메뉴 건너뛰기




Volumn 38, Issue 2, 2016, Pages 129-139

With or without rafts? Alternative views on cell membranes

Author keywords

Lipids; Membrane heterogeneity; Membrane proteins; Membrane rafts; Phase separation; Plasma membrane; Raft hypothesis

Indexed keywords

CELL MEMBRANE; EXPERIMENTAL MODEL; THEORETICAL MODEL; METABOLISM; PHYSIOLOGY;

EID: 84956630806     PISSN: 02659247     EISSN: 15211878     Source Type: Journal    
DOI: 10.1002/bies.201500150     Document Type: Article
Times cited : (89)

References (140)
  • 1
    • 0030949124 scopus 로고    scopus 로고
    • Functional rafts in cell membranes
    • Simons K, Ikonen E. 1997. Functional rafts in cell membranes. Nature 387: 569-72.
    • (1997) Nature , vol.387 , pp. 569-572
    • Simons, K.1    Ikonen, E.2
  • 2
    • 1342306818 scopus 로고    scopus 로고
    • Nanoscale organization of multiple GPI-anchored proteins in living cell membranes
    • Sharma P, Varma R, Sarasij R, Ira, et al. 2004. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116: 577-89.
    • (2004) Cell , vol.116 , pp. 577-589
    • Sharma, P.1    Varma, R.2    Sarasij, R.3    Ira4
  • 3
    • 20444404267 scopus 로고    scopus 로고
    • Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells
    • Douglass AD, Vale RD. 2005. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121: 937-50.
    • (2005) Cell , vol.121 , pp. 937-950
    • Douglass, A.D.1    Vale, R.D.2
  • 4
    • 61349094652 scopus 로고    scopus 로고
    • Direct observation of the nanoscale dynamics of membrane lipids in a living cell
    • Eggeling C, Ringemann C, Medda R, Schwarzmann G, et al. 2009. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457: 1159-62.
    • (2009) Nature , vol.457 , pp. 1159-1162
    • Eggeling, C.1    Ringemann, C.2    Medda, R.3    Schwarzmann, G.4
  • 5
    • 0037874731 scopus 로고    scopus 로고
    • Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy
    • Schütz GJ, Kada G, Pastushenko VP, Schindler H. 2000. Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J 19: 892-901.
    • (2000) EMBO J , vol.19 , pp. 892-901
    • Schütz, G.J.1    Kada, G.2    Pastushenko, V.P.3    Schindler, H.4
  • 6
    • 0346103675 scopus 로고    scopus 로고
    • Visualizing lipid structure and raft domains in living cells with two-photon microscopy
    • Gaus K, Gratton E, Kable EP, Jones AS, et al. 2003. Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc Natl Acad Sci USA 100: 15554-9.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 15554-15559
    • Gaus, K.1    Gratton, E.2    Kable, E.P.3    Jones, A.S.4
  • 7
    • 0036214457 scopus 로고    scopus 로고
    • Relationship of lipid rafts to transient confinement zones detected by single particle tracking
    • Dietrich C, Yang B, Fujiwara T, Kusumi A, et al. 2002. Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys J 82: 274-84.
    • (2002) Biophys J , vol.82 , pp. 274-284
    • Dietrich, C.1    Yang, B.2    Fujiwara, T.3    Kusumi, A.4
  • 8
    • 0142116238 scopus 로고    scopus 로고
    • Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking
    • Dahan M, Levi S, Luccardini C, Rostaing P, et al. 2003. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302: 442-5.
    • (2003) Science , vol.302 , pp. 442-445
    • Dahan, M.1    Levi, S.2    Luccardini, C.3    Rostaing, P.4
  • 9
    • 84865324247 scopus 로고    scopus 로고
    • Transient GPI-anchored protein homodimers are units for raft organization and function
    • Suzuki KG, Kasai RS, Hirosawa KM, Nemoto YL, et al. 2012. Transient GPI-anchored protein homodimers are units for raft organization and function. Nat Chem Biol 8: 774-83.
    • (2012) Nat Chem Biol , vol.8 , pp. 774-783
    • Suzuki, K.G.1    Kasai, R.S.2    Hirosawa, K.M.3    Nemoto, Y.L.4
  • 10
    • 78650637436 scopus 로고    scopus 로고
    • Imaging of mobile long-lived nanoplatforms in the live cell plasma membrane
    • Brameshuber M, Weghuber J, Ruprecht V, Gombos I, et al. 2010. Imaging of mobile long-lived nanoplatforms in the live cell plasma membrane. J Biol Chem 285: 41765-71.
    • (2010) J Biol Chem , vol.285 , pp. 41765-41771
    • Brameshuber, M.1    Weghuber, J.2    Ruprecht, V.3    Gombos, I.4
  • 11
    • 0036733578 scopus 로고    scopus 로고
    • Cholesterol, lipid rafts, and disease
    • Simons K, Ehehalt R. 2002. Cholesterol, lipid rafts, and disease. J Clin Invest 110: 597-603.
    • (2002) J Clin Invest , vol.110 , pp. 597-603
    • Simons, K.1    Ehehalt, R.2
  • 12
    • 0028151351 scopus 로고
    • Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior
    • Schroeder R, London E, Brown D. 1994. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci USA 91: 12130-4.
    • (1994) Proc Natl Acad Sci USA , vol.91 , pp. 12130-12134
    • Schroeder, R.1    London, E.2    Brown, D.3
  • 13
    • 0037215755 scopus 로고    scopus 로고
    • A closer look at the canonical 'Raft Mixture' in model membrane studies
    • Veatch SL, Keller SL. 2003. A closer look at the canonical 'Raft Mixture' in model membrane studies. Biophys J 84: 725-6.
    • (2003) Biophys J , vol.84 , pp. 725-726
    • Veatch, S.L.1    Keller, S.L.2
  • 14
    • 33847641401 scopus 로고    scopus 로고
    • Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles
    • Baumgart T, Hammond AT, Sengupta P, Hess ST, et al. 2007. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc Natl Acad Sci USA 104: 3165-70.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 3165-3170
    • Baumgart, T.1    Hammond, A.T.2    Sengupta, P.3    Hess, S.T.4
  • 15
    • 0024433592 scopus 로고
    • Mechanism of membrane anchoring affects polarized expression of two proteins in MDCK cells
    • Brown DA, Crise B, Rose JK. 1989. Mechanism of membrane anchoring affects polarized expression of two proteins in MDCK cells. Science 245: 1499-501.
    • (1989) Science , vol.245 , pp. 1499-1501
    • Brown, D.A.1    Crise, B.2    Rose, J.K.3
  • 16
    • 84922460988 scopus 로고    scopus 로고
    • Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells
    • Honigmann A, Mueller V, Ta H, Schoenle A, et al. 2014. Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells. Nat Commun 5.
    • (2014) Nat Commun , vol.5
    • Honigmann, A.1    Mueller, V.2    Ta, H.3    Schoenle, A.4
  • 17
    • 84896840047 scopus 로고    scopus 로고
    • H-Ras forms dimers on membrane surfaces via a protein-protein interface
    • Lin WC, Iversen L, Tu HL, Rhodes C, et al. 2014. H-Ras forms dimers on membrane surfaces via a protein-protein interface. Proc Natl Acad Sci USA 111: 2996-3001.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 2996-3001
    • Lin, W.C.1    Iversen, L.2    Tu, H.L.3    Rhodes, C.4
  • 18
    • 84928392356 scopus 로고    scopus 로고
    • Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins
    • Raghupathy R, Anilkumar AA, Polley A, Singh PP, et al. 2015. Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins. Cell 161: 581-94.
