-
1
-
-
79957564843
-
Traumatic optic neuropathy: An evolving understanding
-
e2
-
Steinsapir KD, Goldberg RA. Traumatic optic neuropathy: an evolving understanding. Am J Ophthalmol. 2011;151:928–933.e2.
-
(2011)
Am J Ophthalmol
, vol.151
, pp. 928-933
-
-
Steinsapir, K.D.1
Goldberg, R.A.2
-
2
-
-
54449090234
-
Traumatic optic neuropathy therapy: An update of clinical and experimental studies
-
Wu N, Yin ZQ, Wang Y. Traumatic optic neuropathy therapy: an update of clinical and experimental studies. J Int Med Res. 2008;36:883–889.
-
(2008)
J Int Med Res
, vol.36
, pp. 883-889
-
-
Wu, N.1
Yin, Z.Q.2
Wang, Y.3
-
5
-
-
0028310855
-
Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats
-
Berkelaar M, Clarke DB, Wang YC, Bray GM, Aguayo AJ. Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. J Neurosci. 1994;14:4368–4374.
-
(1994)
J Neurosci
, vol.14
, pp. 4368-4374
-
-
Berkelaar, M.1
Clarke, D.B.2
Wang, Y.C.3
Bray, G.M.4
Aguayo, A.J.5
-
6
-
-
79960029141
-
Ocular neuroprotection by siRNA targeting caspase-2
-
Ahmed Z, Kalinski H, Berry M, et al. Ocular neuroprotection by siRNA targeting caspase-2. Cell Death Dis. 2011;2:e173.
-
(2011)
Cell Death Dis
, vol.2
-
-
Ahmed, Z.1
Kalinski, H.2
Berry, M.3
-
7
-
-
84871676640
-
Pharmacological inhibition of caspase-2 protects axotomised retinal ganglion cells from apoptosis in adult rats
-
Vigneswara V, Berry M, Logan A, Ahmed Z. Pharmacological inhibition of caspase-2 protects axotomised retinal ganglion cells from apoptosis in adult rats. PLoS One. 2012;7:e53473.
-
(2012)
Plos One
, vol.7
-
-
Vigneswara, V.1
Berry, M.2
Logan, A.3
Ahmed, Z.4
-
8
-
-
79960679121
-
Involvement of caspase-6 and caspase-8 in neuronal apoptosis and the regenerative failure of injured retinal ganglion cells
-
Monnier PP, D’Onofrio PM, Magharious M, et al. Involvement of caspase-6 and caspase-8 in neuronal apoptosis and the regenerative failure of injured retinal ganglion cells. J Neurosci. 2011;31:10494–10505.
-
(2011)
J Neurosci
, vol.31
, pp. 10494-10505
-
-
Monnier, P.P.1
D’Onofrio, P.M.2
Magharious, M.3
-
9
-
-
0029738162
-
Long-term survival of retinal ganglion cells following optic nerve section in adult bcl-2 transgenic mice
-
Cenni MC, Bonfanti L, Martinou JC, Ratto GM, Strettoi E, Maffei L. Long-term survival of retinal ganglion cells following optic nerve section in adult bcl-2 transgenic mice. Eur J Neurosci. 1996;8:1735–1745.
-
(1996)
Eur J Neurosci
, vol.8
, pp. 1735-1745
-
-
Cenni, M.C.1
Bonfanti, L.2
Martinou, J.C.3
Ratto, G.M.4
Strettoi, E.5
Maffei, L.6
-
10
-
-
0036616874
-
Bcl-2 overexpression does not enhance in vivo axonal regeneration of retinal ganglion cells after peripheral nerve transplantation in adult mice
-
Inoue T, Hosokawa M, Morigiwa K, Ohashi Y, Fukuda Y. Bcl-2 overexpression does not enhance in vivo axonal regeneration of retinal ganglion cells after peripheral nerve transplantation in adult mice. J Neurosci. 2002;22:4468–4477.
-
(2002)
J Neurosci
, vol.22
, pp. 4468-4477
-
-
Inoue, T.1
Hosokawa, M.2
Morigiwa, K.3
Ohashi, Y.4
Fukuda, Y.5
-
11
-
-
14044260099
-
Long-term in vivo inhibition of CNS neurodegeneration by Bcl-XL gene transfer
-
Malik JM, Shevtsova Z, Bahr M, Kugler S. Long-term in vivo inhibition of CNS neurodegeneration by Bcl-XL gene transfer. Mol Ther. 2005;11:373–381.
-
(2005)
Mol Ther
, vol.11
, pp. 373-381
-
-
Malik, J.M.1
Shevtsova, Z.2
Bahr, M.3
Kugler, S.4
-
12
-
-
52649142041
-
Regeneration of axons in the visual system
-
Berry M, Ahmed Z, Lorber B, Douglas M, Logan A. Regeneration of axons in the visual system. Restor Neurol Neurosci. 2008;26:147–174.
