메뉴 건너뛰기




Volumn 11, Issue 2, 2016, Pages 127-136

Graphene nanodevices for DNA sequencing

Author keywords

[No Author keywords available]

Indexed keywords

DNA; DNA SEQUENCES; GRAPHENE; NANOPORES; NANORIBBONS; NANOSTRUCTURED MATERIALS;

EID: 84957890530     PISSN: 17483387     EISSN: 17483395     Source Type: Journal    
DOI: 10.1038/nnano.2015.307     Document Type: Review
Times cited : (557)

References (130)
  • 1
    • 2042437650 scopus 로고    scopus 로고
    • Initial sequencing, and analysis of the human genome
    • Lander E. S., et al. Initial sequencing, and analysis of the human genome. Nature 409, 860-921 (2001
    • (2001) Nature , vol.409 , pp. 860-921
    • Lander, E.S.1
  • 3
    • 53649106195 scopus 로고    scopus 로고
    • Next-generation DNA sequencing
    • Shendure J., & Ji H. Next-generation DNA sequencing. Nature Biotechnol. 26, 1135-1145 (2008
    • (2008) Nature Biotechnol , vol.26 , pp. 1135-1145
    • Shendure, J.1    Ji, H.2
  • 4
    • 72849144434 scopus 로고    scopus 로고
    • Sequencing technologies -the next generation
    • Metzker M. L. Sequencing technologies -the next generation. Nature Rev. Genet. 11, 31-46 (2010
    • (2010) Nature Rev. Genet , vol.11 , pp. 31-46
    • Metzker, M.L.1
  • 5
    • 67349209853 scopus 로고    scopus 로고
    • Next-generation DNA sequencing techniques
    • Ansorge W. J. Next-generation DNA sequencing techniques. New Biotechnol. 25, 195-203 (2009
    • (2009) New Biotechnol , vol.25 , pp. 195-203
    • Ansorge, W.J.1
  • 6
    • 84964286114 scopus 로고    scopus 로고
    • The emergence of nanopores in next-generation sequencing
    • Steinbock L. J., & Radenovic A. The emergence of nanopores in next-generation sequencing. Nanotechnology 26, 074003 (2015
    • (2015) Nanotechnology , vol.26 , pp. 074003
    • Steinbock, L.J.1    Radenovic, A.2
  • 7
    • 0037474152 scopus 로고    scopus 로고
    • Zero-mode waveguides for single-molecule analysis at high concentrations
    • Levene M. J., et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682-686 (2003
    • (2003) Science , vol.299 , pp. 682-686
    • Levene, M.J.1
  • 8
    • 84865591846 scopus 로고    scopus 로고
    • A tale of three next generation sequencing platforms: Comparison of ion torrent pacific biosciences, and illumina miseq sequencers
    • Quail M. A., et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences, and Illumina MiSeq sequencers. BMC Genomics 13, 341 (2012
    • (2012) BMC Genomics , vol.13 , pp. 341
    • Quail, M.A.1
  • 9
    • 84884752351 scopus 로고    scopus 로고
    • An evaluation of the PacBio RS platform for sequencing and de novo assembly of a chloroplast genome
    • Ferrarini M., et al. An evaluation of the PacBio RS platform for sequencing, and De novo assembly of a chloroplast genome. BMC Genomics 14, 670 (2013
    • (2013) BMC Genomics , vol.14 , pp. 670
    • Ferrarini, M.1
  • 10
    • 84887412533 scopus 로고    scopus 로고
    • A single-molecule long-read survey of the human transcriptome
    • Sharon D., Tilgner H., Grubert F., & Snyder M. A single-molecule long-read survey of the human transcriptome. Nature Biotechnol. 31, 1009-1014 (2013
    • (2013) Nature Biotechnol , vol.31 , pp. 1009-1014
    • Sharon, D.1    Tilgner, H.2    Grubert, F.3    Snyder, M.4
  • 11
    • 84907952658 scopus 로고    scopus 로고
    • A first look at the oxford nanopore minion sequencer
    • Mikheyev A. S., & Tin M. M. A first look at the Oxford Nanopore MinION sequencer. Mol. Ecol. Resour. 14, 1097-1102 (2014
    • (2014) Mol. Ecol. Resour , vol.14 , pp. 1097-1102
    • Mikheyev, A.S.1    Tin, M.M.2
  • 12
    • 84926472171 scopus 로고    scopus 로고
    • Improved data analysis for the MinION nanopore sequencer
    • Jain M., et al. Improved data analysis for the MinION nanopore sequencer. Nature Methods 12, 351-356 (2015
    • (2015) Nature Methods , vol.12 , pp. 351-356
    • Jain, M.1
  • 13
    • 7444220645 scopus 로고    scopus 로고
    • Electric field effect in atomically thin carbon films
    • Novoselov K. S., et al. Electric field effect in atomically thin carbon films. Science 306, 666-669 (2004
    • (2004) Science , vol.306 , pp. 666-669
    • Novoselov, K.S.1
  • 14
    • 23044442056 scopus 로고    scopus 로고
    • Two-dimensional atomic crystals
    • Novoselov K. S., et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451-10453 (2005
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 10451-10453
    • Novoselov, K.S.1
  • 16
    • 47749150628 scopus 로고    scopus 로고
    • Measurement of the elastic properties, and intrinsic strength of monolayer graphene
    • Lee C., Wei X., Kysar J. W., & Hone J. Measurement of the elastic properties, and intrinsic strength of monolayer graphene. Science 321, 385-388 (2008
    • (2008) Science , vol.321 , pp. 385-388
    • Lee, C.1    Wei, X.2    Kysar, J.W.3    Hone, J.4
  • 17
    • 34548388792 scopus 로고    scopus 로고
    • Detection of individual gas molecules adsorbed on graphene
    • Schedin F., et al. Detection of individual gas molecules adsorbed on graphene. Nature Mater. 6, 652-655 (2007
    • (2007) Nature Mater , vol.6 , pp. 652-655
    • Schedin, F.1
  • 18
    • 45349092986 scopus 로고    scopus 로고
    • Fine structure constant defines visual transparency of graphene