    • (2015) Cell , vol.161 , pp. 581-594
    • Raghupathy, R.1    Anilkumar, A.A.2    Polley, A.3    Singh, P.P.4
  • 19
    • 84863524237 scopus 로고    scopus 로고
    • Monitoring lipid anchor organization in cell membranes by PIE-FCCS
    • Triffo S, Huang H, Smith A, Chou E, et al. 2012. Monitoring lipid anchor organization in cell membranes by PIE-FCCS. J Am Chem Soc 134: 10833-42.
    • (2012) J Am Chem Soc , vol.134 , pp. 10833-10842
    • Triffo, S.1    Huang, H.2    Smith, A.3    Chou, E.4
  • 20
    • 81855221892 scopus 로고    scopus 로고
    • Membrane protein sequestering by ionic protein-lipid interactions
    • van den Bogaart G, Meyenberg K, Risselada HJ, Amin H, et al. 2011. Membrane protein sequestering by ionic protein-lipid interactions. Nature 479: 552-5.
    • (2011) Nature , vol.479 , pp. 552-555
    • van den Bogaart, G.1    Meyenberg, K.2    Risselada, H.J.3    Amin, H.4
  • 21
    • 84939856487 scopus 로고    scopus 로고
    • SIGNAL TRANSDUCTION. Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling
    • Zhou Y, Wong CO, Cho KJ, van der Hoeven D, et al. 2015. SIGNAL TRANSDUCTION. Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling. Science 349: 873-6.
    • (2015) Science , vol.349 , pp. 873-876
    • Zhou, Y.1    Wong, C.O.2    Cho, K.J.3    van der Hoeven, D.4
  • 22
    • 84878752805 scopus 로고    scopus 로고
    • Sphingolipid domains in the plasma membranes of fibroblasts are not enriched with cholesterol
    • Frisz JF, Klitzing HA, Lou K, Hutcheon ID, et al. 2013. Sphingolipid domains in the plasma membranes of fibroblasts are not enriched with cholesterol. J Biol Chem 288: 16855-61.
    • (2013) J Biol Chem , vol.288 , pp. 16855-16861
    • Frisz, J.F.1    Klitzing, H.A.2    Lou, K.3    Hutcheon, I.D.4
  • 23
    • 84874242588 scopus 로고    scopus 로고
    • Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts
    • E613-EE22
    • Frisz JF, Lou K, Klitzing HA, Hanafin WP, et al. 2013. Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts. Proc Natl Acad Sci USA 110: E613-E22.
    • (2013) Proc Natl Acad Sci USA , vol.110
    • Frisz, J.F.1    Lou, K.2    Klitzing, H.A.3    Hanafin, W.P.4
  • 24
    • 84928404203 scopus 로고    scopus 로고
    • GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane
    • Sevcsik E, Brameshuber M, Folser M, Weghuber J, et al. 2015. GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane. Nat Commun 6: 6969.
    • (2015) Nat Commun , vol.6 , pp. 6969
    • Sevcsik, E.1    Brameshuber, M.2    Folser, M.3    Weghuber, J.4
  • 25
    • 33746085241 scopus 로고    scopus 로고
    • Rafts defined
    • Pike LJ. 2006. Rafts defined. J Lipid Res 47: 1597-8.
    • (2006) J Lipid Res , vol.47 , pp. 1597-1598
    • Pike, L.J.1
  • 26
    • 0344585437 scopus 로고    scopus 로고
    • Lipid rafts: elusive or illusive
    • Munro S. 2003. Lipid rafts: elusive or illusive? Cell 115: 377-88.
    • (2003) Cell , vol.115 , pp. 377-388
    • Munro, S.1
  • 27
    • 84884490244 scopus 로고    scopus 로고
    • Plasma membrane organization and function: moving past lipid rafts
    • Kraft M. 2013. Plasma membrane organization and function: moving past lipid rafts. Mol Biol Cell 24: 2765-8.
    • (2013) Mol Biol Cell , vol.24 , pp. 2765-2768
    • Kraft, M.1
  • 28
    • 44649160533 scopus 로고    scopus 로고
    • Have we become overly reliant on lipid rafts? Talking point on the involvement of lipid rafts in T-cell activation
    • Kenworthy AK. 2008. Have we become overly reliant on lipid rafts? Talking point on the involvement of lipid rafts in T-cell activation. EMBO Rep 9: 531-5.
    • (2008) EMBO Rep , vol.9 , pp. 531-535
    • Kenworthy, A.K.1
  • 29
    • 33750130964 scopus 로고    scopus 로고
    • Lipid rafts: now you see them, now you don't
    • Shaw AS. 2006. Lipid rafts: now you see them, now you don't. Nat Immunol 7: 1139-42.
    • (2006) Nat Immunol , vol.7 , pp. 1139-1142
    • Shaw, A.S.1
  • 30
    • 84871703344 scopus 로고    scopus 로고
    • A critical survey of methods to detect plasma membrane rafts
    • Klotzsch E, Schütz GJ. 2013. A critical survey of methods to detect plasma membrane rafts. Phil Trans R Soc B 368: 20120033.
    • (2013) Phil Trans R Soc B , vol.368 , pp. 20120033
    • Klotzsch, E.1    Schütz, G.J.2
  • 32
    • 0026512314 scopus 로고
    • Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface
    • Brown DA, Rose JK. 1992. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68: 533-44.
    • (1992) Cell , vol.68 , pp. 533-544
    • Brown, D.A.1    Rose, J.K.2
  • 33
    • 0141828502 scopus 로고    scopus 로고
    • Use of detergents to study membrane rafts: the good, the bad, and the ugly
    • Shogomori H, Brown DA. 2003. Use of detergents to study membrane rafts: the good, the bad, and the ugly. Biol Chem 384: 1259-63.
    • (2003) Biol Chem , vol.384 , pp. 1259-1263
    • Shogomori, H.1    Brown, D.A.2
  • 34
    • 11244252192 scopus 로고    scopus 로고
    • Differential insertion of GPI-anchored GFPs into lipid rafts of live cells
    • Legler DF, Doucey MA, Schneider P, Chapatte L, et al. 2005. Differential insertion of GPI-anchored GFPs into lipid rafts of live cells. FASEB J 19: 73-5.
    • (2005) FASEB J , vol.19 , pp. 73-75
    • Legler, D.F.1    Doucey, M.A.2    Schneider, P.3    Chapatte, L.4
  • 35
    • 0036841874 scopus 로고    scopus 로고
    • Triton promotes domain formation in lipid raft mixtures
    • Heerklotz H. 2002. Triton promotes domain formation in lipid raft mixtures. Biophys J 83: 2693-701.
    • (2002) Biophys J , vol.83 , pp. 2693-2701
    • Heerklotz, H.1
  • 36
    • 81255123303 scopus 로고    scopus 로고
    • Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation
    • Pathak P, London E. 2011. Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation. Biophys J 101: 2417-25.
    • (2011) Biophys J , vol.101 , pp. 2417-2425
    • Pathak, P.1    London, E.2
  • 37
    • 0020339953 scopus 로고
    • Viruses budding from either the apical or the basolateral plasma membrane domain of MDCK cells have unique phospholipid compositions
    • van Meer G, Simons K. 1982. Viruses budding from either the apical or the basolateral plasma membrane domain of MDCK cells have unique phospholipid compositions. EMBO J 1: 847-52.