-
(2008)
Restor Neurol Neurosci
, vol.26
, pp. 147-174
-
-
Berry, M.1
Ahmed, Z.2
Lorber, B.3
Douglas, M.4
Logan, A.5
-
13
-
-
84897584374
-
Rho/ROCK pathway and neural regeneration: A potential therapeutic target for central nervous system and optic nerve damage
-
Tan HB, Zhong YS, Cheng Y, Shen X. Rho/ROCK pathway and neural regeneration: a potential therapeutic target for central nervous system and optic nerve damage. Int J Ophthalmol. 2011;4:652–657.
-
(2011)
Int J Ophthalmol
, vol.4
, pp. 652-657
-
-
Tan, H.B.1
Zhong, Y.S.2
Cheng, Y.3
Shen, X.4
-
14
-
-
33746308062
-
Glial inhibition of CNS axon regeneration
-
Yiu G, He Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci. 2006;7:617–627.
-
(2006)
Nat Rev Neurosci
, vol.7
, pp. 617-627
-
-
Yiu, G.1
He, Z.2
-
15
-
-
0033198033
-
Inactivation of Rho signaling pathway promotes CNS axon regeneration
-
Lehmann M, Fournier A, Selles-Navarro I, et al. Inactivation of Rho signaling pathway promotes CNS axon regeneration. J Neurosci. 1999;19:7537–7547.
-
(1999)
J Neurosci
, vol.19
, pp. 7537-7547
-
-
Lehmann, M.1
Fournier, A.2
Selles-Navarro, I.3
-
16
-
-
68349104302
-
ROCK inhibition promotes adult retinal ganglion cell neurite outgrowth only in the presence of growth promoting factors
-
Ahmed Z, Berry M, Logan A. ROCK inhibition promotes adult retinal ganglion cell neurite outgrowth only in the presence of growth promoting factors. Mol Cell Neurosci. 2009;42:128–133.
-
(2009)
Mol Cell Neurosci
, vol.42
, pp. 128-133
-
-
Ahmed, Z.1
Berry, M.2
Logan, A.3
-
17
-
-
0027522462
-
Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo
-
Mey J, Thanos S. Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res. 1993;602:304–317.
-
(1993)
Brain Res
, vol.602
, pp. 304-317
-
-
Mey, J.1
Thanos, S.2
-
18
-
-
0034285194
-
Axonal regeneration of retinal ganglion cells: Effect of trophic factors
-
Yip HK, So KF. Axonal regeneration of retinal ganglion cells: effect of trophic factors. Prog Retin Eye Res. 2000;19:559–575.
-
(2000)
Prog Retin Eye Res
, vol.19
, pp. 559-575
-
-
Yip, H.K.1
So, K.F.2
-
19
-
-
73049102435
-
Optic nerve and vitreal inflammation are both RGC neuroprotective but only the latter is RGC axogenic
-
Ahmed Z, Aslam M, Lorber B, Suggate EL, Berry M, Logan A. Optic nerve and vitreal inflammation are both RGC neuroprotective but only the latter is RGC axogenic. Neurobiol Dis. 2010;37:441–454.
-
(2010)
Neurobiol Dis
, vol.37
, pp. 441-454
-
-
Ahmed, Z.1
Aslam, M.2
Lorber, B.3
Suggate, E.L.4
Berry, M.5
Logan, A.6
-
20
-
-
31544478557
-
Neurotrophic factor synergy is required for neuronal survival and disinhibited axon regeneration after CNS injury
-
Logan A, Ahmed Z, Baird A, Gonzalez AM, Berry M. Neurotrophic factor synergy is required for neuronal survival and disinhibited axon regeneration after CNS injury. Brain. 2006;129:490–502.
-
(2006)
Brain
, vol.129
, pp. 490-502
-
-
Logan, A.1
Ahmed, Z.2
Baird, A.3
Gonzalez, A.M.4
Berry, M.5
-
21
-
-
36749004288
-
Switches mature RGCs to a regenerative state following inflammatory stimulation
-
Muller A, Hauk TG, Fischer D. Astrocyte-derived CNTF switches mature RGCs to a regenerative state following inflammatory stimulation. Brain. 2007;130:3308–3320.
-
(2007)
Brain
, vol.130
, pp. 3308-3320
-
-
Muller, A.1
Hauk, T.G.2
Fischer, D.3
Astrocyte-Derived, C.4
-
22
-
-
70449640540
-
Neuroprotective and axon growth-promoting effects following inflammatory stimulation on mature retinal ganglion cells in mice depend on ciliary neurotrophic factor and leukemia inhibitory factor
-
Leibinger M, Muller A, Andreadaki A, Hauk TG, Kirsch M, Fischer D. Neuroprotective and axon growth-promoting effects following inflammatory stimulation on mature retinal ganglion cells in mice depend on ciliary neurotrophic factor and leukemia inhibitory factor. J Neurosci. 2009;29:14334–14341.