    • Nair R. R., et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008
    • (2008) Science , vol.320 , pp. 1308
    • Nair, R.R.1
  • 19
    • 68949135918 scopus 로고    scopus 로고
    • Tight-binding approach to uniaxial strain in graphene
    • Pereira V., Castro Neto A., & Peres N. Tight-binding approach to uniaxial strain in graphene. Phys. Rev. B 80, 045401 (2009
    • (2009) Phys. Rev. B , vol.80 , pp. 045401
    • Pereira, V.1    Castro Neto, A.2    Peres, N.3
  • 20
    • 42349087225 scopus 로고    scopus 로고
    • Superior thermal conductivity of single-layer graphene
    • Balandin A. A., et Al. Superior Thermal Conductivity of Single-layer Graphene. Nano Lett. 8, 902-907 (2008
    • (2008) Nano Lett , vol.8 , pp. 902-907
    • Balandin, A.A.1
  • 21
    • 40749140712 scopus 로고    scopus 로고
    • Giant intrinsic carrier mobilities in graphene, and its bilayer
    • Morozov S., et al. Giant intrinsic carrier mobilities in graphene, and its bilayer. Phys. Rev. Lett. 100, 016602 (2008
    • (2008) Phys. Rev. Lett , vol.100 , pp. 016602
    • Morozov, S.1
  • 22
    • 84923776518 scopus 로고    scopus 로고
    • Science, and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems
    • Ferrari A. C., et al. Science, and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598-4810 (2015
    • (2015) Nanoscale , vol.7 , pp. 4598-4810
    • Ferrari, A.C.1
  • 23
    • 0017258698 scopus 로고
    • Single-channel currents recorded from membrane of denervated frog muscle fibres
    • Neher E., & Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799-802 (1976
    • (1976) Nature , vol.260 , pp. 799-802
    • Neher, E.1    Sakmann, B.2
  • 24
    • 0018956403 scopus 로고
    • Pore size, and properties of channels from mitochondria isolated from neurospora crassa
    • Colombini M. Pore size, and properties of channels from mitochondria isolated from Neurospora crassa. J. Membrane Biol. 53, 79-84 (1980
    • (1980) J. Membrane Biol , vol.53 , pp. 79-84
    • Colombini, M.1
  • 25
    • 0026924325 scopus 로고
    • A simple method for the determination of the pore radius of ion channels in planar lipid bilayer membranes
    • Krasilnikov O., Sabirov R., Ternovsky V., Merzliak P., & Muratkhodjaev J. A simple method for the determination of the pore radius of ion channels in planar lipid bilayer membranes. FEMS Microbiol. Lett. 105, 93-100 (1992
    • (1992) FEMS Microbiol. Lett , vol.105 , pp. 93-100
    • Krasilnikov, O.1    Sabirov, R.2    Ternovsky, V.3    Merzliak, P.4    Muratkhodjaev, J.5
  • 26
    • 0030465241 scopus 로고    scopus 로고
    • Characterization of individual polynucleotide molecules using a membrane channel
    • Kasianowicz J. J., Brandin E., Branton D., & Deamer D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770-13773 (1996
    • (1996) Proc. Natl Acad. Sci. USA , vol.93 , pp. 13770-13773
    • Kasianowicz, J.J.1    Brandin, E.2    Branton, D.3    Deamer, D.W.4
  • 27
    • 84859175970 scopus 로고    scopus 로고
    • Automated forward, and reverse ratcheting of DNA in a nanopore at 5-å precision
    • Cherf G. M., et al. Automated forward, and reverse ratcheting of DNA in a nanopore at 5-Å precision. Nature Biotechnol. 30, 344-348 (2012
    • (2012) Nature Biotechnol , vol.30 , pp. 344-348
    • Cherf, G.M.1
  • 28
    • 84859629295 scopus 로고    scopus 로고
    • Reading DNA at single-nucleotide resolution with a mutant MspA nanopore, and phi29 DNA polymerase
    • Manrao E. A., et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore, and phi29 DNA polymerase. Nature Biotechnol. 30, 349-53 (2012
    • (2012) Nature Biotechnol , vol.30 , pp. 349-353
    • Manrao, E.A.1
  • 29
    • 34248351114 scopus 로고    scopus 로고
    • Solid-state nanopores
    • Dekker C. Solid-state nanopores. Nature Nanotech. 2, 209-215 (2007
    • (2007) Nature Nanotech , vol.2 , pp. 209-215
    • Dekker, C.1
  • 30
    • 77956556804 scopus 로고    scopus 로고
    • Graphene as a subnanometre trans-electrode membrane
    • Garaj S., et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190-193 (2010
    • (2010) Nature , vol.467 , pp. 190-193
    • Garaj, S.1
  • 32
    • 81855169788 scopus 로고    scopus 로고
    • Computational investigation of DNA detection using graphene nanopores
    • Sathe C., Zou X., Leburton J.-P., & Schulten K. Computational investigation of DNA detection using graphene nanopores. ACS Nano 5, 8842-8851 (2011
    • (2011) ACS Nano , vol.5 , pp. 8842-8851
    • Sathe, C.1    Zou, X.2    Leburton, J.-P.3    Schulten, K.4
  • 33
    • 84864681512 scopus 로고    scopus 로고
    • Assessing graphene nanopores for sequencing DNA
    • Wells D. B., Belkin M., Comer J., & Aksimentiev A. Assessing graphene nanopores for sequencing DNA. Nano Lett. 12, 4117-4123 (2012
    • (2012) Nano Lett , vol.12 , pp. 4117-4123
    • Wells, D.B.1    Belkin, M.2    Comer, J.3    Aksimentiev, A.4
  • 34
    • 84872726998 scopus 로고    scopus 로고
    • Theoretical study on key factors in DNA sequencing with graphene nanopores
    • Liang L., et al. Theoretical study on key factors in DNA sequencing with graphene nanopores. RSC Adv. 3, 2445-2453 (2013
    • (2013) RSC Adv , vol.3 , pp. 2445-2453
    • Liang, L.1
  • 35
