메뉴 건너뛰기




Volumn 10, Issue 12, 2015, Pages

Mining Chemical Activity Status from High-Throughput Screening Assays

Author keywords

[No Author keywords available]

Indexed keywords

CYCLIC NUCLEOTIDE GATED CHANNEL; FORASARTAN; G PROTEIN COUPLED RECEPTOR; TASOSARTAN; THYROTROPIN; THYROTROPIN RECEPTOR;

EID: 84957109757     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0144426     Document Type: Article
Times cited : (18)

References (68)
  • 1
    • 4344668661 scopus 로고    scopus 로고
    • Drug repositioning: Identifying and developing new uses for existing drugs
    • PMID: 15286734
    • Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nature reviews Drug discovery. 2004; 3(8):673-83. PMID: 15286734
    • (2004) Nature Reviews Drug Discovery , vol.3 , Issue.8 , pp. 673-683
    • Ashburn, T.T.1    Thor, K.B.2
  • 2
    • 79960796417 scopus 로고    scopus 로고
    • Exploiting drug-disease relationships for computational drug repositioning
    • bbr013
    • Dudley JT, Deshpande T, Butte AJ. Exploiting drug-disease relationships for computational drug repositioning. Briefings in bioinformatics. 2011:bbr013.
    • (2011) Briefings in Bioinformatics
    • Dudley, J.T.1    Deshpande, T.2    Butte, A.J.3
  • 4
    • 67849104638 scopus 로고    scopus 로고
    • Pubchem: A public information system for analyzing bioactivities of small molecules
    • Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic acids research. 2009; 37(suppl 2):W623-W33.
    • (2009) Nucleic Acids Research , vol.37 , pp. W623-W633
    • Wang, Y.1    Xiao, J.2    Suzek, T.O.3    Zhang, J.4    Wang, J.5    Bryant, S.H.6
  • 5
    • 77950448057 scopus 로고    scopus 로고
    • Predicting drug-target interaction networks based on functional groups and biological features
    • PMID: 20300175
    • He Z, Zhang J, Shi X-H, Hu L-L, Kong X, Cai Y-D, et al. Predicting drug-target interaction networks based on functional groups and biological features. PloS one. 2010; 5(3):e9603. doi: 10.1371/journal. pone.0009603 PMID: 20300175
    • (2010) PloS One , vol.5 , Issue.3 , pp. e9603
    • He, Z.1    Zhang, J.2    Shi, X.-H.3    Hu, L.-L.4    Kong, X.5    Cai, Y.-D.6
  • 7
    • 84961615767 scopus 로고    scopus 로고
    • An integrative model of multi-organ drug-induced toxicity prediction using gene-expression data
    • PMID: 25522097
    • Kim J, Shin M. An integrative model of multi-organ drug-induced toxicity prediction using gene-expression data. BMC bioinformatics. 2014; 15(Suppl 16):S2. doi: 10.1186/1471-2105-15-S16-S2 PMID: 25522097
    • (2014) BMC Bioinformatics , vol.15 , pp. S2
    • Kim, J.1    Shin, M.2
  • 8
    • 67650895854 scopus 로고    scopus 로고
    • Integrating statistical predictions and experimental verifications for enhancing protein-chemical interaction predictions in virtual screening
    • PMID: 19503826
    • Nagamine N, Shirakawa T, Minato Y, Torii K, Kobayashi H, Imoto M, et al. Integrating statistical predictions and experimental verifications for enhancing protein-chemical interaction predictions in virtual screening. PLoS computational biology. 2009; 5(6):e1000397. doi: 10.1371/journal.pcbi.1000397 PMID: 19503826
    • (2009) PLoS Computational Biology , vol.5 , Issue.6 , pp. e1000397
    • Nagamine, N.1    Shirakawa, T.2    Minato, Y.3    Torii, K.4    Kobayashi, H.5    Imoto, M.6
  • 10
    • 84934979868 scopus 로고    scopus 로고
    • Factors affecting the accuracy of a class prediction model in gene expression data
    • Novianti PW, Jong VL, Roes KC, Eijkemans MJ. Factors affecting the accuracy of a class prediction model in gene expression data. BMC bioinformatics. 2015; 16(1):199.
