golovchenko, J.A.3
Branton, D.4
-
32
-
-
81855169788
-
Computational investigation of DNA detection using graphene nanopores
-
Sathe C., Zou X., Leburton J.-P., & Schulten K. Computational investigation of DNA detection using graphene nanopores. ACS Nano 5, 8842-8851 (2011
-
(2011)
ACS Nano
, vol.5
, pp. 8842-8851
-
-
Sathe, C.1
Zou, X.2
Leburton, J.-P.3
Schulten, K.4
-
33
-
-
84864681512
-
Assessing graphene nanopores for sequencing DNA
-
Wells D. B., Belkin M., Comer J., & Aksimentiev A. Assessing graphene nanopores for sequencing DNA. Nano Lett. 12, 4117-4123 (2012
-
(2012)
Nano Lett
, vol.12
, pp. 4117-4123
-
-
Wells, D.B.1
Belkin, M.2
Comer, J.3
Aksimentiev, A.4
-
34
-
-
84872726998
-
Theoretical study on key factors in DNA sequencing with graphene nanopores
-
Liang L., et al. Theoretical study on key factors in DNA sequencing with graphene nanopores. RSC Adv. 3, 2445-2453 (2013
-
(2013)
RSC Adv
, vol.3
, pp. 2445-2453
-
-
Liang, L.1
-
35
-
-
77955569305
-
DNA translocation through graphene nanopores
-
Schneider G. F., et al. DNA translocation through graphene nanopores. Nano Lett. 10, 3163-3167 (2010
-
(2010)
Nano Lett
, vol.10
, pp. 3163-3167
-
-
Schneider, G.F.1
-
36
-
-
77955580114
-
DNA translocation through graphene nanopores
-
Merchant C. A., et al. DNA translocation through graphene nanopores. Nano Lett. 10, 2915-2921 (2010
-
(2010)
Nano Lett
, vol.10
, pp. 2915-2921
-
-
Merchant, C.A.1
-
37
-
-
84888239820
-
Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation
-
Schneider G. F., et al. Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation. Nature Commun. 4, 2619 (2013
-
(2013)
Nature Commun
, vol.4
, pp. 2619
-
-
Schneider, G.F.1
-
38
-
-
84922505990
-
Slowing DNA transport using graphene-DNA interactions
-
Banerjee S., et al. Slowing DNA transport using graphene-DNA interactions. Adv. Funct. Mater. 25, 936-946 (2014
-
(2014)
Adv. Funct. Mater
, vol.25
, pp. 936-946
-
-
Banerjee, S.1
-
39
-
-
84860373543
-
Integrated nanopore sensing platform with sub-microsecond temporal resolution
-
Rosenstein J. K., Wanunu M., Merchant C. A., Drndic M., & Shepard K. L. Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nature Methods 9, 487-492 (2012
-
(2012)
Nature Methods
, vol.9
, pp. 487-492
-
-
Rosenstein, J.K.1
Wanunu, M.2
Merchant, C.A.3
Drndic, M.4
Shepard, K.L.5
-
40
-
-
84920971392
-
Velocity of DNA during translocation through a solid-state nanopore
-
Plesa C., van Loo N., Ketterer P., Dietz H., & Dekker C. Velocity of DNA during translocation through a solid-state nanopore. Nano Lett. 15, 732-737 (2015
-
(2015)
Nano Lett
, vol.15
, pp. 732-737
-
-
Plesa, C.1
Van Loo, N.2
Ketterer, P.3
Dietz, H.4
Dekker, C.5
-
41
-
-
84964262428
-
1/f noise in graphene nanopores
-
Heerema S. J., et al. 1/f noise in graphene nanopores. Nanotechnology 26, 074001 (2015
-
(2015)
Nanotechnology
, vol.26
, pp. 074001
-
-
Heerema, S.J.1
-
42
-
-
84856171546
-
Stacked graphene-Al2O3 nanopore sensors for sensitive detection of DNA, and DNA-protein complexes
-
Venkatesan B. M., et al. Stacked graphene-Al2O3 nanopore sensors for sensitive detection of DNA, and DNA-protein complexes. ACS Nano 6, 441-450 (2012
-
(2012)
ACS Nano
, vol.6
, pp. 441-450
-
-
Venkatesan, B.M.1
-
43
-
-
84872858460
-
Electrochemistry at the edge of a single graphene layer in a nanopore
-
Banerjee S., et al. Electrochemistry at the edge of a single graphene layer in a nanopore. ACS Nano 7, 834-843 (2013
-
(2013)
ACS Nano
, vol.7
, pp. 834-843
-
-
Banerjee, S.1
-
44
-
-
84923417254
-
A low-noise solid-state nanopore platform based on a highly insulating substrate
-
Lee M.-H., et al. A low-noise solid-state nanopore platform based on a highly insulating substrate. Sci. Rep. 4, 7448 (2014
-
(2014)
Sci. Rep
, vol.4
, pp. 7448
-
-
Lee, M.-H.1
-
45
-
-
76749137693
-
Rapid sequencing of individual DNA molecules in graphene nanogaps