    • 77955569305 scopus 로고    scopus 로고
    • DNA translocation through graphene nanopores
    • Schneider G. F., et al. DNA translocation through graphene nanopores. Nano Lett. 10, 3163-3167 (2010
    • (2010) Nano Lett , vol.10 , pp. 3163-3167
    • Schneider, G.F.1
  • 36
    • 77955580114 scopus 로고    scopus 로고
    • DNA translocation through graphene nanopores
    • Merchant C. A., et al. DNA translocation through graphene nanopores. Nano Lett. 10, 2915-2921 (2010
    • (2010) Nano Lett , vol.10 , pp. 2915-2921
    • Merchant, C.A.1
  • 37
    • 84888239820 scopus 로고    scopus 로고
    • Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation
    • Schneider G. F., et al. Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation. Nature Commun. 4, 2619 (2013
    • (2013) Nature Commun , vol.4 , pp. 2619
    • Schneider, G.F.1
  • 38
    • 84922505990 scopus 로고    scopus 로고
    • Slowing DNA transport using graphene-DNA interactions
    • Banerjee S., et al. Slowing DNA transport using graphene-DNA interactions. Adv. Funct. Mater. 25, 936-946 (2014
    • (2014) Adv. Funct. Mater , vol.25 , pp. 936-946
    • Banerjee, S.1
  • 39
  • 40
    • 84920971392 scopus 로고    scopus 로고
    • Velocity of DNA during translocation through a solid-state nanopore
    • Plesa C., van Loo N., Ketterer P., Dietz H., & Dekker C. Velocity of DNA during translocation through a solid-state nanopore. Nano Lett. 15, 732-737 (2015
    • (2015) Nano Lett , vol.15 , pp. 732-737
    • Plesa, C.1    Van Loo, N.2    Ketterer, P.3    Dietz, H.4    Dekker, C.5
  • 41
    • 84964262428 scopus 로고    scopus 로고
    • 1/f noise in graphene nanopores
    • Heerema S. J., et al. 1/f noise in graphene nanopores. Nanotechnology 26, 074001 (2015
    • (2015) Nanotechnology , vol.26 , pp. 074001
    • Heerema, S.J.1
  • 42
    • 84856171546 scopus 로고    scopus 로고
    • Stacked graphene-Al2O3 nanopore sensors for sensitive detection of DNA, and DNA-protein complexes
    • Venkatesan B. M., et al. Stacked graphene-Al2O3 nanopore sensors for sensitive detection of DNA, and DNA-protein complexes. ACS Nano 6, 441-450 (2012
    • (2012) ACS Nano , vol.6 , pp. 441-450
    • Venkatesan, B.M.1
  • 43
    • 84872858460 scopus 로고    scopus 로고
    • Electrochemistry at the edge of a single graphene layer in a nanopore
    • Banerjee S., et al. Electrochemistry at the edge of a single graphene layer in a nanopore. ACS Nano 7, 834-843 (2013
    • (2013) ACS Nano , vol.7 , pp. 834-843
    • Banerjee, S.1
  • 44
    • 84923417254 scopus 로고    scopus 로고
    • A low-noise solid-state nanopore platform based on a highly insulating substrate
    • Lee M.-H., et al. A low-noise solid-state nanopore platform based on a highly insulating substrate. Sci. Rep. 4, 7448 (2014
    • (2014) Sci. Rep , vol.4 , pp. 7448
    • Lee, M.-H.1
  • 45
    • 76749137693 scopus 로고    scopus 로고
    • Rapid sequencing of individual DNA molecules in graphene nanogaps
    • Postma H. W. C. Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano Lett. 10, 420-425 (2010
    • (2010) Nano Lett , vol.10 , pp. 420-425
    • Postma, H.W.C.1
  • 46
    • 84862297634 scopus 로고    scopus 로고
    • Nanopore-based DNA analysis via graphene electrodes
    • Zhao Q., et al. Nanopore-based DNA analysis via graphene electrodes. J. Nanomater. 2012, 1-5 (2012
    • (2012) J. Nanomater , vol.2012 , pp. 1-5
    • Zhao, Q.1
  • 47
    • 84898028123 scopus 로고    scopus 로고
    • Detection of nucleic acids by graphene-based devices: A first-principles study
    • Zhang H., et al. Detection of nucleic acids by graphene-based devices: a first-principles study. J. Appl. Phys. 115, 133701 (2014
    • (2014) J. Appl. Phys , vol.115 , pp. 133701
    • Zhang, H.1
  • 48
    • 84880504833 scopus 로고    scopus 로고
    • Quantum interference in DNA bases probed by graphene nanoribbons
    • Jeong H., et al. Quantum interference in DNA bases probed by graphene nanoribbons. Appl. Phys. Lett. 103, 023701 (2013
    • (2013) Appl. Phys. Lett , vol.103 , pp. 023701
    • Jeong, H.1
  • 49
    • 79955901449 scopus 로고    scopus 로고
    • Transverse conductance of DNA nucleotides in a graphene nanogap from first principles
    • Prasongkit J., Grigoriev A., Pathak B., Ahuja R., & Scheicher R. H. Transverse conductance of DNA nucleotides in a graphene nanogap from first principles. Nano Lett. 11, 1941-1945 (2011
    • (2011) Nano Lett , vol.11 , pp. 1941-1945
    • Prasongkit, J.1    Grigoriev, A.2    Pathak, B.3    Ahuja, R.4    Scheicher, R.H.5
  • 50
    • 84880849363 scopus 로고    scopus 로고
    • Theoretical study of electronic transport through DNA nucleotides in a double-functionalized graphene nanogap
    • Prasongkit J., Grigoriev A., Pathak B., Ahuja R., & Scheicher R. H. Theoretical study of electronic transport through DNA nucleotides in a double-functionalized graphene nanogap. J. Phys. Chem. C 117, 15421-15428 (2013
    • (2013) J. Phys. Chem. C , vol.117 , pp. 15421-15428
    • Prasongkit, J.1    Grigoriev, A.2    Pathak, B.3    Ahuja, R.4    Scheicher, R.H.5
  • 51
    • 79960491374 scopus 로고    scopus 로고
    • Enhanced DNA sequencing performance through edge-hydrogenation of graphene electrodes