-
(2009)
J Neurosci
, vol.29
, pp. 14334-14341
-
-
Leibinger, M.1
Muller, A.2
Readaki, A.3
Hauk, T.G.4
Kirsch, M.5
Fischer, D.6
-
23
-
-
84901452070
-
Combined suppression of CASP2 and CASP6 protects retinal ganglion cells from apoptosis and promotes axon regeneration through CNTF-mediated JAK/STAT signalling
-
Vigneswara V, Akpan N, Berry M, Logan A, Troy CM, Ahmed Z. Combined suppression of CASP2 and CASP6 protects retinal ganglion cells from apoptosis and promotes axon regeneration through CNTF-mediated JAK/STAT signalling. Brain. 2014; 137:1656–1675.
-
(2014)
Brain
, vol.137
, pp. 1656-1675
-
-
Vigneswara, V.1
Akpan, N.2
Berry, M.3
Logan, A.4
Troy, C.M.5
Ahmed, Z.6
-
24
-
-
70350640206
-
Activated retinal glia promote neurite outgrowth of retinal ganglion cells via apolipoprotein
-
Lorber B, Berry M, Douglas MR, Nakazawa T, Logan A. Activated retinal glia promote neurite outgrowth of retinal ganglion cells via apolipoprotein E. J Neurosci Res. 2009;87: 2645–2652.
-
(2009)
E. J Neurosci Res
, vol.87
, pp. 2645-2652
-
-
Lorber, B.1
Berry, M.2
Douglas, M.R.3
Nakazawa, T.4
Logan, A.5
-
25
-
-
81955167997
-
Activated retinal glia mediated axon regeneration in experimental glaucoma
-
Lorber B, Guidi A, Fawcett JW, Martin KR. Activated retinal glia mediated axon regeneration in experimental glaucoma. Neurobiol Dis. 2012;45:243–252.
-
(2012)
Neurobiol Dis
, vol.45
, pp. 243-252
-
-
Lorber, B.1
Guidi, A.2
Fawcett, J.W.3
Martin, K.R.4
-
26
-
-
84867395898
-
Promoting optic nerve regeneration
-
Fischer D, Leibinger M. Promoting optic nerve regeneration. Prog Retin Eye Res. 2012;31:688–701.
-
(2012)
Prog Retin Eye Res
, vol.31
, pp. 688-701
-
-
Fischer, D.1
Leibinger, M.2
-
27
-
-
70349884323
-
KLF family members regulate intrinsic axon regeneration ability
-
Moore DL, Blackmore MG, Hu Y, et al. KLF family members regulate intrinsic axon regeneration ability. Science. 2009;326: 298–301.
-
(2009)
Science
, vol.326
, pp. 298-301
-
-
Moore, D.L.1
Blackmore, M.G.2
Hu, Y.3
-
29
-
-
77950858614
-
PTEN/mTOR and axon regeneration
-
Park KK, Liu K, Hu Y, Kanter JL, He Z. PTEN/mTOR and axon regeneration. Exp Neurol. 2010;223:45–50.
-
(2010)
Exp Neurol
, vol.223
, pp. 45-50
-
-
Park, K.K.1
Liu, K.2
Hu, Y.3
Kanter, J.L.4
He, Z.5
-
30
-
-
67349217986
-
Molecular mechanisms of mTOR-mediated translational control
-
Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol. 2009;10:307–318.
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, pp. 307-318
-
-
Ma, X.M.1
Blenis, J.2
-
31
-
-
55849108858
-
Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway
-
Park KK, Liu K, Hu Y, et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science. 2008;322:963–966.
-
(2008)
Science
, vol.322
, pp. 963-966
-
-
Park, K.K.1
Liu, K.2
Hu, Y.3
-
32
-
-
17644415297
-
Cell biology. GSK-3beta and microtubule assembly in axons
-
Zhou FQ, Snider WD. Cell biology. GSK-3beta and microtubule assembly in axons. Science. 2005;308:211–214.
-
(2005)
Science
, vol.308
, pp. 211-214
-
-
Zhou, F.Q.1
Snider, W.D.2
-
33
-
-
77956239734
-
Mammalian target of rapamycin (MTOR) activation increases axonal growth capacity of injured peripheral nerves
-
Abe N, Borson SH, Gambello MJ, Wang F, Cavalli V. Mammalian target of rapamycin (mTOR) activation increases axonal growth capacity of injured peripheral nerves. J Biol Chem. 2010;285:28034–28043.
-
(2010)
J Biol Chem
, vol.285
, pp. 28034-28043
-
-
Abe, N.1
Borson, S.H.2
Gambello, M.J.3
Wang, F.4
Cavalli, V.5
-
34
-
-
77954480424
-
PTEN inhibitionto facilitate intrinsic regenerative outgrowth of adult peripheral axons
-
Christie KJ, Webber CA, Martinez JA, Singh B, Zochodne DW. PTEN inhibition to facilitate intrinsic regenerative outgrowth of adult peripheral axons. J Neurosci. 2010;30:9306–9315.