-
Postma H. W. C. Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano Lett. 10, 420-425 (2010
-
(2010)
Nano Lett
, vol.10
, pp. 420-425
-
-
Postma, H.W.C.1
-
46
-
-
84862297634
-
Nanopore-based DNA analysis via graphene electrodes
-
Zhao Q., et al. Nanopore-based DNA analysis via graphene electrodes. J. Nanomater. 2012, 1-5 (2012
-
(2012)
J. Nanomater
, vol.2012
, pp. 1-5
-
-
Zhao, Q.1
-
47
-
-
84898028123
-
Detection of nucleic acids by graphene-based devices: A first-principles study
-
Zhang H., et al. Detection of nucleic acids by graphene-based devices: a first-principles study. J. Appl. Phys. 115, 133701 (2014
-
(2014)
J. Appl. Phys
, vol.115
, pp. 133701
-
-
Zhang, H.1
-
48
-
-
84880504833
-
Quantum interference in DNA bases probed by graphene nanoribbons
-
Jeong H., et al. Quantum interference in DNA bases probed by graphene nanoribbons. Appl. Phys. Lett. 103, 023701 (2013
-
(2013)
Appl. Phys. Lett
, vol.103
, pp. 023701
-
-
Jeong, H.1
-
49
-
-
79955901449
-
Transverse conductance of DNA nucleotides in a graphene nanogap from first principles
-
Prasongkit J., Grigoriev A., Pathak B., Ahuja R., & Scheicher R. H. Transverse conductance of DNA nucleotides in a graphene nanogap from first principles. Nano Lett. 11, 1941-1945 (2011
-
(2011)
Nano Lett
, vol.11
, pp. 1941-1945
-
-
Prasongkit, J.1
Grigoriev, A.2
Pathak, B.3
Ahuja, R.4
Scheicher, R.H.5
-
50
-
-
84880849363
-
Theoretical study of electronic transport through DNA nucleotides in a double-functionalized graphene nanogap
-
Prasongkit J., Grigoriev A., Pathak B., Ahuja R., & Scheicher R. H. Theoretical study of electronic transport through DNA nucleotides in a double-functionalized graphene nanogap. J. Phys. Chem. C 117, 15421-15428 (2013
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 15421-15428
-
-
Prasongkit, J.1
Grigoriev, A.2
Pathak, B.3
Ahuja, R.4
Scheicher, R.H.5
-
51
-
-
79960491374
-
Enhanced DNA sequencing performance through edge-hydrogenation of graphene electrodes
-
He Y., et al. Enhanced DNA sequencing performance through edge-hydrogenation of graphene electrodes. Adv. Funct. Mater. 21, 2674-2679 (2011
-
(2011)
Adv. Funct. Mater
, vol.21
, pp. 2674-2679
-
-
He, Y.1
-
52
-
-
78650009474
-
Identifying single bases in a DNA oligomer with electron tunnelling
-
Huang S., et al. Identifying single bases in a DNA oligomer with electron tunnelling. Nature Nanotech. 5, 868-873 (2010
-
(2010)
Nature Nanotech
, vol.5
, pp. 868-873
-
-
Huang, S.1
-
53
-
-
77953490385
-
Recognition tunneling
-
Lindsay S., et al. Recognition tunneling. Nanotechnology 21, 262001 (2010
-
(2010)
Nanotechnology
, vol.21
, pp. 262001
-
-
Lindsay, S.1
-
54
-
-
84888873959
-
Slowing DNA translocation through a nanopore using a functionalized electrode
-
Krishnakumar P., et al. Slowing DNA translocation through a nanopore using a functionalized electrode. ACS Nano 7, 10319-10326 (2013
-
(2013)
ACS Nano
, vol.7
, pp. 10319-10326
-
-
Krishnakumar, P.1
-
55
-
-
79951545699
-
DNA tunneling detector embedded in a nanopore
-
Ivanov A. P., et Al. DNA Tunneling Detector Embedded in A Nanopore. Nano Lett. 11, 279-285 (2011
-
(2011)
Nano Lett
, vol.11
, pp. 279-285
-
-
Ivanov, A.P.1
-
56
-
-
77950801786
-
Identifying single nucleotides by tunnelling current
-
Tsutsui M., Taniguchi M., Yokota K., & Kawai T. Identifying single nucleotides by tunnelling current. Nature Nanotech. 5, 286-290 (2010
-
(2010)
Nature Nanotech
, vol.5
, pp. 286-290
-
-
Tsutsui, M.1
Taniguchi, M.2
Yokota, K.3
Kawai, T.4
-
57
-
-
84860186258
-
Single-molecule sensing electrode embedded in-plane nanopore
-
Tsutsui M., et al. Single-molecule sensing electrode embedded in-plane nanopore. Sci. Rep. 1, 46 (2011
-
(2011)
Sci. Rep
, vol.1
, pp. 46
-
-
Tsutsui, M.1
-
58
-
-
79961107492
-
Recognizing nucleotides by cross-tunneling currents for DNA sequencing
-