    • (1982) EMBO J , vol.1 , pp. 847-852
    • van Meer, G.1    Simons, K.2
  • 38
    • 8744246234 scopus 로고    scopus 로고
    • N-glycans, not the GPI anchor, mediate the apical targeting of a naturally glycosylated, GPI-anchored protein in polarised epithelial cells
    • Pang S, Urquhart P, Hooper NM. 2004. N-glycans, not the GPI anchor, mediate the apical targeting of a naturally glycosylated, GPI-anchored protein in polarised epithelial cells. J Cell Sci 117: 5079-86.
    • (2004) J Cell Sci , vol.117 , pp. 5079-5086
    • Pang, S.1    Urquhart, P.2    Hooper, N.M.3
  • 39
    • 0033606823 scopus 로고    scopus 로고
    • N-Glycans mediate the apical sorting of a GPI-anchored, raft-associated protein in Madin-Darby canine kidney cells
    • Benting JH, Rietveld AG, Simons K. 1999. N-Glycans mediate the apical sorting of a GPI-anchored, raft-associated protein in Madin-Darby canine kidney cells. J Cell Biol 146: 313-20.
    • (1999) J Cell Biol , vol.146 , pp. 313-320
    • Benting, J.H.1    Rietveld, A.G.2    Simons, K.3
  • 40
    • 9444267662 scopus 로고    scopus 로고
    • Protein oligomerization modulates raft partitioning and apical sorting of GPI-anchored proteins
    • Paladino S, Sarnataro D, Pillich R, Tivodar S, et al. 2004. Protein oligomerization modulates raft partitioning and apical sorting of GPI-anchored proteins. J Cell Biol 167: 699-709.
    • (2004) J Cell Biol , vol.167 , pp. 699-709
    • Paladino, S.1    Sarnataro, D.2    Pillich, R.3    Tivodar, S.4
  • 41
    • 0034003908 scopus 로고    scopus 로고
    • Detergent-insoluble GPI-anchored proteins are apically sorted in fischer rat thyroid cells, but interference with cholesterol or sphingolipids differentially affects detergent insolubility and apical sorting
    • Lipardi C, Nitsch L, Zurzolo C. 2000. Detergent-insoluble GPI-anchored proteins are apically sorted in fischer rat thyroid cells, but interference with cholesterol or sphingolipids differentially affects detergent insolubility and apical sorting. Mol Biol Cell 11: 531-42.
    • (2000) Mol Biol Cell , vol.11 , pp. 531-542
    • Lipardi, C.1    Nitsch, L.2    Zurzolo, C.3
  • 42
    • 84899474201 scopus 로고    scopus 로고
    • Golgi sorting regulates organization and activity of GPI proteins at apical membranes
    • Paladino S, Lebreton S, Tivodar S, Formiggini F, et al. 2014. Golgi sorting regulates organization and activity of GPI proteins at apical membranes. Nat Chem Biol 10: 350-7.
    • (2014) Nat Chem Biol , vol.10 , pp. 350-357
    • Paladino, S.1    Lebreton, S.2    Tivodar, S.3    Formiggini, F.4
  • 43
    • 82655189982 scopus 로고    scopus 로고
    • N-Glycosylation instead of cholesterol mediates oligomerization and apical sorting of GPI-APs in FRT cells
    • Imjeti NS, Lebreton S, Paladino S, de la Fuente E, et al. 2011. N-Glycosylation instead of cholesterol mediates oligomerization and apical sorting of GPI-APs in FRT cells. Mol Biol Cell 22: 4621-34.
    • (2011) Mol Biol Cell , vol.22 , pp. 4621-4634
    • Imjeti, N.S.1    Lebreton, S.2    Paladino, S.3    de la Fuente, E.4
  • 44
    • 84911363929 scopus 로고    scopus 로고
    • Stable cell surface expression of GPI-anchored proteins, but not intracellular transport, depends on their fatty acid structure
    • Jaensch N, Correa IR, Jr., Watanabe R. 2014. Stable cell surface expression of GPI-anchored proteins, but not intracellular transport, depends on their fatty acid structure. Traffic 15: 1305-29.
    • (2014) Traffic , vol.15 , pp. 1305-1329
    • Jaensch, N.1    Correa, I.R.2    Watanabe, R.3
  • 45
    • 0031750335 scopus 로고    scopus 로고
    • Lipid domain structure of the plasma membrane revealed by patching of membrane components
    • Harder T, Scheiffele P, Verkade P, Simons K. 1998. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141: 929-42.
    • (1998) J Cell Biol , vol.141 , pp. 929-942
    • Harder, T.1    Scheiffele, P.2    Verkade, P.3    Simons, K.4
  • 46
    • 38549111882 scopus 로고    scopus 로고
    • Informatics and computational strategies for the study of lipids
    • Yetukuri L, Ekroos K, Vidal-Puig A, Oresic M. 2008. Informatics and computational strategies for the study of lipids. Mol Biosyst 4: 121-7.
    • (2008) Mol Biosyst , vol.4 , pp. 121-127
    • Yetukuri, L.1    Ekroos, K.2    Vidal-Puig, A.3    Oresic, M.4
  • 47
    • 29144531904 scopus 로고    scopus 로고
    • Seeing spots: complex phase behavior in simple membranes
    • Veatch SL, Keller SL. 2005. Seeing spots: complex phase behavior in simple membranes. Biochim Biophys Acta 1746: 172-85.
    • (2005) Biochim Biophys Acta , vol.1746 , pp. 172-185
    • Veatch, S.L.1    Keller, S.L.2
  • 48
    • 42949117368 scopus 로고    scopus 로고
    • Protein area occupancy at the center of the red blood cell membrane
    • Dupuy AD, Engelman DM. 2008. Protein area occupancy at the center of the red blood cell membrane. Proc Natl Acad Sci USA 105: 2848-52.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 2848-2852
    • Dupuy, A.D.1    Engelman, D.M.2
  • 49
    • 84856213807 scopus 로고    scopus 로고
    • Molecular recognition of a single sphingolipid species by a protein's transmembrane domain
    • Contreras FX, Ernst AM, Haberkant P, Bjorkholm P, et al. 2012. Molecular recognition of a single sphingolipid species by a protein's transmembrane domain. Nature 481: 525-9.
    • (2012) Nature , vol.481 , pp. 525-529
    • Contreras, F.X.1    Ernst, A.M.2    Haberkant, P.3    Bjorkholm, P.4
  • 50
    • 84883556425 scopus 로고    scopus 로고
    • How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains
    • Fantini J, Barrantes FJ. 2013. How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front Physiol 4: 31.
    • (2013) Front Physiol , vol.4 , pp. 31
    • Fantini, J.1    Barrantes, F.J.2
  • 51
    • 80053131218 scopus 로고    scopus 로고
    • Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2
    • Hansen SB, Tao X, MacKinnon R. 2011. Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 477: 495-8.
    • (2011) Nature , vol.477 , pp. 495-498
    • Hansen, S.B.1    Tao, X.2    MacKinnon, R.3
  • 52
    • 0037036135 scopus 로고    scopus 로고
    • A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains
    • Anderson RG, Jacobson K. 2002. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296: 1821-5.
    • (2002) Science , vol.296 , pp. 1821-1825
    • Anderson, R.G.1    Jacobson, K.2
  • 54
    • 84864848873 scopus 로고    scopus 로고
    • PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity
    • Hammond GR, Fischer MJ, Anderson KE, Holdich J, et al. 2012. PI4P and PI(4, 5)P2 are essential but independent lipid determinants of membrane identity. Science 337: 727-30.