    • (2015) BMC Bioinformatics , vol.16 , Issue.1 , pp. 199
    • Novianti, P.W.1    Jong, V.L.2    Roes, K.C.3    Eijkemans, M.J.4
  • 12
    • 84934951264 scopus 로고    scopus 로고
    • Ligandrfs random forest ensemble to identify ligand-binding residues from sequence information alone
    • PMID: 25474163
    • Chen P, Huang JZ, Gao X. LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone. BMC bioinformatics. 2014; 15(Suppl 15):S4. doi: 10.1186/1471-2105-15-S15-S4 PMID: 25474163
    • (2014) BMC Bioinformatics , vol.15 , pp. S4
    • Chen, P.1    Huang, J.Z.2    Gao, X.3
  • 13
    • 84899072790 scopus 로고    scopus 로고
    • Feature combination networks for the interpretation of statistical machine learning models: Application to ames mutagenicity
    • PMID: 24661325
    • Webb SJ, Hanser T, Howlin B, Krause P, Vessey JD. Feature combination networks for the interpretation of statistical machine learning models: application to Ames mutagenicity. Journal of cheminformatics. 2014; 6(1):8. doi: 10.1186/1758-2946-6-8 PMID: 24661325
    • (2014) Journal of Cheminformatics , vol.6 , Issue.1 , pp. 8
    • Webb, S.J.1    Hanser, T.2    Howlin, B.3    Krause, P.4    Vessey, J.D.5
  • 14
    • 84903600504 scopus 로고    scopus 로고
    • In silico target fishing: Addressing a big data" problem by ligand-based similarity rankings with data fusion
    • Liu X, Xu Y, Li S, Wang Y, Peng J, Luo C, et al. In Silico target fishing: addressing a "Big Data" problem by ligand-based similarity rankings with data fusion. Journal of cheminformatics. 2014; 6(1):33.
    • (2014) Journal of Cheminformatics , vol.6 , Issue.1 , pp. 33
    • Liu, X.1    Xu, Y.2    Li, S.3    Wang, Y.4    Peng, J.5    Luo, C.6
  • 15
    • 84946138625 scopus 로고    scopus 로고
    • Incorporating domain knowledge in chemical and biomedical named entity recognition with word representations
    • Munkhdalai T, Li M, Batsuren K, Park HA, Choi NH, Ryu KH. Incorporating domain knowledge in chemical and biomedical named entity recognition with word representations. Journal of cheminformatics. 2015;(Suppl 1: ):S9.
    • (2015) Journal of Cheminformatics , pp. S9
    • Munkhdalai, T.1    Li, M.2    Batsuren, K.3    Park, H.A.4    Choi, N.H.5    Ryu, K.H.6
  • 17
    • 0347755444 scopus 로고    scopus 로고
    • Predicting molecular interactions in silico: II. Protein-protein and protein-drug docking
    • PMID: 14754428
    • Schneidman-Duhovny D, Nussinov R, Wolfson HJ. Predicting molecular interactions in silico: II. Protein-protein and protein-drug docking. Current medicinal chemistry. 2004; 11(1):91-107. PMID: 14754428
    • (2004) Current Medicinal Chemistry , vol.11 , Issue.1 , pp. 91-107
    • Schneidman-Duhovny, D.1    Nussinov, R.2    Wolfson, H.J.3
  • 18
    • 42149150001 scopus 로고    scopus 로고
    • Data mining a small molecule drug screening representative subset from nih pub-chem
    • PMID: 18302356
    • Xie X-Q, Chen J-Z. Data mining a small molecule drug screening representative subset from NIH Pub-Chem. Journal of chemical information and modeling. 2008; 48(3):465-75. doi: 10.1021/ci700193u PMID: 18302356
    • (2008) Journal of Chemical Information and Modeling , vol.48 , Issue.3 , pp. 465-475
    • Xie, X.-Q.1    Chen, J.-Z.2
  • 20
    • 84863277948 scopus 로고    scopus 로고
    • Copicat: A software system for predicting interactions between proteins and chemical compounds
    • PMID: 22257668
    • Sakakibara Y, Hachiya T, Uchida M, Nagamine N, Sugawara Y, Yokota M, et al. COPICAT: a software system for predicting interactions between proteins and chemical compounds. Bioinformatics. 2012; 28 (5):745-6. doi: 10.1093/bioinformatics/bts031 PMID: 22257668
    • (2012) Bioinformatics , vol.28 , Issue.5 , pp. 745-746
    • Sakakibara, Y.1    Hachiya, T.2    Uchida, M.3    Nagamine, N.4    Sugawara, Y.5    Yokota, M.6
  • 21
    • 84880553821 scopus 로고    scopus 로고
    • Hitpick: A web server for hit identification and target prediction of chemical screenings
    • Liu X, Vogt I, Haque T, Campillos M. HitPick: a web server for hit identification and target prediction of chemical screenings. Bioinformatics. 2013.