    • He Y., et al. Enhanced DNA sequencing performance through edge-hydrogenation of graphene electrodes. Adv. Funct. Mater. 21, 2674-2679 (2011
    • (2011) Adv. Funct. Mater , vol.21 , pp. 2674-2679
    • He, Y.1
  • 52
    • 78650009474 scopus 로고    scopus 로고
    • Identifying single bases in a DNA oligomer with electron tunnelling
    • Huang S., et al. Identifying single bases in a DNA oligomer with electron tunnelling. Nature Nanotech. 5, 868-873 (2010
    • (2010) Nature Nanotech , vol.5 , pp. 868-873
    • Huang, S.1
  • 53
    • 77953490385 scopus 로고    scopus 로고
    • Recognition tunneling
    • Lindsay S., et al. Recognition tunneling. Nanotechnology 21, 262001 (2010
    • (2010) Nanotechnology , vol.21 , pp. 262001
    • Lindsay, S.1
  • 54
    • 84888873959 scopus 로고    scopus 로고
    • Slowing DNA translocation through a nanopore using a functionalized electrode
    • Krishnakumar P., et al. Slowing DNA translocation through a nanopore using a functionalized electrode. ACS Nano 7, 10319-10326 (2013
    • (2013) ACS Nano , vol.7 , pp. 10319-10326
    • Krishnakumar, P.1
  • 55
    • 79951545699 scopus 로고    scopus 로고
    • DNA tunneling detector embedded in a nanopore
    • Ivanov A. P., et Al. DNA Tunneling Detector Embedded in A Nanopore. Nano Lett. 11, 279-285 (2011
    • (2011) Nano Lett , vol.11 , pp. 279-285
    • Ivanov, A.P.1
  • 56
  • 57
    • 84860186258 scopus 로고    scopus 로고
    • Single-molecule sensing electrode embedded in-plane nanopore
    • Tsutsui M., et al. Single-molecule sensing electrode embedded in-plane nanopore. Sci. Rep. 1, 46 (2011
    • (2011) Sci. Rep , vol.1 , pp. 46
    • Tsutsui, M.1
  • 58
    • 79961107492 scopus 로고    scopus 로고
    • Recognizing nucleotides by cross-tunneling currents for DNA sequencing
    • Bagci V. M. K., & Kaun C.-C. Recognizing nucleotides by cross-tunneling currents for DNA sequencing. Phys. Rev. E 84, 011917 (2011
    • (2011) Phys. Rev. e , vol.84 , pp. 011917
    • Bagci, V.M.K.1    Kaun, C.-C.2
  • 59
    • 84859049278 scopus 로고    scopus 로고
    • First principles study of high-conductance DNA sequencing with carbon nanotube electrodes
    • Chen X., Rungger I., Pemmaraju C. D., Schwingenschlögl U., & Sanvito S. First principles study of high-conductance DNA sequencing with carbon nanotube electrodes. Phys. Rev. B 85, 115436 (2012
    • (2012) Phys. Rev. B , vol.85 , pp. 115436
    • Chen, X.1    Rungger, I.2    Pemmaraju, C.D.3    Schwingenschlögl, U.4    Sanvito, S.5
  • 60
    • 80755189477 scopus 로고    scopus 로고
    • Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes
    • Prins F., et al. Room-temperature Gating of Molecular Junctions Using Few-layer Graphene Nanogap Electrodes. Nano Lett. 11, 4607-4611 (2011
    • (2011) Nano Lett , vol.11 , pp. 4607-4611
    • Prins, F.1
  • 61
    • 84902436757 scopus 로고    scopus 로고
    • High-yield fabrication of nm-size gaps in monolayer CVD graphene
    • Nef C., et al. High-yield fabrication of nm-size gaps in monolayer CVD graphene. Nanoscale 6, 7249-7254 (2014
    • (2014) Nanoscale , vol.6 , pp. 7249-7254
    • Nef, C.1
  • 62
    • 84924390204 scopus 로고    scopus 로고
    • Conductance enlargement in picoscale electroburnt graphene nanojunctions
    • Sadeghi H., et al. Conductance enlargement in picoscale electroburnt graphene nanojunctions. Proc. Natl Acad. Sci. USA 112, 2658-2663 (2015
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. 2658-2663
    • Sadeghi, H.1
  • 63
    • 84908583906 scopus 로고    scopus 로고
    • Fabrication of hybrid molecular devices using multi-layer graphene break junctions
    • Island J. O., et al. Fabrication of hybrid molecular devices using multi-layer graphene break junctions. J. Phys. Condens. Matter 26, 474205 (2014
    • (2014) J. Phys. Condens. Matter , vol.26 , pp. 474205
    • Island, J.O.1
  • 64
    • 84875730885 scopus 로고    scopus 로고
    • Building high-throughput molecular junctions using indented graphene point contacts
    • Cao Y., et al. Building high-throughput molecular junctions using indented graphene point contacts. Angew. Chem. 124, 12394-12398 (2012
    • (2012) Angew. Chem , vol.124 , pp. 12394-12398
    • Cao, Y.1
  • 65
    • 36149007340 scopus 로고
    • The band theory of graphite
    • Wallace P. The band theory of graphite. Phys. Rev. 71, 622-634 (1947
    • (1947) Phys. Rev , vol.71 , pp. 622-634
    • Wallace, P.1
  • 67
    • 0000703370 scopus 로고    scopus 로고
    • Electronic, and magnetic properties of nanographite ribbons
    • Wakabayashi K., Fujita M., Ajiki H., & Sigrist M. Electronic, and magnetic properties of nanographite ribbons. Phys. Rev. B 59, 8271-8282 (1999
    • (1999) Phys. Rev. B , vol.59 , pp. 8271-8282
    • Wakabayashi, K.1    Fujita, M.2    Ajiki, H.3    Sigrist, M.4
  • 68
    • 33144487433 scopus 로고    scopus 로고
    • Peculiar width dependence of the electronic properties of carbon nanoribbons
    • Ezawa M. Peculiar width dependence of the electronic properties of carbon nanoribbons. Phys. Rev. B 73, 045432 (2006
    • (2006) Phys. Rev. B , vol.73 , pp. 045432
    • Ezawa, M.1
  • 69
    • 33845627673 scopus 로고    scopus 로고
    • Electronic states of graphene nanoribbons studied with the Dirac equation
    • Brey L., & Fertig H. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B 73, 235411 (2006