Bagci V. M. K., & Kaun C.-C. Recognizing nucleotides by cross-tunneling currents for DNA sequencing. Phys. Rev. E 84, 011917 (2011
-
(2011)
Phys. Rev. e
, vol.84
, pp. 011917
-
-
Bagci, V.M.K.1
Kaun, C.-C.2
-
59
-
-
84859049278
-
First principles study of high-conductance DNA sequencing with carbon nanotube electrodes
-
Chen X., Rungger I., Pemmaraju C. D., Schwingenschlögl U., & Sanvito S. First principles study of high-conductance DNA sequencing with carbon nanotube electrodes. Phys. Rev. B 85, 115436 (2012
-
(2012)
Phys. Rev. B
, vol.85
, pp. 115436
-
-
Chen, X.1
Rungger, I.2
Pemmaraju, C.D.3
Schwingenschlögl, U.4
Sanvito, S.5
-
60
-
-
80755189477
-
Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes
-
Prins F., et al. Room-temperature Gating of Molecular Junctions Using Few-layer Graphene Nanogap Electrodes. Nano Lett. 11, 4607-4611 (2011
-
(2011)
Nano Lett
, vol.11
, pp. 4607-4611
-
-
Prins, F.1
-
61
-
-
84902436757
-
High-yield fabrication of nm-size gaps in monolayer CVD graphene
-
Nef C., et al. High-yield fabrication of nm-size gaps in monolayer CVD graphene. Nanoscale 6, 7249-7254 (2014
-
(2014)
Nanoscale
, vol.6
, pp. 7249-7254
-
-
Nef, C.1
-
62
-
-
84924390204
-
Conductance enlargement in picoscale electroburnt graphene nanojunctions
-
Sadeghi H., et al. Conductance enlargement in picoscale electroburnt graphene nanojunctions. Proc. Natl Acad. Sci. USA 112, 2658-2663 (2015
-
(2015)
Proc. Natl Acad. Sci. USA
, vol.112
, pp. 2658-2663
-
-
Sadeghi, H.1
-
63
-
-
84908583906
-
Fabrication of hybrid molecular devices using multi-layer graphene break junctions
-
Island J. O., et al. Fabrication of hybrid molecular devices using multi-layer graphene break junctions. J. Phys. Condens. Matter 26, 474205 (2014
-
(2014)
J. Phys. Condens. Matter
, vol.26
, pp. 474205
-
-
Island, J.O.1
-
64
-
-
84875730885
-
Building high-throughput molecular junctions using indented graphene point contacts
-
Cao Y., et al. Building high-throughput molecular junctions using indented graphene point contacts. Angew. Chem. 124, 12394-12398 (2012
-
(2012)
Angew. Chem
, vol.124
, pp. 12394-12398
-
-
Cao, Y.1
-
65
-
-
36149007340
-
The band theory of graphite
-
Wallace P. The band theory of graphite. Phys. Rev. 71, 622-634 (1947
-
(1947)
Phys. Rev
, vol.71
, pp. 622-634
-
-
Wallace, P.1
-
66
-
-
0030492538
-
Peculiar localized state at zigzag graphite edge
-
Fujita M., Wakabayashi K., Nakada K., & Kusakabe K. Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn 65, 1920-1923 (1996
-
(1996)
J. Phys. Soc. Jpn
, vol.65
, pp. 1920-1923
-
-
Fujita, M.1
Wakabayashi, K.2
Nakada, K.3
Kusakabe, K.4
-
67
-
-
0000703370
-
Electronic, and magnetic properties of nanographite ribbons
-
Wakabayashi K., Fujita M., Ajiki H., & Sigrist M. Electronic, and magnetic properties of nanographite ribbons. Phys. Rev. B 59, 8271-8282 (1999
-
(1999)
Phys. Rev. B
, vol.59
, pp. 8271-8282
-
-
Wakabayashi, K.1
Fujita, M.2
Ajiki, H.3
Sigrist, M.4
-
68
-
-
33144487433
-
Peculiar width dependence of the electronic properties of carbon nanoribbons
-
Ezawa M. Peculiar width dependence of the electronic properties of carbon nanoribbons. Phys. Rev. B 73, 045432 (2006
-
(2006)
Phys. Rev. B
, vol.73
, pp. 045432
-
-
Ezawa, M.1
-
69
-
-
33845627673
-
Electronic states of graphene nanoribbons studied with the Dirac equation
-
Brey L., & Fertig H. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B 73, 235411 (2006
-
(2006)
Phys. Rev. B
, vol.73
, pp. 235411
-
-
Brey, L.1
Fertig, H.2
-
70
-
-
0000781318
-
Edge state in graphene ribbons: Nanometer size effect, and edge shape dependence
-
Nakada K., Fujita M., Dresselhaus G., & Dresselhaus M. Edge state in graphene ribbons: nanometer size effect, and edge shape dependence. Phys. Rev. B 54, 17954-17961 (1996
-
(1996)
Phys. Rev. B
, vol.54
, pp. 17954-17961
-
-
Nakada, K.1
Fujita, M.2
Dresselhaus, G.3
Dresselhaus, M.4
-
72
-
-
77956428199