    • (2012) Science , vol.337 , pp. 727-730
    • Hammond, G.R.1    Fischer, M.J.2    Anderson, K.E.3    Holdich, J.4
  • 55
    • 38149094836 scopus 로고    scopus 로고
    • Membrane phosphatidylserine regulates surface charge and protein localization
    • Yeung T, Gilbert GE, Shi J, Silvius J, et al. 2008. Membrane phosphatidylserine regulates surface charge and protein localization. Science 319: 210-3.
    • (2008) Science , vol.319 , pp. 210-213
    • Yeung, T.1    Gilbert, G.E.2    Shi, J.3    Silvius, J.4
  • 56
    • 84873862003 scopus 로고    scopus 로고
    • Steric pressure between membrane-bound proteins opposes lipid phase separation
    • Scheve C, Gonzales P, Momin N, Stachowiak J. 2013. Steric pressure between membrane-bound proteins opposes lipid phase separation. J Am Chem Soc 135: 1185-8.
    • (2013) J Am Chem Soc , vol.135 , pp. 1185-1188
    • Scheve, C.1    Gonzales, P.2    Momin, N.3    Stachowiak, J.4
  • 57
    • 57149125825 scopus 로고    scopus 로고
    • Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity
    • Goswami D, Gowrishankar K, Bilgrami S, Ghosh S, et al. 2008. Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 135: 1085-97.
    • (2008) Cell , vol.135 , pp. 1085-1097
    • Goswami, D.1    Gowrishankar, K.2    Bilgrami, S.3    Ghosh, S.4
  • 58
    • 84861991991 scopus 로고    scopus 로고
    • Active remodeling of cortical actin regulates spatiotemporal organization of cell surface molecules
    • Gowrishankar K, Ghosh S, Saha S, Rumamol C, et al. 2012. Active remodeling of cortical actin regulates spatiotemporal organization of cell surface molecules. Cell 149: 1353-67.
    • (2012) Cell , vol.149 , pp. 1353-1367
    • Gowrishankar, K.1    Ghosh, S.2    Saha, S.3    Rumamol, C.4
  • 59
    • 20744449293 scopus 로고    scopus 로고
    • Artificially lipid-anchored proteins can elicit clustering-induced intracellular signaling events in Jurkat T-lymphocytes independent of lipid raft association
    • Wang TY, Leventis R, Silvius JR. 2005. Artificially lipid-anchored proteins can elicit clustering-induced intracellular signaling events in Jurkat T-lymphocytes independent of lipid raft association. J Biol Chem 280: 22839-46.
    • (2005) J Biol Chem , vol.280 , pp. 22839-22846
    • Wang, T.Y.1    Leventis, R.2    Silvius, J.R.3
  • 60
    • 84904994558 scopus 로고    scopus 로고
    • Multi-protein assemblies underlie the mesoscale organization of the plasma membrane
    • Saka SK, Honigmann A, Eggeling C, Hell SW, et al. 2014. Multi-protein assemblies underlie the mesoscale organization of the plasma membrane. Nat Commun 5: 4509.
    • (2014) Nat Commun , vol.5 , pp. 4509
    • Saka, S.K.1    Honigmann, A.2    Eggeling, C.3    Hell, S.W.4
  • 61
    • 77957268219 scopus 로고    scopus 로고
    • Direct mapping of nanoscale compositional connectivity on intact cell membranes
    • van Zanten TS, Gomez J, Manzo C, Cambi A, et al. 2010. Direct mapping of nanoscale compositional connectivity on intact cell membranes. Proc Natl Acad Sci USA 107: 15437-42.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 15437-15442
    • van Zanten, T.S.1    Gomez, J.2    Manzo, C.3    Cambi, A.4
  • 62
    • 33746581138 scopus 로고    scopus 로고
    • Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork
    • Lenne PF, Wawrezinieck L, Conchonaud F, Wurtz O, et al. 2006. Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J 25: 3245-56.
    • (2006) EMBO J , vol.25 , pp. 3245-3256
    • Lenne, P.F.1    Wawrezinieck, L.2    Conchonaud, F.3    Wurtz, O.4
  • 63
    • 34249064912 scopus 로고    scopus 로고
    • Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies
    • Zidovetzki R, Levitan I. 2007. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta 1768: 1311-24.
    • (2007) Biochim Biophys Acta , vol.1768 , pp. 1311-1324
    • Zidovetzki, R.1    Levitan, I.2
  • 64
    • 77449093197 scopus 로고    scopus 로고
    • Permeabilization of cell membranes
    • Jamur MC, Oliver C. 2010. Permeabilization of cell membranes. Methods Mol Biol 588: 63-6.
    • (2010) Methods Mol Biol , vol.588 , pp. 63-66
    • Jamur, M.C.1    Oliver, C.2
  • 65
    • 84910008356 scopus 로고    scopus 로고
    • Enzymatic oxidation of cholesterol: properties and functional effects of cholestenone in cell membranes
    • Neuvonen M, Manna M, Mokkila S, Javanainen M, et al. 2014. Enzymatic oxidation of cholesterol: properties and functional effects of cholestenone in cell membranes. PLoS ONE 9: e103743.
    • (2014) PLoS ONE , vol.9 , pp. e103743
    • Neuvonen, M.1    Manna, M.2    Mokkila, S.3    Javanainen, M.4
  • 66
    • 0019171741 scopus 로고
    • Lateral diffusion in inhomogeneous membranes. Model membranes containing cholesterol
    • Owicki JC, McConnell HM. 1980. Lateral diffusion in inhomogeneous membranes. Model membranes containing cholesterol. Biophys J 30: 383-97.
    • (1980) Biophys J , vol.30 , pp. 383-397
    • Owicki, J.C.1    McConnell, H.M.2
  • 67
    • 0016229943 scopus 로고
    • Changes of membrane permeability due to extensive cholesterol depletion in mammalian erythrocytes
    • Grunze M, Deuticke B. 1974. Changes of membrane permeability due to extensive cholesterol depletion in mammalian erythrocytes. Biochim Biophys Acta 356: 125-30.
    • (1974) Biochim Biophys Acta , vol.356 , pp. 125-130
    • Grunze, M.1    Deuticke, B.2
  • 68
    • 0017125226 scopus 로고
    • Water and nonelectrolyte permeability of lipid bilayer membranes
    • Finkelstein A. 1976. Water and nonelectrolyte permeability of lipid bilayer membranes. J Gen Physiol 68: 127-35.
    • (1976) J Gen Physiol , vol.68 , pp. 127-135
    • Finkelstein, A.1
  • 69
    • 34548256844 scopus 로고    scopus 로고
    • Anatomy and dynamics of a supramolecular membrane protein cluster
    • Sieber JJ, Willig KI, Kutzner C, Gerding-Reimers C, et al. 2007. Anatomy and dynamics of a supramolecular membrane protein cluster. Science 317: 1072-6.
    • (2007) Science , vol.317 , pp. 1072-1076
    • Sieber, J.J.1    Willig, K.I.2    Kutzner, C.3    Gerding-Reimers, C.4
  • 70
    • 0345564815 scopus 로고    scopus 로고
    • Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin
    • Kwik J, Boyle S, Fooksman D, Margolis L, et al. 2003. Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4, 5-bisphosphate-dependent organization of cell actin. Proc Natl Acad Sci USA 100: 13964-9.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 13964-13969
    • Kwik, J.1    Boyle, S.2    Fooksman, D.3    Margolis, L.4
  • 71
    • 84862182124 scopus 로고    scopus 로고
    • Phosphoinositides and vesicular membrane traffic
    • Mayinger P. 2012. Phosphoinositides and vesicular membrane traffic. Biochim Biophys Acta 1821: 1104-13.