-
(2010)
J Neurosci
, vol.30
, pp. 9306-9315
-
-
Christie, K.J.1
Webber, C.A.2
Martinez, J.A.3
Singh, B.4
Zochodne, D.W.5
-
35
-
-
77956187905
-
PTEN deletion enhances the regenerative ability of adult corticospinal neurons
-
Liu K, Lu Y, Lee JK, et al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci. 2010;13:1075–1081.
-
(2010)
Nat Neurosci
, vol.13
, pp. 1075-1081
-
-
Liu, K.1
Lu, Y.2
Lee, J.K.3
-
36
-
-
84859778293
-
Sabatini DM. MTOR signaling in growth control and disease
-
Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149:274–293.
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
-
37
-
-
10044276783
-
Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/ TSC2 tumor suppressor complex
-
Brugarolas J, Lei K, Hurley RL, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/ TSC2 tumor suppressor complex. Genes Dev. 2004;18:2893–2904.
-
(2004)
Genes Dev
, vol.18
, pp. 2893-2904
-
-
Brugarolas, J.1
Lei, K.2
Hurley, R.L.3
-
38
-
-
0034982971
-
TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth
-
Gao X, Pan D. TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev. 2001;15:1383–1392.
-
(2001)
Genes Dev
, vol.15
, pp. 1383-1392
-
-
Gao, X.1
Pan, D.2
-
39
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115: 577–590.
-
(2003)
Cell
, vol.115
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.L.3
-
40
-
-
15444362044
-
The stress-inducted proteins RTP801 and RTP801L are negative regulators of the mammalian target of rapamycin pathway
-
Corradetti MN, Inoki K, Guan KL. The stress-inducted proteins RTP801 and RTP801L are negative regulators of the mammalian target of rapamycin pathway. J Biol Chem. 2005;280: 9769–9772.
-
(2005)
J Biol Chem
, vol.280
, pp. 9769-9772
-
-
Corradetti, M.N.1
Inoki, K.2
Guan, K.L.3
-
41
-
-
38349056675
-
Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling
-
DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev. 2008; 22:239–251.
-
(2008)
Genes Dev
, vol.22
, pp. 239-251
-
-
Deyoung, M.P.1
Horak, P.2
Sofer, A.3
Sgroi, D.4
Ellisen, L.W.5
-
42
-
-
79952263151
-
RTP801/REDD1 regulates the timing of cortical neurogenesis and neuron migration
-
Malagelada C, Lopez-Toledano MA, Willett RT, Jin ZH, Shelanski ML, Greene LA. RTP801/REDD1 regulates the timing of cortical neurogenesis and neuron migration. J Neurosci. 2011;31:3186–3196.
-
(2011)
J Neurosci
, vol.31
, pp. 3186-3196
-
-
Malagelada, C.1
Lopez-Toledano, M.A.2
Willett, R.T.3
Jin, Z.H.4
Shelanski, M.L.5
Greene, L.A.6
-
43
-
-
0036118562
-
Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis
-
Shoshani T, Faerman A, Mett I, et al. Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Mol Cell Biol. 2002;22:2283–2293.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 2283-2293
-
-
Shoshani, T.1
Faerman, A.2
Mett, I.3
-
44
-
-
84883661845
-
RTP801 immunoreactivity in retinal ganglion cells and its down-regulation in cultured cells protect them from light and cobalt chloride
-
del Olmo-Aguado S, Nunez-Alvarez C, Ji D, Manso AG, Osborne NN. RTP801 immunoreactivity in retinal ganglion cells and its down-regulation in cultured cells protect them from light and cobalt chloride. Brain Res Bull. 2013;98:132–144.
-
(2013)
Brain Res Bull
, vol.98
, pp. 132-144
-
-
del Olmo-Aguado, S.1
Nunez-Alvarez, C.2
Ji, D.3
Manso, A.G.4
Osborne, N.N.5
-
45
-
-
4644334830
-
Inhibition of oxygen-induced retinopathy in RTP801-deficient mice
-
Brafman A, Mett I, Shafir M, et al. Inhibition of oxygen-induced retinopathy in RTP801-deficient mice. Invest Ophthalmol Vis Sci. 2004;45:3796–3805.
-
(2004)
Invest Ophthalmol Vis Sci
, vol.45
, pp. 3796-3805
-
-
Brafman, A.1
Mett, I.2
Shafir, M.3
-
46
-
-
84872175978
-
Dose-ranging evaluation of intravitreal siRNA PF-04523655 for diabetic macular edema (The DEGAS study)
-
Nguyen QD, Schachar RA, Nduaka CI, et al. Dose-ranging evaluation of intravitreal siRNA PF-04523655 for diabetic macular edema (the DEGAS study). Invest Ophthalmol Vis Sci. 2012;53:7666–7674.