-
Detection of nucleic acids with graphene nanopores: Ab initio characterization of a novel sequencing device
-
Nelson T., Zhang B., & Prezhdo O. V. Detection of nucleic acids with graphene nanopores: ab initio characterization of a novel sequencing device. Nano Lett. 10, 3237-3242 (2010
-
(2010)
Nano Lett
, vol.10
, pp. 3237-3242
-
-
Nelson, T.1
Zhang, B.2
Prezhdo, O.V.3
-
73
-
-
79957546438
-
A biosensor based on graphene nanoribbon with nanopores: A first-principles devices-design
-
Ouyang F.-P., Peng S.-L., Zhang H., Weng L.-B., & Xu H. A biosensor based on graphene nanoribbon with nanopores: a first-principles devices-design. Chinese Phys. B 20, 058504 (2011
-
(2011)
Chinese Phys. B
, vol.20
, pp. 058504
-
-
Ouyang, F.-P.1
Peng, S.-L.2
Zhang, H.3
Weng, L.-B.4
Xu, H.5
-
74
-
-
84855767473
-
DNA base-specific modulation of microampere transverse edge currents through a metallic graphene nanoribbon with a nanopore
-
Saha K. K., Drndić M., & Nikolić B. K. DNA base-specific modulation of microampere transverse edge currents through a metallic graphene nanoribbon with a nanopore. Nano Lett. 12, 50-55 (2012
-
(2012)
Nano Lett
, vol.12
, pp. 50-55
-
-
Saha, K.K.1
Drndić, M.2
Nikolić, B.K.3
-
75
-
-
84877297117
-
Dynamic, and electronic transport properties of DNA translocation through graphene nanopores
-
Avdoshenko S. M., et al. Dynamic, and electronic transport properties of DNA translocation through graphene nanopores. Nano Lett. 13, 1969-1976 (2013
-
(2013)
Nano Lett
, vol.13
, pp. 1969-1976
-
-
Avdoshenko, S.M.1
-
76
-
-
84885788991
-
Graphene quantum point contact transistor for DNA sensing
-
Girdhar A., Sathe C., Schulten K., & Leburton J.-P. Graphene quantum point contact transistor for DNA sensing. Proc. Natl Acad. Sci. USA 110, 16748-16753 (2013
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 16748-16753
-
-
Girdhar, A.1
Sathe, C.2
Schulten, K.3
Leburton, J.-P.4
-
77
-
-
84905734809
-
Next-generation epigenetic detection technique: Identifying methylated cytosine using graphene nanopore
-
Ahmed T., Haraldsen J. T., Zhu J.-X., & Balatsky A. V. Next-generation epigenetic detection technique: identifying methylated cytosine using graphene nanopore. J. Phys. Chem. Lett. 5, 2601-2607 (2014
-
(2014)
J. Phys. Chem. Lett
, vol.5
, pp. 2601-2607
-
-
Ahmed, T.1
Haraldsen, J.T.2
Zhu, J.-X.3
Balatsky, A.V.4
-
78
-
-
84902996401
-
Graphene sculpturene nanopores for DNA nucleobase sensing
-
Sadeghi H., et al. Graphene sculpturene nanopores for DNA nucleobase sensing. J. Phys. Chem. B 118, 6908-6914 (2014
-
(2014)
J. Phys. Chem. B
, vol.118
, pp. 6908-6914
-
-
Sadeghi, H.1
-
79
-
-
84896895634
-
Correlation dynamics, and enhanced signals for the identification of serial biomolecules, and DNA bases
-
Ahmed T., et al. Correlation dynamics, and enhanced signals for the identification of serial biomolecules, and DNA bases. Nanotechnology 25, 125705 (2014
-
(2014)
Nanotechnology
, vol.25
, pp. 125705
-
-
Ahmed, T.1
-
80
-
-
84890564485
-
Detecting the translocation of DNA through a nanopore using graphene nanoribbons
-
Traversi F., et al. Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nature Nanotech. 8, 939-945 (2013
-
(2013)
Nature Nanotech
, vol.8
, pp. 939-945
-
-
Traversi, F.1
-
81
-
-
83655192481
-
In situ electronic characterization of graphene nanoconstrictions fabricated in a transmission electron microscope
-
Lu Y., Merchant C. A., Drndić M., & Johnson A. T. C. In situ electronic characterization of graphene nanoconstrictions fabricated in a transmission electron microscope. Nano Lett. 11, 5184-5188 (2011
-
(2011)
Nano Lett
, vol.11
, pp. 5184-5188
-
-
Lu, Y.1
Merchant, C.A.2
Drndić, M.3
Johnson, A.T.C.4
-
82
-
-
84891355557
-
Toward sensitive graphene nanoribbon-nanopore devices by preventing electron beam-induced damage
-
