메뉴 건너뛰기




Volumn 7, Issue , 2015, Pages

Incorporating domain knowledge in chemical and biomedical named entity recognition with word representations

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84946138625     PISSN: None     EISSN: 17582946     Source Type: Journal    
DOI: 10.1186/1758-2946-7-S1-S9     Document Type: Article
Times cited : (39)

References (34)
  • 2
    • 84863506694 scopus 로고    scopus 로고
    • ChemSpot: A hybrid system for chemical named entity recognition
    • Rocktäschel T, Weidlich M, Leser U: ChemSpot: a hybrid system for chemical named entity recognition. Bioinformatics 2012, 28:1633-1640.
    • (2012) Bioinformatics , vol.28 , pp. 1633-1640
    • Rocktäschel, T.1    Weidlich, M.2    Leser, U.3
  • 4
    • 51249088163 scopus 로고    scopus 로고
    • Drug name recognition and classification in biomedical texts: A case study outlining approaches underpinning automated systems
    • Segura-Bedmar I, Martínez P, Segura-Bedmar M: Drug name recognition and classification in biomedical texts: A case study outlining approaches underpinning automated systems. Drug Discovery Today 2008, 13:816-823.
    • (2008) Drug Discovery Today , vol.13 , pp. 816-823
    • Segura-Bedmar, I.1    Martínez, P.2    Segura-Bedmar, M.3
  • 5
    • 75749141042 scopus 로고    scopus 로고
    • Named entity recognition in biomedical texts using an HMM model
    • National Institute of Informatics, Patrick R. University Hospital of Geneva and EPFL, Adeline N. LIPN
    • Zhao S: Named Entity Recognition in Biomedical Texts using an HMM Model. In Proceedings of the Joint Workshop on Natural Language Processing in Biomedicine and its Applications Nigel C. National Institute of Informatics, Patrick R. University Hospital of Geneva and EPFL, Adeline N. LIPN 2004, 84-87.
    • (2004) Proceedings of the Joint Workshop on Natural Language Processing in Biomedicine and Its Applications Nigel C , pp. 84-87
    • Zhao, S.1
  • 6
    • 25444503866 scopus 로고    scopus 로고
    • Exploring deep knowledge resources in biomedical name recognition
    • National Institute of Informatics, Patrick R. University Hospital of Geneva and EPFL, Adeline N. LIPN
    • Zhou G, Su J: Exploring deep knowledge resources in biomedical name recognition. In Proceedings of the Joint Workshop on Natural Language Processing in Biomedicine and its Applications Nigel C. National Institute of Informatics, Patrick R. University Hospital of Geneva and EPFL, Adeline N. LIPN 2004, 96-99.
    • (2004) Proceedings of the Joint Workshop on Natural Language Processing in Biomedicine and Its Applications Nigel C , pp. 96-99
    • Zhou, G.1    Su, J.2
  • 7
    • 30744457935 scopus 로고    scopus 로고
    • Gene/protein name recognition based on support vector machine using dictionary as features
    • Mitsumori T, Fation S, Murata M, Doi K, Doi H: Gene/protein name recognition based on support vector machine using dictionary as features. BMC Bioinformatics 2005, 6:S8.
    • (2005) BMC Bioinformatics , vol.6 , pp. S8
    • Mitsumori, T.1    Fation, S.2    Murata, M.3    Doi, K.4    Doi, H.5
  • 8
    • 8444242136 scopus 로고    scopus 로고
    • Comparison of character-level and part of speech features for name recognition in biomedical texts
    • Collier N, Takeuchi K: Comparison of character-level and part of speech features for name recognition in biomedical texts. Journal of Biomedical Informatics 2004, 37:423-35.
    • (2004) Journal of Biomedical Informatics , vol.37 , pp. 423-435
    • Collier, N.1    Takeuchi, K.2
  • 10
    • 56649102386 scopus 로고    scopus 로고
    • Cascaded classifiers for confidence-based chemical named entity recognition
    • Corbett P, Copestake A: Cascaded classifiers for confidence-based chemical named entity recognition. BMC Bioinformatics 2008, 9(Suppl 11): S4.
    • (2008) BMC Bioinformatics , vol.9 , pp. S4
    • Corbett, P.1    Copestake, A.2
  • 11
    • 17244376942 scopus 로고    scopus 로고
    • Biomedical named entity recognition using conditional random fields and rich feature sets
    • National Institute of Informatics, Patrick R. University Hospital of Geneva and EPFL, Adeline N. LIPN
    • Settles B: Biomedical named entity recognition using conditional random fields and rich feature sets. In Proceedings of the Joint Workshop on Natural Language Processing in Biomedicine and its Applications Nigel C. National Institute of Informatics, Patrick R. University Hospital of Geneva and EPFL, Adeline N. LIPN 2004, 104-107.
    • (2004) Proceedings of the Joint Workshop on Natural Language Processing in Biomedicine and Its Applications Nigel C , pp. 104-107
    • Settles, B.1
  • 12
    • 46249123634 scopus 로고    scopus 로고
    • Integrating high dimensional bi-directional parsing models for gene mention tagging
    • Hsu C, Chang Y, Kuo C, Lin Y, Huang H, Chung I: Integrating high dimensional bi-directional parsing models for gene mention tagging. Bioinformatics 2008, 24:i286-i294.
    • (2008) Bioinformatics , vol.24 , pp. i286-i294
    • Hsu, C.1    Chang, Y.2    Kuo, C.3    Lin, Y.4    Huang, H.5    Chung, I.6
  • 13
    • 67649132826 scopus 로고    scopus 로고
    • Incorporating rich background knowledge for gene named entity classification and recognition
    • Li Y, Lin H, Yang Z: Incorporating rich background knowledge for gene named entity classification and recognition. BMC Bioinformatics 2009, 10:223.
    • (2009) BMC Bioinformatics , vol.10 , pp. 223
    • Li, Y.1    Lin, H.2    Yang, Z.3
  • 22
  • 23
    • 84890064920 scopus 로고    scopus 로고
    • DNorm: Disease name normalization with pairwise learning to rank
    • Leaman R, Islamaj DR, Lu Z: DNorm: disease name normalization with pairwise learning to rank. Bioinformatics 2013, 29:22.
    • (2013) Bioinformatics , vol.29 , pp. 22
    • Leaman, R.1    Islamaj, D.R.2    Lu, Z.3
  • 24
    • 84878281265 scopus 로고    scopus 로고
    • TmVar: A text mining approach for extracting sequence variants in biomedical literature
    • Wei CH, Harris BR, Kao HY, Lu Z: tmVar: a text mining approach for extracting sequence variants in biomedical literature. Bioinformatics 2013, 29:11.
    • (2013) Bioinformatics , vol.29 , pp. 11
    • Wei, C.H.1    Harris, B.R.2    Kao, H.Y.3    Lu, Z.4
  • 26
    • 84865085964 scopus 로고    scopus 로고
    • BioContext: An integrated text mining system for large-scale extraction and contextualization of biomolecular events
    • Gerner M, Sarafraz F, Bergman CM, Nenadic G: BioContext: an integrated text mining system for large-scale extraction and contextualization of biomolecular events. Bioinformatics 2012, 28:2154-2161.
    • (2012) Bioinformatics , vol.28 , pp. 2154-2161
    • Gerner, M.1    Sarafraz, F.2    Bergman, C.M.3    Nenadic, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.