    • (2013) Bioinformatics
    • Liu, X.1    Vogt, I.2    Haque, T.3    Campillos, M.4
  • 22
    • 84902272377 scopus 로고    scopus 로고
    • Idrug: A web-Accessible and interactive drug discovery and design platform
    • Wang X, Chen H, Yang F, Gong J, Li S, Pei J, et al. iDrug: a web-Accessible and interactive drug discovery and design platform. Journal of cheminformatics. 2014; 6(1):1-8.
    • (2014) Journal of Cheminformatics , vol.6 , Issue.1 , pp. 1-8
    • Wang, X.1    Chen, H.2    Yang, F.3    Gong, J.4    Li, S.5    Pei, J.6
  • 23
    • 54949110209 scopus 로고    scopus 로고
    • Developing and validating predictive decision tree models from mining chemical structural fingerprints and high-throughput screening data in pubchem
    • Han L, Wang Y, Bryant SH. Developing and validating predictive decision tree models from mining chemical structural fingerprints and high-throughput screening data in PubChem. BMC bioinformatics. 2008; 9(1):401.
    • (2008) BMC Bioinformatics , vol.9 , Issue.1 , pp. 401
    • Han, L.1    Wang, Y.2    Bryant, S.H.3
  • 24
    • 84957111604 scopus 로고    scopus 로고
    • PubChem. PubChem Substructure Fingerprint cited 2013 2/25/2013] Available from
    • PubChem. PubChem Substructure Fingerprint 2009 [cited 2013 2/25/2013]. Available from: ftp://ftp. ncbi.nlm.nih.gov/pubchem/specifications/pubchem-fingerprints.txt.
    • (2009)
  • 25
    • 75149183709 scopus 로고    scopus 로고
    • Virtual screening of bioassay data
    • PMID: 20150999
    • Schierz AC. Virtual screening of bioassay data. Journal of cheminformatics. 2009; 1:21. doi: 10.1186/1758-2946-1-21 PMID: 20150999
    • (2009) Journal of Cheminformatics , vol.1 , pp. 21
    • Schierz, A.C.1
  • 26
    • 75849133755 scopus 로고    scopus 로고
    • A novel method for mining highly imbalanced high-throughput screening data in pubchem
    • PMID: 19825798
    • Li Q, Wang Y, Bryant SH. A novel method for mining highly imbalanced high-throughput screening data in PubChem. Bioinformatics. 2009; 25(24):3310-6. doi: 10.1093/bioinformatics/btp589 PMID: 19825798
    • (2009) Bioinformatics , vol.25 , Issue.24 , pp. 3310-3316
    • Li, Q.1    Wang, Y.2    Bryant, S.H.3
  • 29
    • 84890130251 scopus 로고    scopus 로고
    • An efficient algorithm coupled with synthetic minority over-sampling technique to classify imbalanced pubchem bioassay data
    • PMID: 24331047
    • Hao M, Wang Y, Bryant SH. An efficient algorithm coupled with synthetic minority over-sampling technique to classify imbalanced PubChem BioAssay data. Analytica chimica acta. 2014; 806:117-27. doi: 10.1016/j.aca.2013.10.050 PMID: 24331047
    • (2014) Analytica Chimica Acta , vol.806 , pp. 117-127
    • Hao, M.1    Wang, Y.2    Bryant, S.H.3
  • 30
    • 67650694660 scopus 로고    scopus 로고
    • Safe-level-smote: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem
    • Springer
    • Bunkhumpornpat C, Sinapiromsaran K, Lursinsap C. Safe-level-smote: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem. Advances in Knowledge Discovery and Data Mining: Springer; 2009. p. 475-82.