Puster M., Rodríguez-Manzo J. A., Balan A., & Drndić M. Toward sensitive graphene nanoribbon-nanopore devices by preventing electron beam-induced damage. ACS Nano 7, 11283-11289 (2013
-
(2013)
ACS Nano
, vol.7
, pp. 11283-11289
-
-
Puster, M.1
Rodríguez-Manzo, J.A.2
Balan, A.3
Drndić, M.4
-
83
-
-
84906095437
-
Correlating atomic structure, and transport in suspended graphene nanoribbons
-
Qi Z. J., et Al. Correlating Atomic Structure, and Transport in Suspended Graphene Nanoribbons. Nano Lett. 14, 4238-4244 (2014
-
(2014)
Nano Lett
, vol.14
, pp. 4238-4244
-
-
Qi, Z.J.1
-
84
-
-
79958842145
-
Atomic-scale electron-beam sculpting of near-defect-free graphene nanostructures
-
Song B., et al. Atomic-scale Electron-beam Sculpting of Near-defect-free Graphene Nanostructures. Nano Lett. 11, 2247-2250 (2011
-
(2011)
Nano Lett
, vol.11
, pp. 2247-2250
-
-
Song, B.1
-
85
-
-
84874417182
-
Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature
-
Xu Q., et al. Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature. ACS Nano 7, 1566-1572 (2013
-
(2013)
ACS Nano
, vol.7
, pp. 1566-1572
-
-
Xu, Q.1
-
86
-
-
85027945484
-
First-principles versus semi-empirical modeling of global, and local electronic transport properties of graphene nanopore-based sensors for DNA sequencing
-
Chang P.-H., Liu H., & Nikolić B. K. First-principles versus semi-empirical modeling of global, and local electronic transport properties of graphene nanopore-based sensors for DNA sequencing. J. Comput. Electron. 13, 847-856 (2014
-
(2014)
J. Comput. Electron
, vol.13
, pp. 847-856
-
-
Chang, P.-H.1
Liu, H.2
Nikolić, B.K.3
-
87
-
-
34848883883
-
Influence of the environment, and probes on rapid DNA sequencing via transverse electronic transport
-
Lagerqvist J., Zwolak M., & Di Ventra M. Influence of the environment, and probes on rapid DNA sequencing via transverse electronic transport. Biophys. J. 93, 2384-2390 (2007
-
(2007)
Biophys. J.
, vol.93
, pp. 2384-2390
-
-
Lagerqvist, J.1
Zwolak, M.2
Di Ventra, M.3
-
88
-
-
84942354270
-
Capacitive DNA detection driven by electronic charge fluctuations in a graphene nanopore
-
Feliciano G. T., et al. Capacitive DNA detection driven by electronic charge fluctuations in a graphene nanopore. Phys. Rev. Appl. 3, 034003 (2015
-
(2015)
Phys. Rev. Appl
, vol.3
, pp. 034003
-
-
Feliciano, G.T.1
-
89
-
-
78651481099
-
Graphene edges: A review of their fabrication, and characterization
-
Jia X., Campos-Delgado J., Terrones M., Meunier V., & Dresselhaus M. S. Graphene edges: a review of their fabrication, and characterization. Nanoscale 3, 86-95 (2011
-
(2011)
Nanoscale
, vol.3
, pp. 86-95
-
-
Jia, X.1
Campos-Delgado, J.2
Terrones, M.3
Meunier, V.4
Dresselhaus, M.S.5
-
90
-
-
84928944773
-
Electronic transport of recrystallized freestanding graphene nanoribbons
-
Qi Z. J., et al. Electronic transport of recrystallized freestanding graphene nanoribbons. ACS Nano 9, 3510-3520 (2015
-
(2015)
ACS Nano
, vol.9
, pp. 3510-3520
-
-
Qi, Z.J.1
-
91
-
-
84856837136
-
Local electrical potential detection of DNA by nanowire-nanopore sensors
-
Xie P., Xiong Q., Fang Y., Qing Q., & Lieber C. M. Local electrical potential detection of DNA by nanowire-nanopore sensors. Nature Nanotech. 7, 119-125 (2012
-
(2012)
Nature Nanotech
, vol.7
, pp. 119-125
-
-
Xie, P.1
Xiong, Q.2
Fang, Y.3
Qing, Q.4
Lieber, C.M.5
-
92
-
-
0038342161
-
Atomic force microscopy of DNA immobilized onto a highly oriented pyrolytic graphite electrode surface
-
Oliveira Brett A. M., & Chiorcea A.-M. Atomic force microscopy of DNA immobilized onto a highly oriented pyrolytic graphite electrode surface. Langmuir 19, 3830-3839 (2003
-
(2003)
Langmuir
, vol.19
, pp. 3830-3839
-
-
Oliveira Brett, A.M.1
Chiorcea, A.-M.2
-
93
-
-
34347386469
-
Physisorption of nucleobases on graphene: Density-functional calculations
-
Gowtham S., Scheicher R., Ahuja R., Pandey R., & Karna S. Physisorption of nucleobases on graphene: density-functional calculations. Phys. Rev. B 76, 033401 (2007