    • (2012) Biochim Biophys Acta , vol.1821 , pp. 1104-1113
    • Mayinger, P.1
  • 72
    • 34249090252 scopus 로고    scopus 로고
    • Cholesterol-sensitive Cdc42 activation regulates actin polymerization for endocytosis via the GEEC pathway
    • Chadda R, Howes MT, Plowman SJ, Hancock JF, et al. 2007. Cholesterol-sensitive Cdc42 activation regulates actin polymerization for endocytosis via the GEEC pathway. Traffic 8: 702-17.
    • (2007) Traffic , vol.8 , pp. 702-717
    • Chadda, R.1    Howes, M.T.2    Plowman, S.J.3    Hancock, J.F.4
  • 73
    • 80755188911 scopus 로고    scopus 로고
    • Hierarchical mesoscale domain organization of the plasma membrane
    • Kusumi A, Suzuki KG, Kasai RS, Ritchie K, et al. 2011. Hierarchical mesoscale domain organization of the plasma membrane. Trends Biochem Sci 36: 604-15.
    • (2011) Trends Biochem Sci , vol.36 , pp. 604-615
    • Kusumi, A.1    Suzuki, K.G.2    Kasai, R.S.3    Ritchie, K.4
  • 74
    • 84870896671 scopus 로고    scopus 로고
    • Cholesterol increases kinetic, energetic, and mechanical stability of the human beta2-adrenergic receptor
    • Zocher M, Zhang C, Rasmussen SG, Kobilka BK, et al. 2012. Cholesterol increases kinetic, energetic, and mechanical stability of the human beta2-adrenergic receptor. Proc Natl Acad Sci USA 109: E3463-72.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. E3463-E3472
    • Zocher, M.1    Zhang, C.2    Rasmussen, S.G.3    Kobilka, B.K.4
  • 75
    • 84856932972 scopus 로고    scopus 로고
    • Structural characterization of the caveolin scaffolding domain in association with cholesterol-rich membranes
    • Hoop CL, Sivanandam VN, Kodali R, Srnec MN, et al. 2012. Structural characterization of the caveolin scaffolding domain in association with cholesterol-rich membranes. Biochemistry 51: 90-9.
    • (2012) Biochemistry , vol.51 , pp. 90-99
    • Hoop, C.L.1    Sivanandam, V.N.2    Kodali, R.3    Srnec, M.N.4
  • 76
    • 84871861963 scopus 로고    scopus 로고
    • Cholesterol modulates cell signaling and protein networking by specifically interacting with PDZ domain-containing scaffold proteins
    • Sheng R, Chen Y, Yung Gee H, Stec E, et al. 2012. Cholesterol modulates cell signaling and protein networking by specifically interacting with PDZ domain-containing scaffold proteins. Nat Commun 3: 1249.
    • (2012) Nat Commun , vol.3 , pp. 1249
    • Sheng, R.1    Chen, Y.2    Yung Gee, H.3    Stec, E.4
  • 77
    • 14644391519 scopus 로고    scopus 로고
    • OSBP is a cholesterol-regulated scaffolding protein in control of ERK 1/2 activation
    • Wang PY, Weng J, Anderson RG. 2005. OSBP is a cholesterol-regulated scaffolding protein in control of ERK 1/2 activation. Science 307: 1472-6.
    • (2005) Science , vol.307 , pp. 1472-1476
    • Wang, P.Y.1    Weng, J.2    Anderson, R.G.3
  • 78
    • 0030919779 scopus 로고    scopus 로고
    • Cell surface dynamics of GPI-anchored proteins
    • Maxfield FR, Mayor S. 1997. Cell surface dynamics of GPI-anchored proteins. Adv Exp Med Biol 419: 355-64.
    • (1997) Adv Exp Med Biol , vol.419 , pp. 355-364
    • Maxfield, F.R.1    Mayor, S.2
  • 79
    • 0026352248 scopus 로고
    • GPI-anchored cell-surface molecules complexed to protein tyrosine kinases
    • Stefanova I, Horejsi V, Ansotegui IJ, Knapp W, et al. 1991. GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science 254: 1016-9.
    • (1991) Science , vol.254 , pp. 1016-1019
    • Stefanova, I.1    Horejsi, V.2    Ansotegui, I.J.3    Knapp, W.4
  • 80
    • 0037087307 scopus 로고    scopus 로고
    • Lipid microdomain clustering induces a redistribution of antigen recognition and adhesion molecules on human T lymphocytes
    • Mitchell JS, Kanca O, McIntyre BW. 2002. Lipid microdomain clustering induces a redistribution of antigen recognition and adhesion molecules on human T lymphocytes. J Immunol 168: 2737-44.
    • (2002) J Immunol , vol.168 , pp. 2737-2744
    • Mitchell, J.S.1    Kanca, O.2    McIntyre, B.W.3
  • 81
    • 42449093193 scopus 로고    scopus 로고
    • Patching of ganglioside(M1) in human erythrocytes - distribution of CD47 and CD59 in patched and curved membrane
    • Mrowczynska L, Hagerstrand H. 2008. Patching of ganglioside(M1) in human erythrocytes - distribution of CD47 and CD59 in patched and curved membrane. Mol Membr Biol 25: 258-65.
    • (2008) Mol Membr Biol , vol.25 , pp. 258-265
    • Mrowczynska, L.1    Hagerstrand, H.2
  • 82
    • 2342585500 scopus 로고    scopus 로고
    • Copatching and lipid raft association of different viral glycoproteins expressed on the surfaces of pseudorabies virus-infected cells
    • Favoreel HW, Mettenleiter TC, Nauwynck HJ. 2004. Copatching and lipid raft association of different viral glycoproteins expressed on the surfaces of pseudorabies virus-infected cells. J Virol 78: 5279-87.
    • (2004) J Virol , vol.78 , pp. 5279-5287
    • Favoreel, H.W.1    Mettenleiter, T.C.2    Nauwynck, H.J.3
  • 83
    • 80053962808 scopus 로고    scopus 로고
    • Gag induces the coalescence of clustered lipid rafts and tetraspanin-enriched microdomains at HIV-1 assembly sites on the plasma membrane
    • Hogue IB, Grover JR, Soheilian F, Nagashima K, et al. 2011. Gag induces the coalescence of clustered lipid rafts and tetraspanin-enriched microdomains at HIV-1 assembly sites on the plasma membrane. J Virol 85: 9749-66.
    • (2011) J Virol , vol.85 , pp. 9749-9766
    • Hogue, I.B.1    Grover, J.R.2    Soheilian, F.3    Nagashima, K.4
  • 84
    • 76749148244 scopus 로고    scopus 로고
    • Cell membrane extensions, generated by mechanical constraint, are associated with a sustained lipid raft patching and an increased cell signaling
    • Larive RM, Baisamy L, Urbach S, Coopman P, et al. 2010. Cell membrane extensions, generated by mechanical constraint, are associated with a sustained lipid raft patching and an increased cell signaling. Biochim Biophys Acta 1798: 389-400.
    • (2010) Biochim Biophys Acta , vol.1798 , pp. 389-400
    • Larive, R.M.1    Baisamy, L.2    Urbach, S.3    Coopman, P.4
  • 85
    • 1542399850 scopus 로고    scopus 로고
    • Lipid raft proteins have a random distribution during localized activation of the T-cell receptor
    • Glebov O, Nichols B. 2004. Lipid raft proteins have a random distribution during localized activation of the T-cell receptor. Nat Cell Biol 6: 238-43.