    • (2006) Phys. Rev. B , vol.73 , pp. 235411
    • Brey, L.1    Fertig, H.2
  • 70
    • 0000781318 scopus 로고    scopus 로고
    • Edge state in graphene ribbons: Nanometer size effect, and edge shape dependence
    • Nakada K., Fujita M., Dresselhaus G., & Dresselhaus M. Edge state in graphene ribbons: nanometer size effect, and edge shape dependence. Phys. Rev. B 54, 17954-17961 (1996
    • (1996) Phys. Rev. B , vol.54 , pp. 17954-17961
    • Nakada, K.1    Fujita, M.2    Dresselhaus, G.3    Dresselhaus, M.4
  • 72
    • 77956428199 scopus 로고    scopus 로고
    • Detection of nucleic acids with graphene nanopores: Ab initio characterization of a novel sequencing device
    • Nelson T., Zhang B., & Prezhdo O. V. Detection of nucleic acids with graphene nanopores: ab initio characterization of a novel sequencing device. Nano Lett. 10, 3237-3242 (2010
    • (2010) Nano Lett , vol.10 , pp. 3237-3242
    • Nelson, T.1    Zhang, B.2    Prezhdo, O.V.3
  • 73
    • 79957546438 scopus 로고    scopus 로고
    • A biosensor based on graphene nanoribbon with nanopores: A first-principles devices-design
    • Ouyang F.-P., Peng S.-L., Zhang H., Weng L.-B., & Xu H. A biosensor based on graphene nanoribbon with nanopores: a first-principles devices-design. Chinese Phys. B 20, 058504 (2011
    • (2011) Chinese Phys. B , vol.20 , pp. 058504
    • Ouyang, F.-P.1    Peng, S.-L.2    Zhang, H.3    Weng, L.-B.4    Xu, H.5
  • 74
    • 84855767473 scopus 로고    scopus 로고
    • DNA base-specific modulation of microampere transverse edge currents through a metallic graphene nanoribbon with a nanopore
    • Saha K. K., Drndić M., & Nikolić B. K. DNA base-specific modulation of microampere transverse edge currents through a metallic graphene nanoribbon with a nanopore. Nano Lett. 12, 50-55 (2012
    • (2012) Nano Lett , vol.12 , pp. 50-55
    • Saha, K.K.1    Drndić, M.2    Nikolić, B.K.3
  • 75
    • 84877297117 scopus 로고    scopus 로고
    • Dynamic, and electronic transport properties of DNA translocation through graphene nanopores
    • Avdoshenko S. M., et al. Dynamic, and electronic transport properties of DNA translocation through graphene nanopores. Nano Lett. 13, 1969-1976 (2013
    • (2013) Nano Lett , vol.13 , pp. 1969-1976
    • Avdoshenko, S.M.1
  • 77
    • 84905734809 scopus 로고    scopus 로고
    • Next-generation epigenetic detection technique: Identifying methylated cytosine using graphene nanopore
    • Ahmed T., Haraldsen J. T., Zhu J.-X., & Balatsky A. V. Next-generation epigenetic detection technique: identifying methylated cytosine using graphene nanopore. J. Phys. Chem. Lett. 5, 2601-2607 (2014
    • (2014) J. Phys. Chem. Lett , vol.5 , pp. 2601-2607
    • Ahmed, T.1    Haraldsen, J.T.2    Zhu, J.-X.3    Balatsky, A.V.4
  • 78
    • 84902996401 scopus 로고    scopus 로고
    • Graphene sculpturene nanopores for DNA nucleobase sensing
    • Sadeghi H., et al. Graphene sculpturene nanopores for DNA nucleobase sensing. J. Phys. Chem. B 118, 6908-6914 (2014
    • (2014) J. Phys. Chem. B , vol.118 , pp. 6908-6914
    • Sadeghi, H.1
  • 79
    • 84896895634 scopus 로고    scopus 로고
    • Correlation dynamics, and enhanced signals for the identification of serial biomolecules, and DNA bases
    • Ahmed T., et al. Correlation dynamics, and enhanced signals for the identification of serial biomolecules, and DNA bases. Nanotechnology 25, 125705 (2014
    • (2014) Nanotechnology , vol.25 , pp. 125705
    • Ahmed, T.1
  • 80
    • 84890564485 scopus 로고    scopus 로고
    • Detecting the translocation of DNA through a nanopore using graphene nanoribbons
    • Traversi F., et al. Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nature Nanotech. 8, 939-945 (2013
    • (2013) Nature Nanotech , vol.8 , pp. 939-945
    • Traversi, F.1
  • 81
    • 83655192481 scopus 로고    scopus 로고
    • In situ electronic characterization of graphene nanoconstrictions fabricated in a transmission electron microscope
    • Lu Y., Merchant C. A., Drndić M., & Johnson A. T. C. In situ electronic characterization of graphene nanoconstrictions fabricated in a transmission electron microscope. Nano Lett. 11, 5184-5188 (2011
    • (2011) Nano Lett , vol.11 , pp. 5184-5188
    • Lu, Y.1    Merchant, C.A.2    Drndić, M.3    Johnson, A.T.C.4
  • 82
    • 84891355557 scopus 로고    scopus 로고
    • Toward sensitive graphene nanoribbon-nanopore devices by preventing electron beam-induced damage
    • Puster M., Rodríguez-Manzo J. A., Balan A., & Drndić M. Toward sensitive graphene nanoribbon-nanopore devices by preventing electron beam-induced damage. ACS Nano 7, 11283-11289 (2013
    • (2013) ACS Nano , vol.7 , pp. 11283-11289
    • Puster, M.1    Rodríguez-Manzo, J.A.2    Balan, A.3    Drndić, M.4
  • 83
    • 84906095437 scopus 로고    scopus 로고
    • Correlating atomic structure, and transport in suspended graphene nanoribbons
    • Qi Z. J., et Al. Correlating Atomic Structure, and Transport in Suspended Graphene Nanoribbons. Nano Lett. 14, 4238-4244 (2014
    • (2014) Nano Lett , vol.14 , pp. 4238-4244
    • Qi, Z.J.1
  • 84
    • 79958842145 scopus 로고    scopus 로고
    • Atomic-scale electron-beam sculpting of near-defect-free graphene nanostructures