-
(2007)
Phys. Rev. B
, vol.76
, pp. 033401
-
-
Gowtham, S.1
Scheicher, R.2
Ahuja, R.3
Pandey, R.4
Karna, S.5
-
94
-
-
79954498256
-
Competing interactions in DNA assembly on graphene
-
Akca S., Foroughi A., Frochtzwajg D., & Postma H. W. C. Competing interactions in DNA assembly on graphene. PLoS ONE 6, e18442 (2011
-
(2011)
Plos One
, vol.6
, pp. e18442
-
-
Akca, S.1
Foroughi, A.2
Frochtzwajg, D.3
Postma, H.W.C.4
-
95
-
-
84879806017
-
Physisorption of DNA nucleobases on h-BN, and graphene: VdW-corrected DFT calculations
-
Lee J.-H., Choi Y.-K., Kim H.-J., Scheicher R. H., & Cho J.-H. Physisorption of DNA nucleobases on h-BN, and graphene: vdW-corrected DFT calculations. J. Phys. Chem. C 117, 13435-13441 (2013
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 13435-13441
-
-
Lee, J.-H.1
Choi, Y.-K.2
Kim, H.-J.3
Scheicher, R.H.4
Cho, J.-H.5
-
96
-
-
43449118381
-
Structures, and interaction energies of stacked graphene-nucleobase complexes
-
Antony J., & Grimme S. Structures, and interaction energies of stacked graphene-nucleobase complexes. Phys. Chem. Chem. Phys. 10, 2722-2729 (2008
-
(2008)
Phys. Chem. Chem. Phys
, vol.10
, pp. 2722-2729
-
-
Antony, J.1
Grimme, S.2
-
97
-
-
58149529439
-
Binding of DNA nucleobases, and nucleosides with graphene
-
Varghese N., et al. Binding of DNA nucleobases, and nucleosides with graphene. ChemPhysChem 10, 206-210 (2009
-
(2009)
ChemPhysChem
, vol.10
, pp. 206-210
-
-
Varghese, N.1
-
98
-
-
44549086020
-
Binding of nucleobases with single-walled carbon nanotubes: Theory, and experiment
-
Das A., et al. Binding of nucleobases with single-walled carbon nanotubes: theory, and experiment. Chem. Phys. Lett. 453, 266-273 (2008
-
(2008)
Chem. Phys. Lett
, vol.453
, pp. 266-273
-
-
Das, A.1
-
99
-
-
79960164905
-
Quantum mechanical study of physisorption of nucleobases on carbon materials: Graphene versus carbon nanotubes
-
Umadevi D., & Sastry G. N. Quantum mechanical study of physisorption of nucleobases on carbon materials: graphene versus carbon nanotubes. J. Phys. Chem. Lett. 2, 1572-1576 (2011
-
(2011)
J. Phys. Chem. Lett
, vol.2
, pp. 1572-1576
-
-
Umadevi, D.1
Sastry, G.N.2
-
100
-
-
84867240286
-
Physisorption of nucleobases on graphene: A comparative van der Waals study
-
Le D., Kara A., Schröder E., Hyldgaard P., & Rahman T. S. Physisorption of nucleobases on graphene: a comparative van Der Waals study. J. Phys. Condens. Matter 24, 424210 (2012
-
(2012)
J. Phys. Condens. Matter
, vol.24
, pp. 424210
-
-
Le, D.1
Kara, A.2
Schröder, E.3
Hyldgaard, P.4
Rahman, T.S.5
-
101
-
-
79952446499
-
Fast DNA sequencing with a graphene-based nanochannel device
-
Min S. K., Kim W. Y., Cho Y., & Kim K. S. Fast DNA sequencing with a graphene-based nanochannel device. Nature Nanotech. 6, 162-165 (2011
-
(2011)
Nature Nanotech
, vol.6
, pp. 162-165
-
-
Min, S.K.1
Kim, W.Y.2
Cho, Y.3
Kim, K.S.4
-
102
-
-
80051694102
-
The origin of dips for the graphene-based DNA sequencing device
-
Cho Y., Min S. K., Kim W. Y., & Kim K. S. The origin of dips for the graphene-based DNA sequencing device. Phys. Chem. Chem. Phys. 13, 14293-14296 (2011
-
(2011)
Phys. Chem. Chem. Phys
, vol.13
, pp. 14293-14296
-
-
Cho, Y.1
Min, S.K.2
Kim, W.Y.3
Kim, K.S.4
-
103
-
-
84857223586
-
Nucleobase adsorbed at graphene devices: Enhance bio-sensorics
-
Song B., Cuniberti G., Sanvito S., & Fang H. Nucleobase adsorbed at graphene devices: enhance bio-sensorics. Appl. Phys. Lett. 100, 063101 (2012
-
(2012)
Appl. Phys. Lett
, vol.100
, pp. 063101
-
-
Song, B.1
Cuniberti, G.2
Sanvito, S.3
Fang, H.4
-
104
-
-
84890818972
-
Assembly of a noncovalent DNA junction on graphene sheets, and electron transport characteristics
-
Bobadilla A. D., & Seminario J. M. Assembly of a noncovalent DNA junction on graphene sheets, and electron transport characteristics. J. Phys. Chem. C 117, 26441-26453 (2013