    • (2004) Nat Cell Biol , vol.6 , pp. 238-243
    • Glebov, O.1    Nichols, B.2
  • 86
    • 84861079568 scopus 로고    scopus 로고
    • Elucidating membrane structure and protein behavior using giant plasma membrane vesicles
    • Sezgin E, Kaiser HJ, Baumgart T, Schwille P, et al. 2012. Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nat Protoc 7: 1042-51.
    • (2012) Nat Protoc , vol.7 , pp. 1042-1051
    • Sezgin, E.1    Kaiser, H.J.2    Baumgart, T.3    Schwille, P.4
  • 87
    • 77957167810 scopus 로고    scopus 로고
    • Revitalizing membrane rafts: new tools and insights
    • Simons K, Gerl MJ. 2010. Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11: 688-99.
    • (2010) Nat Rev Mol Cell Biol , vol.11 , pp. 688-699
    • Simons, K.1    Gerl, M.J.2
  • 88
    • 84878125516 scopus 로고    scopus 로고
    • Molecular lipidomics of exosomes released by PC-3 prostate cancer cells
    • Llorente A, Skotland T, Sylvanne T, Kauhanen D, et al. 2013. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim Biophys Acta 1831: 1302-9.
    • (2013) Biochim Biophys Acta , vol.1831 , pp. 1302-1309
    • Llorente, A.1    Skotland, T.2    Sylvanne, T.3    Kauhanen, D.4
  • 89
    • 33845368663 scopus 로고    scopus 로고
    • Actin polymerization serves as a membrane domain switch in model lipid bilayers
    • Liu AP, Fletcher DA. 2006. Actin polymerization serves as a membrane domain switch in model lipid bilayers. Biophys J 91: 4064-70.
    • (2006) Biophys J , vol.91 , pp. 4064-4070
    • Liu, A.P.1    Fletcher, D.A.2
  • 90
    • 70349939409 scopus 로고    scopus 로고
    • Calcium-actin waves and oscillations of cellular membranes
    • Veksler A, Gov NS. 2009. Calcium-actin waves and oscillations of cellular membranes. Biophys J 97: 1558-68.
    • (2009) Biophys J , vol.97 , pp. 1558-1568
    • Veksler, A.1    Gov, N.S.2
  • 91
    • 84891951354 scopus 로고    scopus 로고
    • Large effect of membrane tension on the fluid-solid phase transitions of two-component phosphatidylcholine vesicles
    • Chen D, Santore MM. 2014. Large effect of membrane tension on the fluid-solid phase transitions of two-component phosphatidylcholine vesicles. Proc Natl Acad Sci USA 111: 179-84.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 179-184
    • Chen, D.1    Santore, M.M.2
  • 92
    • 79960972543 scopus 로고    scopus 로고
    • Raft domains of variable properties and compositions in plasma membrane vesicles
    • Levental I, Grzybek M, Simons K. 2011. Raft domains of variable properties and compositions in plasma membrane vesicles. Proc Natl Acad Sci USA 108: 11411-6.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 11411-11416
    • Levental, I.1    Grzybek, M.2    Simons, K.3
  • 93
    • 77954760208 scopus 로고    scopus 로고
    • Temperature-dependent phase behavior and protein partitioning in giant plasma membrane vesicles
    • Johnson SA, Stinson BM, Go MS, Carmona LM, et al. 2010. Temperature-dependent phase behavior and protein partitioning in giant plasma membrane vesicles. Biochim Biophys Acta 1798: 1427-35.
    • (2010) Biochim Biophys Acta , vol.1798 , pp. 1427-1435
    • Johnson, S.A.1    Stinson, B.M.2    Go, M.S.3    Carmona, L.M.4
  • 94
    • 45449105164 scopus 로고    scopus 로고
    • Protein modulation of lipids, and vice-versa, in membranes
    • Marsh D. 2008. Protein modulation of lipids, and vice-versa, in membranes. Biochim Biophys Acta 1778: 1545-75.
    • (2008) Biochim Biophys Acta , vol.1778 , pp. 1545-1575
    • Marsh, D.1
  • 95
    • 80053632190 scopus 로고    scopus 로고
    • Lateral sorting in model membranes by cholesterol-mediated hydrophobic matching
    • Kaiser HJ, Orlowski A, Rog T, Nyholm TK, et al. 2011. Lateral sorting in model membranes by cholesterol-mediated hydrophobic matching. Proc Natl Acad Sci USA 108: 16628-33.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 16628-16633
    • Kaiser, H.J.1    Orlowski, A.2    Rog, T.3    Nyholm, T.K.4
  • 96
    • 0031740415 scopus 로고    scopus 로고
    • Hydrophobic mismatch between proteins and lipids in membranes
    • Killian JA. 1998. Hydrophobic mismatch between proteins and lipids in membranes. Biochim Biophys Acta 1376: 401-15.
    • (1998) Biochim Biophys Acta , vol.1376 , pp. 401-415
    • Killian, J.A.1
  • 98
    • 84921777202 scopus 로고    scopus 로고
    • Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins
    • Suetsugu S, Kurisu S, Takenawa T. 2014. Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins. Physiol Rev 94: 1219-48.
    • (2014) Physiol Rev , vol.94 , pp. 1219-1248
    • Suetsugu, S.1    Kurisu, S.2    Takenawa, T.3
  • 99
    • 84920934354 scopus 로고    scopus 로고
    • Diacylglycerol, phosphatidic acid, and their metabolic enzymes in synaptic vesicle recycling
    • Tu-Sekine B, Goldschmidt H, Raben DM. 2015. Diacylglycerol, phosphatidic acid, and their metabolic enzymes in synaptic vesicle recycling. Adv Biol Regul 57: 147-52.
    • (2015) Adv Biol Regul , vol.57 , pp. 147-152
    • Tu-Sekine, B.1    Goldschmidt, H.2    Raben, D.M.3
  • 101
    • 77952132277 scopus 로고    scopus 로고
    • Dynamic sorting of lipids and proteins in membrane tubes with a moving phase boundary
    • Heinrich M, Tian A, Esposito C, Baumgart T. 2010. Dynamic sorting of lipids and proteins in membrane tubes with a moving phase boundary. Proc Natl Acad Sci USA 107: 7208-13.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 7208-7213
    • Heinrich, M.1    Tian, A.2    Esposito, C.3    Baumgart, T.4
  • 102
    • 80755153578 scopus 로고    scopus 로고
    • Staying in touch: the molecular era of organelle contact sites
    • Elbaz Y, Schuldiner M. 2011. Staying in touch: the molecular era of organelle contact sites. Trends Biochem Sci 36: 616-23.
    • (2011) Trends Biochem Sci , vol.36 , pp. 616-623
    • Elbaz, Y.1    Schuldiner, M.2
  • 103
    • 79551674131 scopus 로고    scopus 로고
    • Osh proteins regulate phosphoinositide metabolism at ER-plasma membrane contact sites
    • Stefan CJ, Manford AG, Baird D, Yamada-Hanff J, et al. 2011. Osh proteins regulate phosphoinositide metabolism at ER-plasma membrane contact sites. Cell 144: 389-401.
    • (2011) Cell , vol.144 , pp. 389-401
    • Stefan, C.J.1    Manford, A.G.2    Baird, D.3    Yamada-Hanff, J.4
  • 104
    • 0030222116 scopus 로고    scopus 로고
    • Cell surface organization by the membrane skeleton
    • Kusumi A, Sako Y. 1996. Cell surface organization by the membrane skeleton. Curr Opin Cell Biol 8: 566-74.
    • (1996) Curr Opin Cell Biol , vol.8 , pp. 566-574
    • Kusumi, A.1    Sako, Y.2
  • 105
    • 84961289039 scopus 로고    scopus 로고
    • Barriers to the free diffusion of proteins and lipids in the plasma membrane
    • Trimble WS, Grinstein S. 2015. Barriers to the free diffusion of proteins and lipids in the plasma membrane. J Cell Biol 208: 259-71.