-
(2012)
Invest Ophthalmol Vis Sci
, vol.53
, pp. 7666-7674
-
-
Nguyen, Q.D.1
Schachar, R.A.2
Nduaka, C.I.3
-
47
-
-
84895748628
-
RTP801 gene expression is differentially upregulated in retinopathy and is silenced by PF-04523655, a 19-Mer siRNA directed against RTP 801
-
Rittenhouse KD, Johnson TR, Vicini P, et al. RTP801 gene expression is differentially upregulated in retinopathy and is silenced by PF-04523655, a 19-Mer siRNA directed against RTP 801. Invest Ophthalmol Vis Sci. 2014;55:1232–1240.
-
(2014)
Invest Ophthalmol Vis Sci
, vol.55
, pp. 1232-1240
-
-
Rittenhouse, K.D.1
Johnson, T.R.2
Vicini, P.3
-
48
-
-
84864855385
-
Phase 1 doseescalation study of a siRNA targeting the RTP801 gene in agerelated macular degeneration patients
-
Nguyen QD, Schachar RA, Nduaka CI, et al. Phase 1 doseescalation study of a siRNA targeting the RTP801 gene in agerelated macular degeneration patients. Eye (Lond). 2012;26: 1099–1105.
-
(2012)
Eye (Lond)
, vol.26
, pp. 1099-1105
-
-
Nguyen, Q.D.1
Schachar, R.A.2
Nduaka, C.I.3
-
49
-
-
84862173320
-
Retina expression and cross-species validation of gene silencing by PF-655, a small interfering RNA against RTP801 for the treatment of ocular disease
-
Lee DU, Huang W, Rittenhouse KD, Jessen B. Retina expression and cross-species validation of gene silencing by PF-655, a small interfering RNA against RTP801 for the treatment of ocular disease. J Ocul Pharmacol Ther. 2012; 28:222–230.
-
(2012)
J Ocul Pharmacol Ther
, vol.28
, pp. 222-230
-
-
Lee, D.U.1
Huang, W.2
Rittenhouse, K.D.3
Jessen, B.4
-
50
-
-
84865678868
-
Evaluation of the siRNA PF-04523655 versus ranibizumab for the treatment of neovascular age-related macular degeneration (MONET Study)
-
Nguyen QD, Schachar RA, Nduaka CI, et al. Evaluation of the siRNA PF-04523655 versus ranibizumab for the treatment of neovascular age-related macular degeneration (MONET Study). Ophthalmology. 2012;119:1867–1873.
-
(2012)
Ophthalmology
, vol.119
, pp. 1867-1873
-
-
Nguyen, Q.D.1
Schachar, R.A.2
Nduaka, C.I.3
-
51
-
-
0038606999
-
Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells
-
Czauderna F, Fechtner M, Dames S, et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 2003;31:2705–2716.
-
(2003)
Nucleic Acids Res
, vol.31
, pp. 2705-2716
-
-
Czauderna, F.1
Fechtner, M.2
Dames, S.3
-
52
-
-
6944238701
-
Small interfering RNA Targeting Fas protects mice against renal ischemia-reperfusion injury
-
Hamar P, Song E, Kokeny G, Chen A, Ouyang N, Lieberman J. Small interfering RNA targeting Fas protects mice against renal ischemia-reperfusion injury. Proc Natl Acad Sci U S A. 2004; 101:14883–14888.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 14883-14888
-
-
Hamar, P.1
Song, E.2
Kokeny, G.3
Chen, A.4
Ouyang, N.5
Lieberman, J.6
-
53
-
-
0033301201
-
Optic nerve regeneration after intravitreal peripheral nerve implants: Trajectories of axons regrowing through the optic chiasm into the optic tracts
-
Berry M, Carlile J, Hunter A, Tsang W, Rosenstiel P, Sievers J. Optic nerve regeneration after intravitreal peripheral nerve implants: trajectories of axons regrowing through the optic chiasm into the optic tracts. J Neurocytol. 1999;28:721–741.
-
(1999)
J Neurocytol
, vol.28
, pp. 721-741
-
-
Berry, M.1
Carlile, J.2
Hunter, A.3
Tsang, W.4
Rosenstiel, P.5
Sievers, J.6
-
54
-
-
84876082764
-
Pigment epithelium-derived factor is retinal ganglion cell neuroprotective and axogenic after optic nerve crush injury
-
Vigneswara V, Berry M, Logan A, Ahmed Z. Pigment epithelium-derived factor is retinal ganglion cell neuroprotective and axogenic after optic nerve crush injury. Invest Ophthalmol Vis Sci. 2013;54:2624–2633.
-
(2013)
Invest Ophthalmol Vis Sci
, vol.54
, pp. 2624-2633
-
-
Vigneswara, V.1
Berry, M.2
Logan, A.3
Ahmed, Z.4
-
55
-
-
84887853164
-
Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury
-
Mead B, Logan A, Berry M, Leadbeater W, Scheven BA. Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury. Invest Ophthalmol Vis Sci. 2013; 54:7544–7556.