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 26441-26453
-
-
Bobadilla, A.D.1
Seminario, J.M.2
-
105
-
-
77954904482
-
Atomically precise bottom-up fabrication of graphene nanoribbons
-
Cai J., et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470-473 (2010
-
(2010)
Nature
, vol.466
, pp. 470-473
-
-
Cai, J.1
-
106
-
-
84856976181
-
Electronic fingerprints of DNA bases on graphene
-
Ahmed T., et al. Electronic Fingerprints of DNA Bases on Graphene. Nano Lett. 12, 927-931 (2012
-
(2012)
Nano Lett
, vol.12
, pp. 927-931
-
-
Ahmed, T.1
-
107
-
-
68949191020
-
Partial sequencing of a single DNA molecule with a scanning tunnelling microscope
-
Tanaka H., & Kawai T. Partial sequencing of a single DNA molecule with a scanning tunnelling microscope. Nature Nanotech. 4, 518-522 (2009
-
(2009)
Nature Nanotech
, vol.4
, pp. 518-522
-
-
Tanaka, H.1
Kawai, T.2
-
108
-
-
23944451557
-
Nanotrench arrays reveal insight into graphite electrochemistry
-
Davies T. J., Hyde M. E., & Compton R. G. Nanotrench arrays reveal insight into graphite electrochemistry. Angew. Chem. Int. Ed. 44, 5121-5126 (2005
-
(2005)
Angew. Chem. Int. Ed.
, vol.44
, pp. 5121-5126
-
-
Davies, T.J.1
Hyde, M.E.2
Compton, R.G.3
-
109
-
-
79952937415
-
Graphene platform for hairpin-DNA-based impedimetric genosensing
-
Bonanni A., & Pumera M. Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano 5, 2356-2361 (2011
-
(2011)
ACS Nano
, vol.5
, pp. 2356-2361
-
-
Bonanni, A.1
Pumera, M.2
-
110
-
-
84907157763
-
Impedimetric graphene-based biosensor for the detection of Escherichia coli DNA
-
Zainudin N., Mohd Hairul A. R., Yusoff M. M., Tan L. L., & Chong K. F. Impedimetric graphene-based biosensor for the detection of Escherichia coli DNA. Anal. Methods 6, 7935-7941 (2014
-
(2014)
Anal. Methods
, vol.6
, pp. 7935-7941
-
-
Zainudin, N.1
Mohd Hairul, A.R.2
Yusoff, M.M.3
Tan, L.L.4
Chong, K.F.5
-
111
-
-
40449124958
-
Identifying the mechanism of biosensing with carbon nanotube transistors
-
Heller I., et al. Identifying the Mechanism of Biosensing with Carbon Nanotube Transistors. Nano Lett. 8, 591-595 (2008
-
(2008)
Nano Lett
, vol.8
, pp. 591-595
-
-
Heller, I.1
-
112
-
-
78650084677
-
Influence of electrolyte composition on liquid-gated carbon nanotube, and graphene transistors
-
Heller I., et al. Influence of electrolyte composition on liquid-gated carbon nanotube, and graphene transistors. J. Am. Chem. Soc. 132, 17149-17156 (2010
-
(2010)
J. Am. Chem. Soc
, vol.132
, pp. 17149-17156
-
-
Heller, I.1
-
113
-
-
77952711245
-
Gating of single-layer graphene with single-stranded deoxyribonucleic acids
-
Lin J., et al. Gating of single-layer graphene with single-stranded deoxyribonucleic acids. Small 6, 1150-1155 (2010
-
(2010)
Small
, vol.6
, pp. 1150-1155
-
-
Lin, J.1
-
114
-
-
77951200970
-
Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets
-
Dong X., Shi Y., Huang W., Chen P., & Li L.-J. Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 22, 1649-1653 (2010
-
(2010)
Adv. Mater
, vol.22
, pp. 1649-1653
-
-
Dong, X.1
Shi, Y.2
Huang, W.3
Chen, P.4
Li, L.-J.5
-
115
-
-
77949372832
-
A graphene platform for sensing biomolecules
-
Lu C., Yang H., Zhu C., Chen X., & Chen G. A graphene platform for sensing biomolecules. Angew. Chem. 121, 4879-4881 (2009
-
(2009)
Angew. Chem
, vol.121
, pp. 4879-4881
-
-
Lu, C.1
Yang, H.2
Zhu, C.3
Chen, X.4
Chen, G.5
-
116
-
-
76149090494
-
A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis
-
He S., et al. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater. 20, 453-459 (2010
-
(2010)
Adv. Funct. Mater
, vol.20
, pp. 453-459
-
-
He, S.1
-
117
-
-
79960637361
-
A graphene oxide-organic dye ionic complex with DNA-sensing, and optical-limiting properties
-
