메뉴 건너뛰기




Volumn 6, Issue 1, 2014, Pages

Feature combination networks for the interpretation of statistical machine learning models: Application to Ames mutagenicity

Author keywords

Interpretable; Interpretation; Machine learning; Mutagenicity; QSAR

Indexed keywords


EID: 84899072790     PISSN: None     EISSN: 17582946     Source Type: Journal    
DOI: 10.1186/1758-2946-6-8     Document Type: Article
Times cited : (29)

References (41)
  • 2
    • 84870014476 scopus 로고    scopus 로고
    • Automating knowledge discovery for toxicity prediction using jumping emerging pattern mining
    • Automating knowledge discovery for toxicity prediction using jumping emerging pattern mining. Sherhod R, Gillet VJ, Judson PN, Vessey JD, J Chem Inf Model 2012 52 3074 3087
    • (2012) J Chem Inf Model , vol.52 , pp. 3074-3087
    • Sherhod, R.1    Gillet, V.J.2    Judson, P.N.3    Vessey, J.D.4
  • 5
  • 7
    • 84899063889 scopus 로고    scopus 로고
    • Location: Alexandria, Egypt: The 14th International Conference on Computer Theory and applications ICCTA'2004
    • Barakat N, Diederich J, Learning-based rule-extraction from support vector machines Location: Alexandria, Egypt: The 14th International Conference on Computer Theory and applications ICCTA'2004 2004 http://espace.library.uq. edu.au/view/UQ:9625
    • (2004) Learning-based Rule-extraction from Support Vector Machines
    • Barakat, N.1    Diederich, J.2
  • 9
    • 84875330808 scopus 로고    scopus 로고
    • Neural network rule extraction to detect credit card fraud
    • Springer: Berlin Heidelberg Iliadis L, Jayne C
    • Neural network rule extraction to detect credit card fraud. Ryman-tubb NF, Krause P, Engineering applications of neural networks Springer: Berlin Heidelberg, Iliadis L, Jayne C, 2011
    • (2011) Engineering Applications of Neural Networks
    • Ryman-Tubb, N.F.1    Krause, P.2
  • 10
    • 20444409456 scopus 로고    scopus 로고
    • Interpreting computational neural network QSAR models: A measure of descriptor importance
    • Interpreting computational neural network QSAR models: a measure of descriptor importance. Guha R, Jurs PC, J Chem Inf Model 2005 45 800 806
    • (2005) J Chem Inf Model , vol.45 , pp. 800-806
    • Guha, R.1    Jurs, P.C.2
  • 11
    • 0141890762 scopus 로고    scopus 로고
    • On the physical interpretation of QSAR models
    • On the physical interpretation of QSAR models. Stanton DT, J Chem Inf Comput Sci 2005 43 1423 1433
    • (2005) J Chem Inf Comput Sci , vol.43 , pp. 1423-1433
    • Stanton, D.T.1
  • 13
    • 72949101619 scopus 로고    scopus 로고
    • Interpretation of nonlinear QSAR models applied to Ames mutagenicity data
    • Interpretation of nonlinear QSAR models applied to Ames mutagenicity data. Carlsson L, Helgee EA, Boyer S, J Chem Inf Model 2009 49 2551 2558
    • (2009) J Chem Inf Model , vol.49 , pp. 2551-2558
    • Carlsson, L.1    Helgee, E.A.2    Boyer, S.3
  • 14
    • 44249116058 scopus 로고    scopus 로고
    • Hierarchical QSAR technology based on the Simplex representation of molecular structure
    • Hierarchical QSAR technology based on the Simplex representation of molecular structure. Kuz'min VE, Artemenko AG, Muratov EN, J Comput Aided Mol Des 2008 22 403 421
    • (2008) J Comput Aided Mol des , vol.22 , pp. 403-421
    • Kuz'Min, V.E.1    Artemenko, A.G.2    Muratov, E.N.3
  • 15
    • 66149095480 scopus 로고    scopus 로고
    • Group-based QSAR (G-QSAR): Mitigating interpretation challenges in QSAR
    • Group-based QSAR (G-QSAR): mitigating interpretation challenges in QSAR. Ajmani S, Jadhav K, Kulkarni SA, QSAR Comb Sci 2009 28 36 51
    • (2009) QSAR Comb Sci , vol.28 , pp. 36-51
    • Ajmani, S.1    Jadhav, K.2    Kulkarni, S.A.3
  • 16
    • 23844539732 scopus 로고    scopus 로고
    • Interpreting computational neural network quantitative structure-activity relationship models: A detailed interpretation of the weights and biases
    • Interpreting computational neural network quantitative structure-activity relationship models: a detailed interpretation of the weights and biases. Guha R, Stanton DT, Jurs PC, J Chem Inf Model 2005 45 1109 1121
    • (2005) J Chem Inf Model , vol.45 , pp. 1109-1121
    • Guha, R.1    Stanton, D.T.2    Jurs, P.C.3
  • 18
    • 27444433232 scopus 로고    scopus 로고
    • Extraction and visualization of potential pharmacophore points using support vector machines: Application to ligand-based virtual screening for COX-2 inhibitors
    • Extraction and visualization of potential pharmacophore points using support vector machines: application to ligand-based virtual screening for COX-2 inhibitors. Franke L, Byvatov E, Werz O, Steinhilber D, Schneider P, Schneider G, J Med Chem 2005 48 6997 7004
    • (2005) J Med Chem , vol.48 , pp. 6997-7004