    • (2009) Advances in Knowledge Discovery and Data Mining , pp. 475-482
    • Bunkhumpornpat, C.1    Sinapiromsaran, K.2    Lursinsap, C.3
  • 31
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • Forman G. An extensive empirical study of feature selection metrics for text classification. The Journal of machine learning research. 2003; 3:1289-305.
    • (2003) The Journal of Machine Learning Research , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 33
    • 79952229990 scopus 로고    scopus 로고
    • Binary classification of aqueous solubility using support vector machines with reduction and recombination feature selection
    • PMID: 21214224
    • Cheng T, Li Q, Wang Y, Bryant SH. Binary classification of aqueous solubility using support vector machines with reduction and recombination feature selection. Journal of chemical information and modeling. 2011; 51(2):229-36. doi: 10.1021/ci100364a PMID: 21214224
    • (2011) Journal of Chemical Information and Modeling , vol.51 , Issue.2 , pp. 229-236
    • Cheng, T.1    Li, Q.2    Wang, Y.3    Bryant, S.H.4
  • 34
    • 76249102379 scopus 로고    scopus 로고
    • Identification of small molecule aggregators from large compound libraries by support vector machines
    • PMID: 19569201
    • Rao H, Li Z, Li X, Ma X, Ung C, Li H, et al. Identification of small molecule aggregators from large compound libraries by support vector machines. Journal of computational chemistry. 2010; 31(4):752-63. doi: 10.1002/jcc.21347 PMID: 19569201
    • (2010) Journal of Computational Chemistry , vol.31 , Issue.4 , pp. 752-763
    • Rao, H.1    Li, Z.2    Li, X.3    Ma, X.4    Ung, C.5    Li, H.6
  • 36
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. Ijcai1995. p. 1137-45.
    • (1995) Ijcai , pp. 1137-1145
    • Kohavi, R.1
  • 37
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for small-sample microarray classification?
    • PMID: 14960464
    • Braga-Neto UM, Dougherty ER. Is cross-validation valid for small-sample microarray classification? Bioinformatics. 2004; 20(3):374-80. PMID: 14960464
    • (2004) Bioinformatics , vol.20 , Issue.3 , pp. 374-380
    • Braga-Neto, U.M.1    Dougherty, E.R.2
  • 41
    • 77950878660 scopus 로고    scopus 로고
    • Improving the accuracy of predicting disulfide connectivity by feature selection
    • PMID: 20127740
    • Zhu L, Yang J, Song JN, Chou KC, Shen HB. Improving the accuracy of predicting disulfide connectivity by feature selection. Journal of computational chemistry. 2010; 31(7):1478-85. doi: 10.1002/jcc.21433 PMID: 20127740
    • (2010) Journal of Computational Chemistry , vol.31 , Issue.7 , pp. 1478-1485
    • Zhu, L.1    Yang, J.2    Song, J.N.3    Chou, K.C.4    Shen, H.B.5
  • 42
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • PMID: 17720704
    • Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. bioinformatics. 2007; 23(19):2507-17. PMID: 17720704
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 43
    • 84923828257 scopus 로고    scopus 로고
    • Dwfs: A wrapper feature selection tool based on a parallel genetic algorithm
    • Epub 2015/02/27 PMID: 25719748; PubMed Central PMCID: PMC4342225
    • Soufan O, Kleftogiannis D, Kalnis P, Bajic VB. DWFS: A Wrapper Feature Selection Tool Based on a Parallel Genetic Algorithm. PloS one. 2015; 10(2):e0117988. Epub 2015/02/27. doi: 10.1371/journal. pone.0117988 PMID: 25719748; PubMed Central PMCID: PMC4342225.