-
(2013)
Invest Ophthalmol Vis Sci
, vol.54
, pp. 7544-7556
-
-
Mead, B.1
Logan, A.2
Berry, M.3
Leadbeater, W.4
Scheven, B.A.5
-
56
-
-
84908409401
-
Comparative evaluation of methods for estimating retinal ganglion cell loss in retinal sections and wholemounts
-
Mead B, Thompson A, Scheven BA, Logan A, Berry M, Leadbeater W. Comparative evaluation of methods for estimating retinal ganglion cell loss in retinal sections and wholemounts. PLoS One. 2014;9:e110612.
-
(2014)
Plos One
, vol.9
-
-
Mead, B.1
Thompson, A.2
Scheven, B.A.3
Logan, A.4
Berry, M.5
Leadbeater, W.6
-
57
-
-
0028032526
-
GAP-43 immunoreactivity and axon regeneration in retinal ganglion cells of the rat
-
Schaden H, Stuermer CA, Bahr M. GAP-43 immunoreactivity and axon regeneration in retinal ganglion cells of the rat. J Neurobiol. 1994;25:1570–1578.
-
(1994)
J Neurobiol
, vol.25
, pp. 1570-1578
-
-
Schaden, H.1
Stuermer, C.A.2
Bahr, M.3
-
58
-
-
0028928357
-
The S100 protein family: History, function, and expression
-
Zimmer DB, Cornwall EH, Landar A, Song W. The S100 protein family: history, function, and expression. Brain Res Bull. 1995;37:417–429.
-
(1995)
Brain Res Bull
, vol.37
, pp. 417-429
-
-
Zimmer, D.B.1
Cornwall, E.H.2
Landar, A.3
Song, W.4
-
59
-
-
62749164540
-
Optimisation of siRNAmediated RhoA silencing in neuronal cultures
-
Suggate EL, Ahmed Z, Read ML, et al. Optimisation of siRNAmediated RhoA silencing in neuronal cultures. Mol Cell Neurosci. 2009;40:451–462.
-
(2009)
Mol Cell Neurosci
, vol.40
, pp. 451-462
-
-
Suggate, E.L.1
Ahmed, Z.2
Read, M.L.3
-
60
-
-
41649115210
-
Sequence- and targetindependent angiogenesis suppression by siRNA via TLR 3
-
Kleinman ME, Yamada K, Takeda A, et al. Sequence- and targetindependent angiogenesis suppression by siRNA via TLR 3. Nature. 2008;452:591–597.
-
(2008)
Nature
, vol.452
, pp. 591-597
-
-
Kleinman, M.E.1
Yamada, K.2
Takeda, A.3
-
61
-
-
44649137559
-
Identification of RNA sequence motifs stimulating sequence-specific TLR8- dependent immune responses
-
Forsbach A, Nemorin JG, Montino C, et al. Identification of RNA sequence motifs stimulating sequence-specific TLR8- dependent immune responses. J Immunol. 2008;180:3729–3738.
-
(2008)
J Immunol
, vol.180
, pp. 3729-3738
-
-
Forsbach, A.1
Nemorin, J.G.2
Montino, C.3
-
62
-
-
84941030603
-
-
Keffenmann H, Ransom BR, eds. Neuroglia. Oxford, UK: Oxford University Press
-
Riechenbach A, Wolburg H. Astrocytes and ependymal glia. In: Keffenmann H, Ransom BR, eds. Neuroglia. Oxford, UK: Oxford University Press; 2013.
-
(2013)
Astrocytes and Ependymal Glia
-
-
Riechenbach, A.1
Wolburg, H.2
-
63
-
-
0035134921
-
S100B expression in and effects on microglia
-
Adami C, Sorci G, Blasi E, Agneletti AL, Bistoni F, Donato R. S100B expression in and effects on microglia. Glia. 2001;33: 131–142.
-
(2001)
Glia
, vol.33
, pp. 131-142
-
-
Adami, C.1
Sorci, G.2
Blasi, E.3
Agneletti, A.L.4
Bistoni, F.5
Donato, R.6
-
64
-
-
83555174832
-
Sustained axon regeneration induced by co-deletion of PTEN and SOCS 3
-
Sun F, Park KK, Belin S, et al. Sustained axon regeneration induced by co-deletion of PTEN and SOCS 3. Nature. 2011; 480:372–375.
-
(2011)
Nature
, vol.480
, pp. 372-375
-
-
Sun, F.1
Park, K.K.2
Belin, S.3
-
65
-
-
84861872372
-
Full-length axon regeneration in the adult mouse optic nerve and partial recovery of simple visual behaviors
-
de Lima S, Koriyama Y, Kurimoto T, et al. Full-length axon regeneration in the adult mouse optic nerve and partial recovery of simple visual behaviors. Proc Natl Acad Sci U S A. 2012;109:9149–9154.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 9149-9154
-
-
de Lima, S.1
Koriyama, Y.2
Kurimoto, T.3
-
66
-
-
84880851211
-
Possible involvement of TLRs and hemichannels in stress-induced CNS dysfunction via mastocytes, and glia activation
-
Aguirre A, Maturana CJ, Harcha PA, Saez JC. Possible involvement of TLRs and hemichannels in stress-induced CNS dysfunction via mastocytes, and glia activation. Mediators Inflamm. 2013;2013:893521.