    • Song B., et al. Atomic-scale Electron-beam Sculpting of Near-defect-free Graphene Nanostructures. Nano Lett. 11, 2247-2250 (2011
    • (2011) Nano Lett , vol.11 , pp. 2247-2250
    • Song, B.1
  • 85
    • 84874417182 scopus 로고    scopus 로고
    • Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature
    • Xu Q., et al. Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature. ACS Nano 7, 1566-1572 (2013
    • (2013) ACS Nano , vol.7 , pp. 1566-1572
    • Xu, Q.1
  • 86
    • 85027945484 scopus 로고    scopus 로고
    • First-principles versus semi-empirical modeling of global, and local electronic transport properties of graphene nanopore-based sensors for DNA sequencing
    • Chang P.-H., Liu H., & Nikolić B. K. First-principles versus semi-empirical modeling of global, and local electronic transport properties of graphene nanopore-based sensors for DNA sequencing. J. Comput. Electron. 13, 847-856 (2014
    • (2014) J. Comput. Electron , vol.13 , pp. 847-856
    • Chang, P.-H.1    Liu, H.2    Nikolić, B.K.3
  • 87
    • 34848883883 scopus 로고    scopus 로고
    • Influence of the environment, and probes on rapid DNA sequencing via transverse electronic transport
    • Lagerqvist J., Zwolak M., & Di Ventra M. Influence of the environment, and probes on rapid DNA sequencing via transverse electronic transport. Biophys. J. 93, 2384-2390 (2007
    • (2007) Biophys. J. , vol.93 , pp. 2384-2390
    • Lagerqvist, J.1    Zwolak, M.2    Di Ventra, M.3
  • 88
    • 84942354270 scopus 로고    scopus 로고
    • Capacitive DNA detection driven by electronic charge fluctuations in a graphene nanopore
    • Feliciano G. T., et al. Capacitive DNA detection driven by electronic charge fluctuations in a graphene nanopore. Phys. Rev. Appl. 3, 034003 (2015
    • (2015) Phys. Rev. Appl , vol.3 , pp. 034003
    • Feliciano, G.T.1
  • 90
    • 84928944773 scopus 로고    scopus 로고
    • Electronic transport of recrystallized freestanding graphene nanoribbons
    • Qi Z. J., et al. Electronic transport of recrystallized freestanding graphene nanoribbons. ACS Nano 9, 3510-3520 (2015
    • (2015) ACS Nano , vol.9 , pp. 3510-3520
    • Qi, Z.J.1
  • 91
    • 84856837136 scopus 로고    scopus 로고
    • Local electrical potential detection of DNA by nanowire-nanopore sensors
    • Xie P., Xiong Q., Fang Y., Qing Q., & Lieber C. M. Local electrical potential detection of DNA by nanowire-nanopore sensors. Nature Nanotech. 7, 119-125 (2012
    • (2012) Nature Nanotech , vol.7 , pp. 119-125
    • Xie, P.1    Xiong, Q.2    Fang, Y.3    Qing, Q.4    Lieber, C.M.5
  • 92
    • 0038342161 scopus 로고    scopus 로고
    • Atomic force microscopy of DNA immobilized onto a highly oriented pyrolytic graphite electrode surface
    • Oliveira Brett A. M., & Chiorcea A.-M. Atomic force microscopy of DNA immobilized onto a highly oriented pyrolytic graphite electrode surface. Langmuir 19, 3830-3839 (2003
    • (2003) Langmuir , vol.19 , pp. 3830-3839
    • Oliveira Brett, A.M.1    Chiorcea, A.-M.2
  • 93
    • 34347386469 scopus 로고    scopus 로고
    • Physisorption of nucleobases on graphene: Density-functional calculations
    • Gowtham S., Scheicher R., Ahuja R., Pandey R., & Karna S. Physisorption of nucleobases on graphene: density-functional calculations. Phys. Rev. B 76, 033401 (2007
    • (2007) Phys. Rev. B , vol.76 , pp. 033401
    • Gowtham, S.1    Scheicher, R.2    Ahuja, R.3    Pandey, R.4    Karna, S.5
  • 94
  • 95
    • 84879806017 scopus 로고    scopus 로고
    • Physisorption of DNA nucleobases on h-BN, and graphene: VdW-corrected DFT calculations
    • Lee J.-H., Choi Y.-K., Kim H.-J., Scheicher R. H., & Cho J.-H. Physisorption of DNA nucleobases on h-BN, and graphene: vdW-corrected DFT calculations. J. Phys. Chem. C 117, 13435-13441 (2013
    • (2013) J. Phys. Chem. C , vol.117 , pp. 13435-13441
    • Lee, J.-H.1    Choi, Y.-K.2    Kim, H.-J.3    Scheicher, R.H.4    Cho, J.-H.5
  • 96
    • 43449118381 scopus 로고    scopus 로고
    • Structures, and interaction energies of stacked graphene-nucleobase complexes
    • Antony J., & Grimme S. Structures, and interaction energies of stacked graphene-nucleobase complexes. Phys. Chem. Chem. Phys. 10, 2722-2729 (2008
    • (2008) Phys. Chem. Chem. Phys , vol.10 , pp. 2722-2729
    • Antony, J.1    Grimme, S.2
  • 97
    • 58149529439 scopus 로고    scopus 로고
    • Binding of DNA nucleobases, and nucleosides with graphene
    • Varghese N., et al. Binding of DNA nucleobases, and nucleosides with graphene. ChemPhysChem 10, 206-210 (2009
    • (2009) ChemPhysChem , vol.10 , pp. 206-210
    • Varghese, N.1
  • 98
    • 44549086020 scopus 로고    scopus 로고
    • Binding of nucleobases with single-walled carbon nanotubes: Theory, and experiment
    • Das A., et al. Binding of nucleobases with single-walled carbon nanotubes: theory, and experiment. Chem. Phys. Lett. 453, 266-273 (2008
    • (2008) Chem. Phys. Lett , vol.453 , pp. 266-273
    • Das, A.1
  • 99
    • 79960164905 scopus 로고    scopus 로고
    • Quantum mechanical study of physisorption of nucleobases on carbon materials: Graphene versus carbon nanotubes
    • Umadevi D., & Sastry G. N. Quantum mechanical study of physisorption of nucleobases on carbon materials: graphene versus carbon nanotubes. J. Phys. Chem. Lett. 2, 1572-1576 (2011