    • (2015) PloS One , vol.10 , Issue.2 , pp. e0117988
    • Soufan, O.1    Kleftogiannis, D.2    Kalnis, P.3    Bajic, V.B.4
  • 45
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V. Support-vector networks. Machine learning. 1995; 20(3):273-97.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 47
    • 33846516584 scopus 로고    scopus 로고
    • Jordan M.Kleinberg J,Scholkopf B editors Springer Science + Business Media
    • Bishop CM. Pattern Recognition and Machine Learning. Jordan M, Kleinberg J, Scholkopf B, editors: Springer Science + Business Media; 2006.
    • (2006) Pattern Recognition and Machine Learning
    • Bishop, C.M.1
  • 48
    • 0004255908 scopus 로고    scopus 로고
    • Machine learning
    • McGraw-Hill Boston MA:
    • Mitchell TM. Machine learning. WCB. McGraw-Hill Boston, MA:; 1997.
    • (1997) WCB
    • Mitchell, T.M.1
  • 49
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine learning. 2001; 45(1):5-32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 51
    • 78649676380 scopus 로고    scopus 로고
    • Deciphering the code for retroviral integration target site selection
    • PMID: 21124862
    • Santoni FA, Hartley O, Luban J. Deciphering the code for retroviral integration target site selection. PLoS computational biology. 2010; 6(11):e1001008. doi: 10.1371/journal.pcbi.1001008 PMID: 21124862
    • (2010) PLoS Computational Biology , vol.6 , Issue.11 , pp. e1001008
    • Santoni, F.A.1    Hartley, O.2    Luban, J.3
  • 58
    • 33751098785 scopus 로고    scopus 로고
    • Granular SVM with repetitive undersampling for highly imbalanced protein homology prediction
    • IEEE
    • Tang Y, Zhang Y-Q, editors. Granular SVM with repetitive undersampling for highly imbalanced protein homology prediction. Granular Computing, 2006 IEEE International Conference on; 2006: IEEE.
    • (2006) Granular Computing 2006 IEEE International Conference on
    • Tang, Y.1    Zhang, Y.-Q.2
  • 59
    • 84891807032 scopus 로고    scopus 로고
    • Mwmote-majority weighted minority oversampling technique for imbalanced data set learning
    • Barua S, Islam M, Yao X, Murase K. MWMOTE-Majority Weighted Minority Oversampling Technique for Imbalanced Data Set Learning. Knowledge and Data Engineering, IEEE Transactions on. 2014; 26 (2):405-25.
    • (2014) Knowledge and Data Engineering IEEE Transactions on , vol.26 , Issue.2 , pp. 405-425
    • Barua, S.1    Islam, M.2    Yao, X.3    Murase, K.4
  • 60
    • 0036083401 scopus 로고    scopus 로고
    • Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structure-function relationships
    • PMID: 11917095
    • Szkudlinski MW, Fremont V, Ronin C, Weintraub BD. Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structure-function relationships. Physiological Reviews. 2002; 82(2):473-502. PMID: 11917095
    • (2002) Physiological Reviews , vol.82 , Issue.2 , pp. 473-502
    • Szkudlinski, M.W.1    Fremont, V.2    Ronin, C.3    Weintraub, B.D.4
  • 61
    • 0026743033 scopus 로고
    • The thyrotropin receptor and the regulation of thyrocyte function and growth
    • PMID: 1425489
    • Vassart G, DUMONT JE. The Thyrotropin Receptor and the Regulation of Thyrocyte Function and Growth. Endocrine Reviews. 1992; 13(3):596-611. PMID: 1425489
    • (1992) Endocrine Reviews , vol.13 , Issue.3 , pp. 596-611
    • Vassart, G.1    Dumont, J.E.2
  • 62
    • 76149120388 scopus 로고    scopus 로고