    • Franke, L.1    Byvatov, E.2    Werz, O.3    Steinhilber, D.4    Schneider, P.5    Schneider, G.6
  • 19
    • 84887125467 scopus 로고    scopus 로고
    • Similarity maps - A visualization strategy for molecular fingerprints and machine-learning methods
    • Similarity maps-a visualization strategy for molecular fingerprints and machine-learning methods. Riniker S, Landrum, J Cheminf 2013 5 43
    • (2013) J Cheminf , vol.5 , pp. 43
    • Riniker, S.1    Landrum2
  • 20
    • 84899074423 scopus 로고    scopus 로고
    • Interpretable Ames mutagenicity predictions using statistical learning techniques [abstract]
    • Tallin, Estonia: QSAR2012
    • Interpretable Ames mutagenicity predictions using statistical learning techniques [abstract]. Webb SJ, Krause P, Vessey JD, Handbook of abstracts Tallin, Estonia: QSAR2012 2012 http://qsar2012.ut.ee/
    • (2012) Handbook of Abstracts
    • Webb, S.J.1    Krause, P.2    Vessey, J.D.3
  • 21
    • 84899116758 scopus 로고    scopus 로고
    • Interpretation of statistical machine learning models for Ames mutagenicity [abstract]
    • Sheffield, UK: The 6th Joint Sheffield Conference on Chemoinformatics
    • Interpretation of statistical machine learning models for Ames mutagenicity [abstract]. Webb SJ, Hanser T, Howlin B, Krause P, Vessey JD, Book of abstracts Sixth Joint Sheffield Conference on Chemoinformatics Sheffield, UK: The 6th Joint Sheffield Conference on Chemoinformatics 2013 http://cisrg.shef.ac.uk/shef2013/
    • (2013) Book of Abstracts Sixth Joint Sheffield Conference on Chemoinformatics
    • Webb, S.J.1    Hanser, T.2    Howlin, B.3    Krause, P.4    Vessey, J.D.5
  • 23
    • 0034693731 scopus 로고    scopus 로고
    • The Ames Salmonella/microsome mutagenicity assay
    • The Ames Salmonella/microsome mutagenicity assay. Mortelmans K, Zeiger E, Mutat Res Mol Mech Mutagen 2000 455 29 60
    • (2000) Mutat Res Mol Mech Mutagen , vol.455 , pp. 29-60
    • Mortelmans, K.1    Zeiger, E.2
  • 24
    • 0015591140 scopus 로고
    • An improved bacterial test system for the detection and classification of mutagens and carcinogens
    • An improved bacterial test system for the detection and classification of mutagens and carcinogens. Ames BN, Proc Natl Acad Sci 1973 70 782 786
    • (1973) Proc Natl Acad Sci , vol.70 , pp. 782-786
    • Ames, B.N.1
  • 25
    • 84862667032 scopus 로고    scopus 로고
    • An investigation into pharmaceutically relevant mutagenicity data and the influence on Ames predictive potential
    • An investigation into pharmaceutically relevant mutagenicity data and the influence on Ames predictive potential. McCarren P, Springer C, Whitehead L, J Cheminf 2011 3 51
    • (2011) J Cheminf , vol.3 , pp. 51
    • McCarren, P.1    Springer, C.2    Whitehead, L.3
  • 34
    • 12144257810 scopus 로고    scopus 로고
    • Derivation and validation of toxicophores for mutagenicity prediction
    • Derivation and validation of toxicophores for mutagenicity prediction. Kazius J, McGuire R, Bursi R, J Med Chem 2005 48 312 320
    • (2005) J Med Chem , vol.48 , pp. 312-320
    • Kazius, J.1    McGuire, R.2    Bursi, R.3
  • 36
    • 4043167653 scopus 로고    scopus 로고
    • Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds
    • Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds. Helma C, Cramer T, Kramer S, De Raedt L, J Chem Inf Comput Sci 2004 44 1402 1411
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 1402-1411
    • Helma, C.1    Cramer, T.2    Kramer, S.3    De Raedt, L.4
  • 38
    • 84899054074 scopus 로고    scopus 로고
    • [ https://www.lhasalimited.org/vitic-nexus/ ]
    • Vitic nexus. [ https://www.lhasalimited.org/vitic-nexus/ ]
    • Vitic Nexus
  • 39
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms. Bradley AP, Pattern Recognit 1997 30 1145 1159
    • (1997) Pattern Recognit , vol.30 , pp. 1145-1159
    • Bradley, A.P.1
  • 40
    • 84897530967 scopus 로고    scopus 로고
    • Developing the applicability domain of in silico models: Relevance, importance and methods
    • Cambridge: RSC Publishing Cronin MTD, Madden JC
    • Developing the applicability domain of in silico models: relevance, importance and methods. Hewitt M, Ellison CM, In silico toxicology Cambridge: RSC Publishing, Cronin MTD, Madden JC, 2010 301 330
    • (2010) Silico Toxicology , pp. 301-330
    • Hewitt, M.1    Ellison, C.M.2
  • 41
    • 0000300233 scopus 로고
    • Detection of carcinogens as mutagens in the salmonella/microsome test: Assay of 300 chemicals: Discussion
    • "Detection of carcinogens as mutagens in the salmonella/microsome test: assay of 300 chemicals: discussion. McCann J, Proc Natl Acad Sci 1976 73 950 954
    • (1976) Proc Natl Acad Sci , vol.73 , pp. 950-954
    • McCann, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.