-
1
-
-
33947190077
-
-
Patolsky, F., Timko, B. P., Zheng, G., and Lieber, C. M. MRS Bull. 2007, 32, 142-149
-
(2007)
MRS Bull.
, vol.32
, pp. 142-149
-
-
Patolsky, F.1
Timko, B.P.2
Zheng, G.3
Lieber, C.M.4
-
2
-
-
53249136400
-
-
Kauffman, D. R. and Star, A. Angew. Chem., Int. Ed. 2008, 47, 6550-6570
-
(2008)
Angew. Chem., Int. Ed.
, vol.47
, pp. 6550-6570
-
-
Kauffman, D.R.1
Star, A.2
-
4
-
-
34548388792
-
-
Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I., and Novoselov, K. S. Nat. Mater. 2007, 6, 652-655
-
(2007)
Nat. Mater.
, vol.6
, pp. 652-655
-
-
Schedin, F.1
Geim, A.K.2
Morozov, S.V.3
Hill, E.W.4
Blake, P.5
Katsnelson, M.I.6
Novoselov, K.S.7
-
5
-
-
77949396616
-
-
Yang, W., Ratinac, K. R., Ringer, S. P., Thordarson, P., Gooding, J. J., and Braet, F. Angew. Chem., Int. Ed. 2010, 49, 2114-2138
-
(2010)
Angew. Chem., Int. Ed.
, vol.49
, pp. 2114-2138
-
-
Yang, W.1
Ratinac, K.R.2
Ringer, S.P.3
Thordarson, P.4
Gooding, J.J.5
Braet, F.6
-
7
-
-
41849151140
-
-
Squires, T. M., Messinger, R. J., and Manalis, S. R. Nat. Biotechnol. 2008, 26, 417-426
-
(2008)
Nat. Biotechnol.
, vol.26
, pp. 417-426
-
-
Squires, T.M.1
Messinger, R.J.2
Manalis, S.R.3
-
8
-
-
40449124958
-
-
Heller, I., Janssens, A. M., Männik, J., Minot, E. D., Lemay, S. G., and Dekker, C. Nano Lett. 2008, 8, 591-595
-
(2008)
Nano Lett.
, vol.8
, pp. 591-595
-
-
Heller, I.1
Janssens, A.M.2
Männik, J.3
Minot, E.D.4
Lemay, S.G.5
Dekker, C.6
-
9
-
-
0013068352
-
-
Rosenblatt, S., Yaish, Y., Park, J., Gore, J., Sazonova, V., and McEuen, P. L. Nano Lett. 2002, 2, 869-872
-
(2002)
Nano Lett.
, vol.2
, pp. 869-872
-
-
Rosenblatt, S.1
Yaish, Y.2
Park, J.3
Gore, J.4
Sazonova, V.5
McEuen, P.L.6
-
10
-
-
34548429204
-
-
Minot, E. D., Janssens, A. M., Heller, I., Heering, H. A., Dekker, C., and Lemay, S. G. Appl. Phys. Lett. 2007, 91 093507
-
(2007)
Appl. Phys. Lett.
, vol.91
, pp. 093507
-
-
Minot, E.D.1
Janssens, A.M.2
Heller, I.3
Heering, H.A.4
Dekker, C.5
Lemay, S.G.6
-
11
-
-
0037009625
-
-
Heinze, S., Tersoff, J., Martel, R., Derycke, V., Appenzeller, J., and Avouris, P. Phys. Rev. Lett. 2002, 89, 106801
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 106801
-
-
Heinze, S.1
Tersoff, J.2
Martel, R.3
Derycke, V.4
Appenzeller, J.5
Avouris, P.6
-
12
-
-
23144462910
-
-
Chen, Z., Appenzeller, J., Knoch, J., Lin, Y., and Avouris, P. Nano Lett. 2005, 5, 1497-1502
-
(2005)
Nano Lett.
, vol.5
, pp. 1497-1502
-
-
Chen, Z.1
Appenzeller, J.2
Knoch, J.3
Lin, Y.4
Avouris, P.5
-
13
-
-
33744946802
-
-
Heller, I., Kong, J., Williams, K. A., Dekker, C., and Lemay, S. G. J. Am. Chem. Soc. 2006, 128, 7353-7359
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 7353-7359
-
-
Heller, I.1
Kong, J.2
Williams, K.A.3
Dekker, C.4
Lemay, S.G.5
-
14
-
-
52649167334
-
-
Tarábek, J., Kavan, L., Dunsch, L., and Kalbac, M. J. Phys. Chem. C 2008, 112, 13856-13861
-
(2008)
J. Phys. Chem. C
, vol.112
, pp. 13856-13861
-
-
Tarábek, J.1
Kavan, L.2
Dunsch, L.3
Kalbac, M.4
-
15
-
-
40449140009
-
-
Männik, J., Heller, I., Janssens, A. M., Lemay, S. G., and Dekker, C. Nano Lett. 2008, 8, 685-688
-
(2008)
Nano Lett.