Balapanuru J., et al. A graphene oxide-organic dye ionic complex with DNA-sensing, and optical-limiting properties. Angew. Chem. 122, 6699-6703 (2010
-
(2010)
Angew. Chem
, vol.122
, pp. 6699-6703
-
-
Balapanuru, J.1
-
118
-
-
84864192436
-
DNA-templated silver nanoclusters-graphene oxide nanohybrid materials: A platform for label-free, and sensitive fluorescence turn-on detection of multiple nucleic acid targets
-
Tao Y., Lin Y., Huang Z., Ren J., & Qu X. DNA-templated silver nanoclusters-graphene oxide nanohybrid materials: a platform for label-free, and sensitive fluorescence turn-on detection of multiple nucleic acid targets. Analyst 137, 2588-2592 (2012
-
(2012)
Analyst
, vol.137
, pp. 2588-2592
-
-
Tao, Y.1
Lin, Y.2
Huang, Z.3
Ren, J.4
Qu, X.5
-
120
-
-
84928978918
-
Controlling defects in graphene for optimizing the electrical properties of graphene nanodevices
-
Vicarelli L., Heerema S. J., Dekker C., & Zandbergen H. W. Controlling defects in graphene for optimizing the electrical properties of graphene nanodevices. ACS Nano 9, 3428-3435 (2015
-
(2015)
ACS Nano
, vol.9
, pp. 3428-3435
-
-
Vicarelli, L.1
Heerema, S.J.2
Dekker, C.3
Zandbergen, H.W.4
-
121
-
-
84949313771
-
Identification of single nucleotides in MoS2 nanopores
-
Feng J., et al. Identification of single nucleotides in MoS2 nanopores. Nature Nanotech. 10, 1070-1076 (2015
-
(2015)
Nature Nanotech
, vol.10
, pp. 1070-1076
-
-
Feng, J.1
-
122
-
-
84887448363
-
DNA origami gatekeepers for solid-state nanopores
-
Wei R., Martin T. G., Rant U., & Dietz H. DNA origami gatekeepers for solid-state nanopores. Angew. Chem. 124, 4948-4951 (2012
-
(2012)
Angew. Chem
, vol.124
, pp. 4948-4951
-
-
Wei, R.1
Martin, T.G.2
Rant, U.3
Dietz, H.4
-
123
-
-
84855778953
-
DNA origami nanopores
-
Bell N. A. W., et al. DNA origami nanopores. Nano Lett. 12, 512-517 (2012
-
(2012)
Nano Lett
, vol.12
, pp. 512-517
-
-
Bell, N.A.W.1
-
124
-
-
84893473971
-
Ionic permeability, and mechanical properties of DNA origami nanoplates on solid-state nanopores
-
Plesa C., et al. Ionic permeability, and mechanical properties of DNA origami nanoplates on solid-state nanopores. ACS Nano 8, 35-43 (2014
-
(2014)
ACS Nano
, vol.8
, pp. 35-43
-
-
Plesa, C.1
-
125
-
-
84874995365
-
Plasmonic nanopore for electrical profiling of optical intensity landscapes
-
Jonsson M. P., & Dekker C. Plasmonic nanopore for electrical profiling of optical intensity landscapes. Nano Lett. 13, 1029-1033 (2013
-
(2013)
Nano Lett
, vol.13
, pp. 1029-1033
-
-
Jonsson, M.P.1
Dekker, C.2
-
126
-
-
84907870631
-
Graphene nanopore with a self-integrated optical antenna
-
Nam S., et al. Graphene nanopore with a self-integrated optical antenna. Nano Lett. 14, 5584-5589 (2014
-
(2014)
Nano Lett
, vol.14
, pp. 5584-5589
-
-
Nam, S.1
-
127
-
-
84948442592
-
Plasmonic nanopores for trapping, controlling displacement, and sequencing of DNA
-
Belkin M., Chao S.-H., Jonsson M. P., Dekker C., & Aksimentiev A. Plasmonic nanopores for trapping, controlling displacement, and sequencing of DNA. ACS Nano 9, 10598-10611 (2015
-
(2015)
ACS Nano
, vol.9
, pp. 10598-10611
-
-
Belkin, M.1
Chao, S.-H.2
Jonsson, M.P.3
Dekker, C.4
Aksimentiev, A.5
-
128
-
-
84884264983
-
3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy
-
Chen Q., et al. 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. Nano Lett. 13, 4556-4561 (2013
-
(2013)
Nano Lett
, vol.13
, pp. 4556-4561
-
-
Chen, Q.1
-
129
-
-
74849103516
-
Translocation of single-stranded DNA through single-walled carbon nanotubes
-
Liu H., et al. Translocation of single-stranded DNA through single-walled carbon nanotubes. Science 327, 64-67 (2010
-
(2010)
Science
, vol.327
, pp. 64-67
-
-
Liu, H.1
-
130
-
-
77749334547
-
Making nanopores from nanotubes
-
Siwy Z. S., & Davenport M. Making nanopores from nanotubes. Nature Nanotech. 5, 174-175 (2010
-
(2010)
Nature Nanotech
, vol.5
, pp. 174-175
-
-
Siwy, Z.S.1
Davenport, M.2
|