    • (2015) J Cell Biol , vol.208 , pp. 259-271
    • Trimble, W.S.1    Grinstein, S.2
  • 107
    • 83655165847 scopus 로고    scopus 로고
    • Lipids and membrane lateral organization
    • Sonnino S, Prinetti A. 2010. Lipids and membrane lateral organization. Front Physiol 1: 153.
    • (2010) Front Physiol , vol.1 , pp. 153
    • Sonnino, S.1    Prinetti, A.2
  • 108
    • 84898993452 scopus 로고    scopus 로고
    • The basic structure and dynamics of cell membranes: an update of the Singer-Nicolson model
    • Goni FM. 2014. The basic structure and dynamics of cell membranes: an update of the Singer-Nicolson model. Biochim Biophys Acta 1838: 1467-76.
    • (2014) Biochim Biophys Acta , vol.1838 , pp. 1467-1476
    • Goni, F.M.1
  • 109
    • 84876312818 scopus 로고    scopus 로고
    • When peers are not peers and don't know it: the Dunning-Kruger effect and self-fulfilling prophecy in peer-review
    • Huang S. 2013. When peers are not peers and don't know it: the Dunning-Kruger effect and self-fulfilling prophecy in peer-review. BioEssays 35: 414-6.
    • (2013) BioEssays , vol.35 , pp. 414-416
    • Huang, S.1
  • 110
    • 80255137569 scopus 로고    scopus 로고
    • Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis
    • Sengupta P, Jovanovic-Talisman T, Skoko D, Renz M, et al. 2011. Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat Methods 8: 969-75.
    • (2011) Nat Methods , vol.8 , pp. 969-975
    • Sengupta, P.1    Jovanovic-Talisman, T.2    Skoko, D.3    Renz, M.4
  • 111
    • 77954757145 scopus 로고    scopus 로고
    • The liquid-ordered state comes of age
    • Mouritsen OG. 2010. The liquid-ordered state comes of age. Biochim Biophys Acta 1798: 1286-8.
    • (2010) Biochim Biophys Acta , vol.1798 , pp. 1286-1288
    • Mouritsen, O.G.1
  • 112
    • 80053354873 scopus 로고    scopus 로고
    • STED nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells
    • Mueller V, Ringemann C, Honigmann A, Schwarzmann G, et al. 2011. STED nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells. Biophys J 101: 1651-60.
    • (2011) Biophys J , vol.101 , pp. 1651-1660
    • Mueller, V.1    Ringemann, C.2    Honigmann, A.3    Schwarzmann, G.4
  • 113
    • 84871789466 scopus 로고    scopus 로고
    • Sub-resolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution
    • Owen DM, Williamson DJ, Magenau A, Gaus K. 2012. Sub-resolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution. Nat Commun 3: 1256.
    • (2012) Nat Commun , vol.3 , pp. 1256
    • Owen, D.M.1    Williamson, D.J.2    Magenau, A.3    Gaus, K.4
  • 114
    • 84920127267 scopus 로고    scopus 로고
    • Time-resolved fluorescence in lipid bilayers: selected applications and advantages over steady state
    • Amaro M, Sachl R, Jurkiewicz P, Coutinho A, et al. 2014. Time-resolved fluorescence in lipid bilayers: selected applications and advantages over steady state. Biophys J 107: 2751-60.
    • (2014) Biophys J , vol.107 , pp. 2751-2760
    • Amaro, M.1    Sachl, R.2    Jurkiewicz, P.3    Coutinho, A.4
  • 115
    • 84901841287 scopus 로고    scopus 로고
    • Peripheral and integral membrane binding of peptides characterized by time-dependent fluorescence shifts: focus on antimicrobial peptide LAH(4)
    • Machan R, Jurkiewicz P, Olzynska A, Olsinova M, et al. 2014. Peripheral and integral membrane binding of peptides characterized by time-dependent fluorescence shifts: focus on antimicrobial peptide LAH(4). Langmuir 30: 6171-9.
    • (2014) Langmuir , vol.30 , pp. 6171-6179
    • Machan, R.1    Jurkiewicz, P.2    Olzynska, A.3    Olsinova, M.4
  • 116
    • 0022389171 scopus 로고
    • Cholesterol and the cell membrane
    • Yeagle PL. 1985. Cholesterol and the cell membrane. Biochim Biophys Acta 822: 267-87.
    • (1985) Biochim Biophys Acta , vol.822 , pp. 267-287
    • Yeagle, P.L.1
  • 117
    • 0032527642 scopus 로고    scopus 로고
    • Structure and origin of ordered lipid domains in biological membranes
    • Brown DA, London E. 1998. Structure and origin of ordered lipid domains in biological membranes. J Membr Biol 164: 103-14.
    • (1998) J Membr Biol , vol.164 , pp. 103-114
    • Brown, D.A.1    London, E.2
  • 118
    • 0037429658 scopus 로고    scopus 로고
    • Dynamics of raft molecules in the cell and artificial membranes: approaches by pulse EPR spin labeling and single molecule optical microscopy
    • Subczynski WK, Kusumi A. 2003. Dynamics of raft molecules in the cell and artificial membranes: approaches by pulse EPR spin labeling and single molecule optical microscopy. Biochim Biophys Acta 1610: 231-43.
    • (2003) Biochim Biophys Acta , vol.1610 , pp. 231-243
    • Subczynski, W.K.1    Kusumi, A.2
  • 120
    • 46849102138 scopus 로고    scopus 로고
    • The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins
    • Paulick MG, Bertozzi CR. 2008. The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins. Biochemistry 47: 6991-7000.
    • (2008) Biochemistry , vol.47 , pp. 6991-7000
    • Paulick, M.G.1    Bertozzi, C.R.2
  • 121
    • 0030958564 scopus 로고    scopus 로고
    • Signal transduction via GPI-anchored membrane proteins
    • Robinson PJ. 1997. Signal transduction via GPI-anchored membrane proteins. Adv Exp Med Biol 419: 365-70.
    • (1997) Adv Exp Med Biol , vol.419 , pp. 365-370
    • Robinson, P.J.1
  • 122
    • 0015863154 scopus 로고
    • Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents
    • Yu J, Fischman DA, Steck TL. 1973. Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J Supramol Struct 1: 233-48.
    • (1973) J Supramol Struct , vol.1 , pp. 233-248
    • Yu, J.1    Fischman, D.A.2    Steck, T.L.3
  • 123
    • 78650664669 scopus 로고    scopus 로고
    • Palmitoylation regulates raft affinity for the majority of integral raft proteins
    • Levental I, Lingwood D, Grzybek M, Coskun U, et al. 2010. Palmitoylation regulates raft affinity for the majority of integral raft proteins. Proc Natl Acad Sci USA 107: 22050-4.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 22050-22054
    • Levental, I.1    Lingwood, D.2    Grzybek, M.3    Coskun, U.4
  • 125
    • 80053060999 scopus 로고    scopus 로고
    • Structures, biosynthesis, and functions of gangliosides - an overview
    • Yu RK, Tsai YT, Ariga T, Yanagisawa M. 2011. Structures, biosynthesis, and functions of gangliosides - an overview. J Oleo Sci 60: 537-44.