    • Autodock vina improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
    • PMID: 19499576
    • Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry. 2010; 31 (2):455-61. doi: 10.1002/jcc.21334 PMID: 19499576
    • (2010) Journal of Computational Chemistry , vol.31 , Issue.2 , pp. 455-461
    • Trott, O.1    Olson, A.J.2
  • 63
    • 0030906798 scopus 로고    scopus 로고
    • Sc-52458, an orally active angiotensin II-receptor antagonist: Inhibition of blood pressure response to angiotensin II challenges and pharmacokinetics in normal volunteers
    • PMID: 9156352
    • Hagmann M, Nussberger J, Naudin R, Burns T, Karim A, Waeber B, et al. SC-52458, an orally active angiotensin II-receptor antagonist: inhibition of blood pressure response to angiotensin II challenges and pharmacokinetics in normal volunteers. Journal of cardiovascular pharmacology. 1997; 29(4):444-50. PMID: 9156352
    • (1997) Journal of Cardiovascular Pharmacology , vol.29 , Issue.4 , pp. 444-450
    • Hagmann, M.1    Nussberger, J.2    Naudin, R.3    Burns, T.4    Karim, A.5    Waeber, B.6
  • 64
    • 78649449966 scopus 로고    scopus 로고
    • Angiotensin II receptor type 1 (at 1) selective nonpeptidic antagonists-A perspective
    • Naik P, Murumkar P, Giridhar R, Yadav MR. Angiotensin II receptor type 1 (AT 1) selective nonpeptidic antagonists-A perspective. Bioorganic & medicinal chemistry. 2010; 18(24):8418-56.
    • (2010) Bioorganic & Medicinal Chemistry , vol.18 , Issue.24 , pp. 8418-8456
    • Naik, P.1    Murumkar, P.2    Giridhar, R.3    Yadav, M.R.4
  • 65
    • 33947536866 scopus 로고    scopus 로고
    • Association between blood pressure and serum thyroid-stimulating hormone concentration within the reference range: A population-based study
    • Asvold BO, Bjøro T, Nilsen TI, Vatten LJ. Association between blood pressure and serum thyroid-stimulating hormone concentration within the reference range: a population-based study. The Journal of Clinical Endocrinology & Metabolism. 2007; 92(3):841-5.
    • (2007) The Journal of Clinical Endocrinology & Metabolism , vol.92 , Issue.3 , pp. 841-845
    • Asvold, B.O.1    Bjøro, T.2    Nilsen, T.I.3    Vatten, L.J.4
  • 66
    • 81155150072 scopus 로고    scopus 로고
    • Blood pressure, thyroid-stimulating hormone, and thyroid disease prevalence in primary aldosteronism and essential hypertension
    • PMID: 21850059
    • Turchi F, Ronconi V, di Tizio V, Boscaro M, Giacchetti G. Blood pressure, thyroid-stimulating hormone, and thyroid disease prevalence in primary aldosteronism and essential hypertension. American journal of hypertension. 2011; 24(12):1274-9. doi: 10.1038/ajh.2011.144 PMID: 21850059
    • (2011) American Journal of Hypertension , vol.24 , Issue.12 , pp. 1274-1279
    • Turchi, F.1    Ronconi, V.2    Di Tizio, V.3    Boscaro, M.4    Giacchetti, G.5
  • 67
    • 84880604926 scopus 로고    scopus 로고
    • Relationship between thyroid-stimulating hormone and blood pressure in the middle-Aged and elderly population
    • PMID: 23900471
    • Jian W-X, Jin J, Qin L, Fang W, Chen X, Chen H, et al. Relationship between thyroid-stimulating hormone and blood pressure in the middle-Aged and elderly population. Singapore medical journal. 2013; 54(7):401-5. PMID: 23900471
    • (2013) Singapore Medical Journal , vol.54 , Issue.7 , pp. 401-405
    • Jian, W.-X.1    Jin, J.2    Qin, L.3    Fang, W.4    Chen, X.5    Chen, H.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.