-
(2013)
Mediators Inflamm. 2013
-
-
Aguirre, A.1
Maturana, C.J.2
Harcha, P.A.3
Saez, J.C.4
-
67
-
-
40549095400
-
Different factors promote axonal regeneration of adult rat retinal ganglion cells after lens injury and intravitreal peripheral nerve grafting
-
Lorber B, Berry M, Logan A. Different factors promote axonal regeneration of adult rat retinal ganglion cells after lens injury and intravitreal peripheral nerve grafting. J Neurosci Res. 2008;86:894–903.
-
(2008)
J Neurosci Res
, vol.86
, pp. 894-903
-
-
Lorber, B.1
Berry, M.2
Logan, A.3
-
68
-
-
33749166640
-
RTP801 is elevated in Parkinson brain substantia nigral neurons and mediates death in cellular models of Parkinson’s disease by a mechanism involving mammalian target of rapamycin inactivation
-
Malagelada C, Ryu EJ, Biswas SC, Jackson-Lewis V, Greene LA. RTP801 is elevated in Parkinson brain substantia nigral neurons and mediates death in cellular models of Parkinson’s disease by a mechanism involving mammalian target of rapamycin inactivation. J Neurosci. 2006;26:9996–10005.
-
(2006)
J Neurosci
, vol.26
, pp. 9996-10005
-
-
Malagelada, C.1
Ryu, E.J.2
Biswas, S.C.3
Jackson-Lewis, V.4
Greene, L.A.5
-
69
-
-
65949109048
-
Profiling RNA interference (RNAi)-mediated toxicity in neural cultures for effective short interfering RNA design
-
Read ML, Mir S, Spice R, et al. Profiling RNA interference (RNAi)-mediated toxicity in neural cultures for effective short interfering RNA design. J Gene Med. 2009;11:523–534.
-
(2009)
J Gene Med
, vol.11
, pp. 523-534
-
-
Read, M.L.1
Mir, S.2
Spice, R.3
-
70
-
-
84925296648
-
Subtype-specific regeneration of retinal ganglion cells following axotomy: Effects of osteopontin and mTOR signaling
-
Duan X, Qiao M, Bei F, Kim IJ, He Z, Sanes JR. Subtype-specific regeneration of retinal ganglion cells following axotomy: effects of osteopontin and mTOR signaling. Neuron. 2015; 85:1244–1256.
-
(2015)
Neuron
, vol.85
, pp. 1244-1256
-
-
Duan, X.1
Qiao, M.2
Bei, F.3
Kim, I.J.4
He, Z.5
Sanes, J.R.6
-
71
-
-
0037186139
-
Retinal ganglion cells do not extend axons by default: Promotion by neurotrophic signaling and electrical activity
-
Goldberg JL, Espinosa JS, Xu Y, Davidson N, Kovacs GT, Barres BA. Retinal ganglion cells do not extend axons by default: promotion by neurotrophic signaling and electrical activity. Neuron. 2002;33:689–702.
-
(2002)
Neuron
, vol.33
, pp. 689-702
-
-
Goldberg, J.L.1
Espinosa, J.S.2
Xu, Y.3
Davidson, N.4
Kovacs, G.T.5
Barres, B.A.6
-
72
-
-
79955961697
-
Morphometric changes in the rat optic nerve following short-term intermittent elevations in intraocular pressure
-
Joos KM, Li C, Sappington RM. Morphometric changes in the rat optic nerve following short-term intermittent elevations in intraocular pressure. Invest Ophthalmol Vis Sci. 2010;51: 6431–6440.
-
(2010)
Invest Ophthalmol Vis Sci
, vol.51
, pp. 6431-6440
-
-
Joos, K.M.1
Li, C.2
Sappington, R.M.3
-
73
-
-
84859494283
-
Role of mTOR in neuroprotection and axon regeneration after inflammatory stimulation
-
Leibinger M, Andreadaki A, Fischer D. Role of mTOR in neuroprotection and axon regeneration after inflammatory stimulation. Neurobiol Dis. 2012;46:314–324.
-
(2012)
Neurobiol Dis
, vol.46
, pp. 314-324
-
-
Leibinger, M.1
Readaki, A.2
Fischer, D.3
-
74
-
-
0006535184
-
CNTF, not other trophic factors, promotes axonal regeneration of axotomized retinal ganglion cells in adult hamsters
-
Cui Q, Lu Q, So KF, Yip HK. CNTF, not other trophic factors, promotes axonal regeneration of axotomized retinal ganglion cells in adult hamsters. Invest Ophthalmol Vis Sci. 1999;40: 760–766.