    • (2011) J Oleo Sci , vol.60 , pp. 537-544
    • Yu, R.K.1    Tsai, Y.T.2    Ariga, T.3    Yanagisawa, M.4
  • 126
    • 0028925604 scopus 로고
    • The glycophosphatidylinositol anchor affects the conformation of Thy-1 protein
    • Barboni E, Rivero BP, George AJ, Martin SR, et al. 1995. The glycophosphatidylinositol anchor affects the conformation of Thy-1 protein. J Cell Sci 108: 487-97.
    • (1995) J Cell Sci , vol.108 , pp. 487-497
    • Barboni, E.1    Rivero, B.P.2    George, A.J.3    Martin, S.R.4
  • 127
    • 0035121554 scopus 로고    scopus 로고
    • GPI-anchored proteins: now you see 'em, now you don't
    • Butikofer P, Malherbe T, Boschung M, Roditi I. 2001. GPI-anchored proteins: now you see 'em, now you don't. FASEB J 15: 545-8.
    • (2001) FASEB J , vol.15 , pp. 545-548
    • Butikofer, P.1    Malherbe, T.2    Boschung, M.3    Roditi, I.4
  • 128
    • 0037046150 scopus 로고    scopus 로고
    • Proximity of bound Hoechst 33342 to the ATPase catalytic sites places the drug binding site of P-glycoprotein within the cytoplasmic membrane leaflet
    • Qu Q, Sharom FJ. 2002. Proximity of bound Hoechst 33342 to the ATPase catalytic sites places the drug binding site of P-glycoprotein within the cytoplasmic membrane leaflet. Biochemistry 41: 4744-52.
    • (2002) Biochemistry , vol.41 , pp. 4744-4752
    • Qu, Q.1    Sharom, F.J.2
  • 129
    • 0002186335 scopus 로고
    • Dropping anchor with the lipophosphoglycans
    • Rademacher TW, Edge CJ, Dwek RA. 1991. Dropping anchor with the lipophosphoglycans. Curr Biol 1: 41-2.
    • (1991) Curr Biol , vol.1 , pp. 41-42
    • Rademacher, T.W.1    Edge, C.J.2    Dwek, R.A.3
  • 130
    • 0024519464 scopus 로고
    • Solution structure of the glycosylphosphatidylinositol membrane anchor glycan of Trypanosoma brucei variant surface glycoprotein
    • Homans SW, Edge CJ, Ferguson MA, Dwek RA, et al. 1989. Solution structure of the glycosylphosphatidylinositol membrane anchor glycan of Trypanosoma brucei variant surface glycoprotein. Biochemistry 28: 2881-7.
    • (1989) Biochemistry , vol.28 , pp. 2881-2887
    • Homans, S.W.1    Edge, C.J.2    Ferguson, M.A.3    Dwek, R.A.4
  • 131
    • 75949110393 scopus 로고    scopus 로고
    • Two-color single molecule tracking combined with photobleaching for the detection of rare molecular interactions in fluid biomembranes
    • Ruprecht V, Brameshuber M, Schütz GJ. 2010. Two-color single molecule tracking combined with photobleaching for the detection of rare molecular interactions in fluid biomembranes. Soft Matter 6: 568-81.
    • (2010) Soft Matter , vol.6 , pp. 568-581
    • Ruprecht, V.1    Brameshuber, M.2    Schütz, G.J.3
  • 132
    • 34247886012 scopus 로고    scopus 로고
    • (Un) Confined diffusion of CD59 in the plasma membrane determined by high-resolution single molecule microscopy
    • Wieser S, Moertelmaier M, Fuertbauer E, Stockinger H, et al. 2007. (Un) Confined diffusion of CD59 in the plasma membrane determined by high-resolution single molecule microscopy. Biophys J 92: 3719-28.
    • (2007) Biophys J , vol.92 , pp. 3719-3728
    • Wieser, S.1    Moertelmaier, M.2    Fuertbauer, E.3    Stockinger, H.4
  • 133
    • 0032814905 scopus 로고    scopus 로고
    • Effect of unsaturated acyl chains on the thermotropic and barotropic phase transitions of phospholipid bilayer membranes
    • Ichimori H, Hata T, Matsuki H, Kaneshina S. 1999. Effect of unsaturated acyl chains on the thermotropic and barotropic phase transitions of phospholipid bilayer membranes. Chem Phys Lipids 100: 151-64.
    • (1999) Chem Phys Lipids , vol.100 , pp. 151-164
    • Ichimori, H.1    Hata, T.2    Matsuki, H.3    Kaneshina, S.4
  • 134
    • 77949289675 scopus 로고    scopus 로고
    • Pressure effect on the bilayer phase transition of asymmetric lipids with an unsaturated acyl chain
    • Tada K, Goto M, Tamai N, Matsuki H, et al. 2010. Pressure effect on the bilayer phase transition of asymmetric lipids with an unsaturated acyl chain. Ann N Y Acad Sci 1189: 77-85.
    • (2010) Ann N Y Acad Sci , vol.1189 , pp. 77-85
    • Tada, K.1    Goto, M.2    Tamai, N.3    Matsuki, H.4
  • 135
    • 0017202110 scopus 로고
    • Molecular arrangements in sphingolipids. Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability
    • Pascher I. 1976. Molecular arrangements in sphingolipids. Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. Biochim Biophys Acta 455: 433-51.
    • (1976) Biochim Biophys Acta , vol.455 , pp. 433-451
    • Pascher, I.1
  • 137
    • 0037343133 scopus 로고    scopus 로고
    • Hydrogen-bonding propensities of sphingomyelin in solution and in a bilayer assembly: a molecular dynamics study
    • Mombelli E, Morris R, Taylor W, Fraternali F. 2003. Hydrogen-bonding propensities of sphingomyelin in solution and in a bilayer assembly: a molecular dynamics study. Biophys J 84: 1507-17.
    • (2003) Biophys J , vol.84 , pp. 1507-1517
    • Mombelli, E.1    Morris, R.2    Taylor, W.3    Fraternali, F.4
  • 138
    • 78649763791 scopus 로고    scopus 로고
    • Laurdan and di-4-ANEPPDHQ do not respond to membrane-inserted peptides and are good probes for lipid packing
    • Dinic J, Biverstahl H, Maler L, Parmryd I. 2011. Laurdan and di-4-ANEPPDHQ do not respond to membrane-inserted peptides and are good probes for lipid packing. Biochim Biophys Acta 1808: 298-306.
    • (2011) Biochim Biophys Acta , vol.1808 , pp. 298-306
    • Dinic, J.1    Biverstahl, H.2    Maler, L.3    Parmryd, I.4
  • 139
    • 23044515913 scopus 로고    scopus 로고
    • The polar nature of 7-ketocholesterol determines its location within membrane domains and the kinetics of membrane microsolubilization by apolipoprotein A-I
    • Massey JB, Pownall HJ. 2005. The polar nature of 7-ketocholesterol determines its location within membrane domains and the kinetics of membrane microsolubilization by apolipoprotein A-I. Biochemistry 44: 10423-33.
    • (2005) Biochemistry , vol.44 , pp. 10423-10433
    • Massey, J.B.1    Pownall, H.J.2
  • 140
    • 84928530055 scopus 로고    scopus 로고
    • Cholesterol under oxidative stress - how lipid membranes sense oxidation as cholesterol is being replaced by oxysterols
    • Kulig W, Olzynska A, Jurkiewicz P, Kantola AM, et al. 2015. Cholesterol under oxidative stress - how lipid membranes sense oxidation as cholesterol is being replaced by oxysterols. Free Radic Biol Med 84: 30-41.
    • (2015) Free Radic Biol Med , vol.84 , pp. 30-41
    • Kulig, W.1    Olzynska, A.2    Jurkiewicz, P.3    Kantola, A.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.