, vol.8
, pp. 685-688
-
-
Männik, J.1
Heller, I.2
Janssens, A.M.3
Lemay, S.G.4
Dekker, C.5
-
16
-
-
78650147852
-
-
lg curves, comparable to the situation for back-gating in ambient atmosphere. This is likely related to charges or dipoles trapped underneath the graphene, either in the bulk or on the surface of the oxide. These trapped charges can affect transport in graphene, because for electrolyte-gated graphene, we find that the back-gate coupling is sufficiently strong to affect device conductance, whereas for electrolyte-gated SWNTs, the effect of the back-gate and thus the effect of trapped charges are negligible due to screening of the electric field by the electrolyte that almost entirely encompasses the SWNT. See also ref 24
-
lg curves, comparable to the situation for back-gating in ambient atmosphere. This is likely related to charges or dipoles trapped underneath the graphene, either in the bulk or on the surface of the oxide. These trapped charges can affect transport in graphene, because for electrolyte-gated graphene, we find that the back-gate coupling is sufficiently strong to affect device conductance, whereas for electrolyte-gated SWNTs, the effect of the back-gate and thus the effect of trapped charges are negligible due to screening of the electric field by the electrolyte that almost entirely encompasses the SWNT. See also ref 24.
-
-
-
-
17
-
-
78650124918
-
-
lg curve shape from semiconducting (Figure 1 b) to graphene-like (Figure 1 d)
-
lg curve shape from semiconducting (Figure 1 b) to graphene-like (Figure 1 d).
-
-
-
-
18
-
-
33749668387
-
-
Artyukhin, A. B., Stadermann, M., Friddle, R. W., Stroeve, P., Bakajin, O., and Noy, A. Nano Lett. 2006, 6, 2080-2085
-
(2006)
Nano Lett.
, vol.6
, pp. 2080-2085
-
-
Artyukhin, A.B.1
Stadermann, M.2
Friddle, R.W.3
Stroeve, P.4
Bakajin, O.5
Noy, A.6
-
19
-
-
67651208275
-
-
Chen, F., Qing, Q., Xia, J. L., Li, J. H., and Tao, N. J. J. Am. Chem. Soc. 2009, 131, 9908
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 9908
-
-
Chen, F.1
Qing, Q.2
Xia, J.L.3
Li, J.H.4
Tao, N.J.5
-
20
-
-
78650126331
-
-
Because for large band gap devices the potential of minimum conductance is poorly measurable due to low current levels in the band gap, a threshold p-conductance value just above the noise level is used instead to define relative shifts of the potential of minimum conductance
-
Because for large band gap devices the potential of minimum conductance is poorly measurable due to low current levels in the band gap, a threshold p-conductance value just above the noise level is used instead to define relative shifts of the potential of minimum conductance.
-
-
-
-
22
-
-
55549145154
-
-
Ang, P. K., Chen, W., Wee, A. T. W., and Loh, K. P. J. Am. Chem. Soc. 2008, 130, 14392-14393
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 14392-14393
-
-
Ang, P.K.1
Chen, W.2
Wee, A.T.W.3
Loh, K.P.4
-
23
-
-
70349975898
-
-
Ohno, Y., Maehashi, K., Yamashiro, Y., and Matsumoto, K. Nano Lett. 2009, 9, 3318-3322
-
(2009)
Nano Lett.
, vol.9
, pp. 3318-3322
-
-
Ohno, Y.1
Maehashi, K.2
Yamashiro, Y.3
Matsumoto, K.4
-
24
-
-
71149111873
-
-
Heller, I., Chatoor, S., Männik, J., Zevenbergen, M. A. G., Dekker, C., and Lemay, S. G. Phys. Status Solidi RRL 2009, 3, 190
-
(2009)
Phys. Status Solidi RRL
, vol.3
, pp. 190
-
-
Heller, I.1
Chatoor, S.2
Männik, J.3
Zevenbergen, M.A.G.4
Dekker, C.5
Lemay, S.G.6
-
25
-
-
78650078755
-
-
We have observed similar electrostatic gating effects as a function of ionic strength for suspended SWNT transistors (cf., Figure 4)
-
We have observed similar electrostatic gating effects as a function of ionic strength for suspended SWNT transistors (cf., Figure 4).
-
-
-
-
26
-
-
78650085987
-
-
2 is covered by a single layer of graphene. Because the graphene is impermeable to even monatomic He-gas, (27) it is not at all obvious how the underlying silanol groups are ionized, which also substantiates the possibility of ionizable groups on graphene itself
-
2 is covered by a single layer of graphene. Because the graphene is impermeable to even monatomic He-gas, (27) it is not at all obvious how the underlying silanol groups are ionized, which also substantiates the possibility of ionizable groups on graphene itself.
-
-
-
-
27
-
-
52049113441
-
-
Bunch, J. S., Verbridge, S. S., Alden, J. S., van der Zande, A. M., Parpia, J. M., Craighead, H. G., and McEuen, P. L. Nano Lett. 2008, 8, 2458-2462
-
(2008)
Nano Lett.