-
(1999)
Invest Ophthalmol Vis Sci
, vol.40
, pp. 760-766
-
-
Cui, Q.1
Lu, Q.2
So, K.F.3
Yip, H.K.4
-
75
-
-
0036850873
-
Microglia-Muller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration
-
Harada T, Harada C, Kohsaka S, et al. Microglia-Muller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration. J Neurosci. 2002;22:9228–9236.
-
(2002)
J Neurosci
, vol.22
, pp. 9228-9236
-
-
Harada, T.1
Harada, C.2
Kohsaka, S.3
-
77
-
-
27844498036
-
Muller cells as a source of brain-derived neurotrophic factor in the retina: Noradrenaline upregulates brain-derived neurotrophic factor levels in cultured rat Muller cells
-
Seki M, Tanaka T, Sakai Y, et al. Muller cells as a source of brain-derived neurotrophic factor in the retina: noradrenaline upregulates brain-derived neurotrophic factor levels in cultured rat Muller cells. Neurochem Res. 2005;30:1163–1170.
-
(2005)
Neurochem Res
, vol.30
, pp. 1163-1170
-
-
Seki, M.1
Tanaka, T.2
Sakai, Y.3
-
78
-
-
84903549488
-
Lost in the jungle: New hurdles for optic nerve axon regeneration
-
Pernet V, Schwab ME. Lost in the jungle: new hurdles for optic nerve axon regeneration. Trends Neurosci. 2014;37:381–387.
-
(2014)
Trends Neurosci
, vol.37
, pp. 381-387
-
-
Pernet, V.1
Schwab, M.E.2
-
80
-
-
84879513218
-
The time course of gene expression during reactive gliosis in the optic nerve
-
Qu J, Jakobs TC. The time course of gene expression during reactive gliosis in the optic nerve. PLoS One. 2013;8:e67094.
-
(2013)
Plos One
, vol.8
-
-
Qu, J.1
Jakobs, T.C.2
-
81
-
-
33749076673
-
SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity
-
Jacinto E, Facchinetti V, Liu D, et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell. 2006;127:125–137.
-
(2006)
Cell
, vol.127
, pp. 125-137
-
-
Jacinto, E.1
Facchinetti, V.2
Liu, D.3
-
82
-
-
84899844185
-
MTor is a signaling hub in cell survival: A mass-spectrometry-based proteomics investigation
-
Tang Z, Baykal AT, Gao H, et al. mTor is a signaling hub in cell survival: a mass-spectrometry-based proteomics investigation. J Proteome Res. 2014;13:2433–2444.
-
(2014)
J Proteome Res
, vol.13
, pp. 2433-2444
-
-
Tang, Z.1
Baykal, A.T.2
Gao, H.3
-
83
-
-
54049149462
-
Inactivation of glycogen synthase kinase 3 promotes axonal growth and recovery in the CNS
-
Dill J, Wang H, Zhou F, Li S. Inactivation of glycogen synthase kinase 3 promotes axonal growth and recovery in the CNS. J Neurosci. 2008;28:8914–8928.
-
(2008)
J Neurosci
, vol.28
, pp. 8914-8928
-
-
Dill, J.1
Wang, H.2
Zhou, F.3
Li, S.4
-
84
-
-
84927941057
-
Neuronal deletion of GSK3beta increases microtubule speed in the growth cone and enhances axon regeneration via CRMP-2 and independently of MAP1B and CLASP 2
-
Liz MA, Mar FM, Santos TE, et al. Neuronal deletion of GSK3beta increases microtubule speed in the growth cone and enhances axon regeneration via CRMP-2 and independently of MAP1B and CLASP 2. BMC Biol. 2014;12:47.
-
(2014)
BMC Biol
, vol.12
, pp. 47
-
-
Liz, M.A.1
Mar, F.M.2
Santos, T.E.3
-
85
-
-
84896547250
-
Glycogen synthase kinase 3 beta (GSK3beta) at the tip of neuronal development and regeneration
-
Seira O, Del Rio JA. Glycogen synthase kinase 3 beta (GSK3beta) at the tip of neuronal development and regeneration. Mol Neurobiol. 2014;49:931–944.
-
(2014)
Mol Neurobiol
, vol.49
, pp. 931-944
-
-
Seira, O.1
Del Rio, J.A.2
-
86
-
-
84885113592
-
Small-interfering RNAs (SiRNAs) as a promising tool for ocular therapy
-
Guzman-Aranguez A, Loma P, Pintor J. Small-interfering RNAs (siRNAs) as a promising tool for ocular therapy. Br J Pharmacol. 2013;170:730–747.
-
(2013)
Br J Pharmacol
, vol.170
, pp. 730-747
-
-
Guzman-Aranguez, A.1
Loma, P.2
Pintor, J.3
|