    • (2011) J. Phys. Chem. Lett , vol.2 , pp. 1572-1576
    • Umadevi, D.1    Sastry, G.N.2
  • 101
    • 79952446499 scopus 로고    scopus 로고
    • Fast DNA sequencing with a graphene-based nanochannel device
    • Min S. K., Kim W. Y., Cho Y., & Kim K. S. Fast DNA sequencing with a graphene-based nanochannel device. Nature Nanotech. 6, 162-165 (2011
    • (2011) Nature Nanotech , vol.6 , pp. 162-165
    • Min, S.K.1    Kim, W.Y.2    Cho, Y.3    Kim, K.S.4
  • 102
    • 80051694102 scopus 로고    scopus 로고
    • The origin of dips for the graphene-based DNA sequencing device
    • Cho Y., Min S. K., Kim W. Y., & Kim K. S. The origin of dips for the graphene-based DNA sequencing device. Phys. Chem. Chem. Phys. 13, 14293-14296 (2011
    • (2011) Phys. Chem. Chem. Phys , vol.13 , pp. 14293-14296
    • Cho, Y.1    Min, S.K.2    Kim, W.Y.3    Kim, K.S.4
  • 103
    • 84857223586 scopus 로고    scopus 로고
    • Nucleobase adsorbed at graphene devices: Enhance bio-sensorics
    • Song B., Cuniberti G., Sanvito S., & Fang H. Nucleobase adsorbed at graphene devices: enhance bio-sensorics. Appl. Phys. Lett. 100, 063101 (2012
    • (2012) Appl. Phys. Lett , vol.100 , pp. 063101
    • Song, B.1    Cuniberti, G.2    Sanvito, S.3    Fang, H.4
  • 104
    • 84890818972 scopus 로고    scopus 로고
    • Assembly of a noncovalent DNA junction on graphene sheets, and electron transport characteristics
    • Bobadilla A. D., & Seminario J. M. Assembly of a noncovalent DNA junction on graphene sheets, and electron transport characteristics. J. Phys. Chem. C 117, 26441-26453 (2013
    • (2013) J. Phys. Chem. C , vol.117 , pp. 26441-26453
    • Bobadilla, A.D.1    Seminario, J.M.2
  • 105
    • 77954904482 scopus 로고    scopus 로고
    • Atomically precise bottom-up fabrication of graphene nanoribbons
    • Cai J., et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470-473 (2010
    • (2010) Nature , vol.466 , pp. 470-473
    • Cai, J.1
  • 106
    • 84856976181 scopus 로고    scopus 로고
    • Electronic fingerprints of DNA bases on graphene
    • Ahmed T., et al. Electronic Fingerprints of DNA Bases on Graphene. Nano Lett. 12, 927-931 (2012
    • (2012) Nano Lett , vol.12 , pp. 927-931
    • Ahmed, T.1
  • 107
    • 68949191020 scopus 로고    scopus 로고
    • Partial sequencing of a single DNA molecule with a scanning tunnelling microscope
    • Tanaka H., & Kawai T. Partial sequencing of a single DNA molecule with a scanning tunnelling microscope. Nature Nanotech. 4, 518-522 (2009
    • (2009) Nature Nanotech , vol.4 , pp. 518-522
    • Tanaka, H.1    Kawai, T.2
  • 108
    • 23944451557 scopus 로고    scopus 로고
    • Nanotrench arrays reveal insight into graphite electrochemistry
    • Davies T. J., Hyde M. E., & Compton R. G. Nanotrench arrays reveal insight into graphite electrochemistry. Angew. Chem. Int. Ed. 44, 5121-5126 (2005
    • (2005) Angew. Chem. Int. Ed. , vol.44 , pp. 5121-5126
    • Davies, T.J.1    Hyde, M.E.2    Compton, R.G.3
  • 109
    • 79952937415 scopus 로고    scopus 로고
    • Graphene platform for hairpin-DNA-based impedimetric genosensing
    • Bonanni A., & Pumera M. Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano 5, 2356-2361 (2011
    • (2011) ACS Nano , vol.5 , pp. 2356-2361
    • Bonanni, A.1    Pumera, M.2
  • 110
    • 84907157763 scopus 로고    scopus 로고
    • Impedimetric graphene-based biosensor for the detection of Escherichia coli DNA
    • Zainudin N., Mohd Hairul A. R., Yusoff M. M., Tan L. L., & Chong K. F. Impedimetric graphene-based biosensor for the detection of Escherichia coli DNA. Anal. Methods 6, 7935-7941 (2014
    • (2014) Anal. Methods , vol.6 , pp. 7935-7941
    • Zainudin, N.1    Mohd Hairul, A.R.2    Yusoff, M.M.3    Tan, L.L.4    Chong, K.F.5
  • 111
    • 40449124958 scopus 로고    scopus 로고
    • Identifying the mechanism of biosensing with carbon nanotube transistors
    • Heller I., et al. Identifying the Mechanism of Biosensing with Carbon Nanotube Transistors. Nano Lett. 8, 591-595 (2008
    • (2008) Nano Lett , vol.8 , pp. 591-595
    • Heller, I.1
  • 112
    • 78650084677 scopus 로고    scopus 로고
    • Influence of electrolyte composition on liquid-gated carbon nanotube, and graphene transistors
    • Heller I., et al. Influence of electrolyte composition on liquid-gated carbon nanotube, and graphene transistors. J. Am. Chem. Soc. 132, 17149-17156 (2010
    • (2010) J. Am. Chem. Soc , vol.132 , pp. 17149-17156
    • Heller, I.1
  • 113
    • 77952711245 scopus 로고    scopus 로고
    • Gating of single-layer graphene with single-stranded deoxyribonucleic acids
    • Lin J., et al. Gating of single-layer graphene with single-stranded deoxyribonucleic acids. Small 6, 1150-1155 (2010
    • (2010) Small , vol.6 , pp. 1150-1155
    • Lin, J.1
  • 114
    • 77951200970 scopus 로고    scopus 로고
    • Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets
    • Dong X., Shi Y., Huang W., Chen P., & Li L.-J. Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 22, 1649-1653 (2010
    • (2010) Adv. Mater , vol.22 , pp. 1649-1653
    • Dong, X.1    Shi, Y.2    Huang, W.3    Chen, P.4    Li, L.-J.5
  • 115
    • 77949372832 scopus 로고    scopus 로고