, vol.8
, pp. 2458-2462
-
-
Bunch, J.S.1
Verbridge, S.S.2
Alden, J.S.3
Van Der Zande, A.M.4
Parpia, J.M.5
Craighead, H.G.6
McEuen, P.L.7
-
28
-
-
27144533161
-
-
Lee, Y. S., Nardelli, M. B., and Marzani, N. Phys. Rev. Lett. 2005, 95 076804
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 076804
-
-
Lee, Y.S.1
Nardelli, M.B.2
Marzani, N.3
-
29
-
-
12844276553
-
-
Heller, I., Kong, J., Heering, H. A., Williams, K. A., Lemay, S. G., and Dekker, C. Nano Lett. 2005, 5, 137-142
-
(2005)
Nano Lett.
, vol.5
, pp. 137-142
-
-
Heller, I.1
Kong, J.2
Heering, H.A.3
Williams, K.A.4
Lemay, S.G.5
Dekker, C.6
-
30
-
-
34547310313
-
-
Ishigami, M., Chen, J. H., Cullen, W. G., Fuhrer, M. S., and Williams, E. D. Nano Lett. 2007, 7, 1643-1648
-
(2007)
Nano Lett.
, vol.7
, pp. 1643-1648
-
-
Ishigami, M.1
Chen, J.H.2
Cullen, W.G.3
Fuhrer, M.S.4
Williams, E.D.5
-
31
-
-
78650131711
-
-
This particular SWNT has a very small band gap such that the electronic transport properties display strong similarities to those of graphene (cf. Figure 1 e)
-
This particular SWNT has a very small band gap such that the electronic transport properties display strong similarities to those of graphene (cf. Figure 1 e).
-
-
-
-
32
-
-
52749093732
-
-
Chou, A., Bocking, T., Liu, R., Singh, N. K., Moran, G., and Gooding, J. J. J. Phys. Chem. C 2008, 112, 14131-14138
-
(2008)
J. Phys. Chem. C
, vol.112
, pp. 14131-14138
-
-
Chou, A.1
Bocking, T.2
Liu, R.3
Singh, N.K.4
Moran, G.5
Gooding, J.J.6
-
36
-
-
78650109525
-
-
B T)
-
B T).
-
-
-
-
38
-
-
2342629497
-
-
Dürkop, T., Getty, S. A., Cobas, E., and Fuhrer, M. S. Nano Lett. 2004, 4, 35-39
-
(2004)
Nano Lett.
, vol.4
, pp. 35-39
-
-
Dürkop, T.1
Getty, S.A.2
Cobas, E.3
Fuhrer, M.S.4
-
39
-
-
78650083787
-
-
To calculate the curves in Figure 7 b, an exponential band-bending profile with typical length-scale of 1 nm, independent of salt concentration, was used. See ref 8
-
To calculate the curves in Figure 7 b, an exponential band-bending profile with typical length-scale of 1 nm, independent of salt concentration, was used. See ref 8.
-
-
-
-
40
-
-
78650102617
-
-
note
-
lg curves for SWNTs in ref 13, we assumed that the band-bending profile at the contacts is given by the potential drop in the double layer. Thus, if the Debye length is longer at low salt, the Schottky barriers are wider, which would also lead to a decrease in p-type and n-type conductance. We, however, disregard this mechanism, because this Schottky-barrier-width effect is band gap dependent and should largely disappear for graphene, which we do not observe experimentally. We speculate that the reason for the absence of this effect is that, first, most of the electrostatic potential drop at the contact occurs over the thin Stern layer, which is independent of salt concentration. Secondly, the average position at which electrons tunnel from the metal into the SWNT is not likely to be exactly at the point where SWNT, metal, and electrolyte ions meet. (41) If the average entry point lies buried under the metal, the contribution of the potential profile in solution to the average Schottky-barrier width should decrease.
-
-
-
-
41
-
-
0037104354
-
-
Nakanishi, T., Bachtold, A., and Dekker, C. Phys. Rev. B 2002, 66 073307
-
(2002)
Phys. Rev. B
, vol.66
, pp. 073307
-
-
Nakanishi, T.1
Bachtold, A.2
Dekker, C.3
-
42
-
-
0022133014
-
-
Van den Berg, A., Bergveld, P., Reinhoudt, D., and Sudholter, E. Sens. Actuators 1985, 8, 129
-
(1985)
Sens. Actuators
, vol.8
, pp. 129
-
-
Van Den Berg, A.1
Bergveld, P.2
Reinhoudt, D.3
Sudholter, E.4
-
43
-
-
78650158784
-
-
Although we have also measured transport in graphene transistors at different pH, we observed a difference in hysteresis at different pH. Consequently, the relative curve shapes cannot be compared
-
Although we have also measured transport in graphene transistors at different pH, we observed a difference in hysteresis at different pH. Consequently, the relative curve shapes cannot be compared.
-
-
-
-
44
-
-
36748999383
-
-
Stern, E., Wagner, R., Sigworth, F. J., Breaker, R., Fahmy, T. M., and Reed, M. A. Nano Lett. 2007, 7, 3405-3409
-
(2007)
Nano Lett.
, vol.7
, pp. 3405-3409
-
-
Stern, E.1
Wagner, R.2
Sigworth, F.J.3
Breaker, R.4
Fahmy, T.M.5
Reed, M.A.6
|