    • A graphene platform for sensing biomolecules
    • Lu C., Yang H., Zhu C., Chen X., & Chen G. A graphene platform for sensing biomolecules. Angew. Chem. 121, 4879-4881 (2009
    • (2009) Angew. Chem , vol.121 , pp. 4879-4881
    • Lu, C.1    Yang, H.2    Zhu, C.3    Chen, X.4    Chen, G.5
  • 116
    • 76149090494 scopus 로고    scopus 로고
    • A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis
    • He S., et al. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater. 20, 453-459 (2010
    • (2010) Adv. Funct. Mater , vol.20 , pp. 453-459
    • He, S.1
  • 117
    • 79960637361 scopus 로고    scopus 로고
    • A graphene oxide-organic dye ionic complex with DNA-sensing, and optical-limiting properties
    • Balapanuru J., et al. A graphene oxide-organic dye ionic complex with DNA-sensing, and optical-limiting properties. Angew. Chem. 122, 6699-6703 (2010
    • (2010) Angew. Chem , vol.122 , pp. 6699-6703
    • Balapanuru, J.1
  • 118
    • 84864192436 scopus 로고    scopus 로고
    • DNA-templated silver nanoclusters-graphene oxide nanohybrid materials: A platform for label-free, and sensitive fluorescence turn-on detection of multiple nucleic acid targets
    • Tao Y., Lin Y., Huang Z., Ren J., & Qu X. DNA-templated silver nanoclusters-graphene oxide nanohybrid materials: a platform for label-free, and sensitive fluorescence turn-on detection of multiple nucleic acid targets. Analyst 137, 2588-2592 (2012
    • (2012) Analyst , vol.137 , pp. 2588-2592
    • Tao, Y.1    Lin, Y.2    Huang, Z.3    Ren, J.4    Qu, X.5
  • 120
    • 84928978918 scopus 로고    scopus 로고
    • Controlling defects in graphene for optimizing the electrical properties of graphene nanodevices
    • Vicarelli L., Heerema S. J., Dekker C., & Zandbergen H. W. Controlling defects in graphene for optimizing the electrical properties of graphene nanodevices. ACS Nano 9, 3428-3435 (2015
    • (2015) ACS Nano , vol.9 , pp. 3428-3435
    • Vicarelli, L.1    Heerema, S.J.2    Dekker, C.3    Zandbergen, H.W.4
  • 121
    • 84949313771 scopus 로고    scopus 로고
    • Identification of single nucleotides in MoS2 nanopores
    • Feng J., et al. Identification of single nucleotides in MoS2 nanopores. Nature Nanotech. 10, 1070-1076 (2015
    • (2015) Nature Nanotech , vol.10 , pp. 1070-1076
    • Feng, J.1
  • 122
    • 84887448363 scopus 로고    scopus 로고
    • DNA origami gatekeepers for solid-state nanopores
    • Wei R., Martin T. G., Rant U., & Dietz H. DNA origami gatekeepers for solid-state nanopores. Angew. Chem. 124, 4948-4951 (2012
    • (2012) Angew. Chem , vol.124 , pp. 4948-4951
    • Wei, R.1    Martin, T.G.2    Rant, U.3    Dietz, H.4
  • 123
    • 84855778953 scopus 로고    scopus 로고
    • DNA origami nanopores
    • Bell N. A. W., et al. DNA origami nanopores. Nano Lett. 12, 512-517 (2012
    • (2012) Nano Lett , vol.12 , pp. 512-517
    • Bell, N.A.W.1
  • 124
    • 84893473971 scopus 로고    scopus 로고
    • Ionic permeability, and mechanical properties of DNA origami nanoplates on solid-state nanopores
    • Plesa C., et al. Ionic permeability, and mechanical properties of DNA origami nanoplates on solid-state nanopores. ACS Nano 8, 35-43 (2014
    • (2014) ACS Nano , vol.8 , pp. 35-43
    • Plesa, C.1
  • 125
    • 84874995365 scopus 로고    scopus 로고
    • Plasmonic nanopore for electrical profiling of optical intensity landscapes
    • Jonsson M. P., & Dekker C. Plasmonic nanopore for electrical profiling of optical intensity landscapes. Nano Lett. 13, 1029-1033 (2013
    • (2013) Nano Lett , vol.13 , pp. 1029-1033
    • Jonsson, M.P.1    Dekker, C.2
  • 126
    • 84907870631 scopus 로고    scopus 로고
    • Graphene nanopore with a self-integrated optical antenna
    • Nam S., et al. Graphene nanopore with a self-integrated optical antenna. Nano Lett. 14, 5584-5589 (2014
    • (2014) Nano Lett , vol.14 , pp. 5584-5589
    • Nam, S.1
  • 127
    • 84948442592 scopus 로고    scopus 로고
    • Plasmonic nanopores for trapping, controlling displacement, and sequencing of DNA
    • Belkin M., Chao S.-H., Jonsson M. P., Dekker C., & Aksimentiev A. Plasmonic nanopores for trapping, controlling displacement, and sequencing of DNA. ACS Nano 9, 10598-10611 (2015
    • (2015) ACS Nano , vol.9 , pp. 10598-10611
    • Belkin, M.1    Chao, S.-H.2    Jonsson, M.P.3    Dekker, C.4    Aksimentiev, A.5
  • 128
    • 84884264983 scopus 로고    scopus 로고
    • 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy
    • Chen Q., et al. 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. Nano Lett. 13, 4556-4561 (2013
    • (2013) Nano Lett , vol.13 , pp. 4556-4561
    • Chen, Q.1
  • 129
    • 74849103516 scopus 로고    scopus 로고
    • Translocation of single-stranded DNA through single-walled carbon nanotubes
    • Liu H., et al. Translocation of single-stranded DNA through single-walled carbon nanotubes. Science 327, 64-67 (2010
    • (2010) Science , vol.327 , pp. 64-67
    • Liu, H.1
  • 130
    • 77749334547 scopus 로고    scopus 로고
    • Making nanopores from nanotubes
    • Siwy Z. S., & Davenport M. Making nanopores from nanotubes. Nature Nanotech. 5, 174-175 (2010
    • (2010) Nature Nanotech , vol.5 , pp. 174-175
    • Siwy, Z.S.1    Davenport, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.