메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

Divergent targets of glycolysis and oxidative phosphorylation result in additive effects of metformin and starvation in colon and breast cancer

Author keywords

[No Author keywords available]

Indexed keywords

GLUCOSE; METFORMIN; REACTIVE OXYGEN METABOLITE; STAUROSPORINE;

EID: 84955443998     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep19569     Document Type: Article
Times cited : (43)

References (39)
  • 1
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: The metabolic requirements of cell proliferation
    • Vander Heiden, M., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033 (2009).
    • (2009) Science , vol.324 , pp. 1029-1033
    • Vander Heiden, M.1    Cantley, L.C.2    Thompson, C.B.3
  • 2
    • 12944262229 scopus 로고    scopus 로고
    • Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer
    • Macheda, M. L., Rogers, S. & Best, J. D. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J. Cell Physiol. 202, 654-662 (2005).
    • (2005) J. Cell Physiol. , vol.202 , pp. 654-662
    • Macheda, M.L.1    Rogers, S.2    Best, J.D.3
  • 3
    • 19944434232 scopus 로고    scopus 로고
    • Differential prognostic impact of hypoxia induced and diffuse HIF-1alpha expression in invasive breast cancer
    • Vleugel, M. M. et al. Differential prognostic impact of hypoxia induced and diffuse HIF-1alpha expression in invasive breast cancer. J. Clin. Pathol. 58, 172-177 (2005).
    • (2005) J. Clin. Pathol. , vol.58 , pp. 172-177
    • Vleugel, M.M.1
  • 4
    • 84863229916 scopus 로고    scopus 로고
    • Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy
    • Lee, C. et al. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci. Transl. Med. 4, 124-127 (2012).
    • (2012) Sci. Transl. Med. , vol.4 , pp. 124-127
    • Lee, C.1
  • 5
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: The next generation
    • Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646-74 (2011).
    • (2011) Cell , vol.144 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 6
    • 67650071137 scopus 로고    scopus 로고
    • Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach?
    • Trachootham, D., Alexandre, J. & Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach ? Nat. Rev. Drug. Discov. 8, 579-591 (2009).
    • (2009) Nat. Rev. Drug. Discov. , vol.8 , pp. 579-591
    • Trachootham, D.1    Alexandre, J.2    Huang, P.3
  • 7
    • 64749093574 scopus 로고    scopus 로고
    • Association of reactive oxygen species levels and radioresistance in cancer stem cells
    • Diehn, M. et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780-783 (2009).
    • (2009) Nature , vol.458 , pp. 780-783
    • Diehn, M.1
  • 8
    • 46149107882 scopus 로고    scopus 로고
    • Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy
    • Raffaghello, L. et al. Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc. Natl. Acad. Sci. USA 105, 8215-8220 (2008).
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 8215-8220
    • Raffaghello, L.1
  • 9
    • 84903524608 scopus 로고    scopus 로고
    • Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase
    • Madiraju, A. K. et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510, 542-546 (2014).
    • (2014) Nature , vol.510 , pp. 542-546
    • Madiraju, A.K.1
  • 10
    • 0034773404 scopus 로고    scopus 로고
    • Role of AMP-activated protein kinase in mechanism of metformin action
    • Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167-1174 (2001).
    • (2001) J. Clin. Invest. , vol.108 , pp. 1167-1174
    • Zhou, G.1
  • 11
    • 28844433635 scopus 로고    scopus 로고
    • The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
    • Shaw, R. J. et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642-1646 (2005).
    • (2005) Science , vol.310 , pp. 1642-1646
    • Shaw, R.J.1
  • 12
    • 0034659785 scopus 로고    scopus 로고
    • Evidence that metformin exerts its anti-diabetic effects through inhibition of Complex 1 of the mitochondrial respiratory chain
    • Owen, M. R., Doran, E. & Halestrap, A. P. Evidence that metformin exerts its anti-diabetic effects through inhibition of Complex 1 of the mitochondrial respiratory chain. Biochem. J. 348, 607-614 (2000).
    • (2000) Biochem. J. , vol.348 , pp. 607-614
    • Owen, M.R.1    Doran, E.2    Halestrap, A.P.3
  • 13
    • 84855603512 scopus 로고    scopus 로고
    • Cellular and molecular mechanisms of metformin: An overview
    • Viollet, B. et al. Cellular and molecular mechanisms of metformin: an overview. Clin. Sci. 122, 253-270 (2012).
    • (2012) Clin. Sci. , vol.122 , pp. 253-270
    • Viollet, B.1
  • 14
    • 84863695624 scopus 로고    scopus 로고
    • Untuning the tumor metabolic machine: Targeting cancer metabolism: A bedside lesson
    • Birsoy, K., Sabatini, D. M. & Possemato, R. Untuning the tumor metabolic machine: targeting cancer metabolism: a bedside lesson. Nat. Med. 18, 1022-1023 (2012).
    • (2012) Nat. Med. , vol.18 , pp. 1022-1023
    • Birsoy, K.1    Sabatini, D.M.2    Possemato, R.3
  • 15
    • 84897036925 scopus 로고    scopus 로고
    • The anti-proliferative effect of metformin in triple-negative MDAMB-231 breast cancer cells is highly dependent on glucose concentration: Implications for cancer therapy and prevention
    • Zordoky, B. N., Bark, D., Soltys, C. L., Sung, M. M. & Dyck, J. R. The anti-proliferative effect of metformin in triple-negative MDAMB-231 breast cancer cells is highly dependent on glucose concentration: implications for cancer therapy and prevention. Biochim. Biophys. Acta 1840, 1943-1957 (2014).
    • (2014) Biochim. Biophys. Acta , vol.1840 , pp. 1943-1957
    • Zordoky, B.N.1    Bark, D.2    Soltys, C.L.3    Sung, M.M.4    Dyck, J.R.5
  • 16
    • 84904459334 scopus 로고    scopus 로고
    • Effects of metformin on breast cancer cell proliferation, the AMPK pathway and the cell cycle
    • Hadad, S. M., Hardie, D. G., Appleyard, V. & Thompson, A. M. Effects of metformin on breast cancer cell proliferation, the AMPK pathway and the cell cycle. Clin. Transl. Oncol. 16, 746-752 (2014).
    • (2014) Clin. Transl. Oncol. , vol.16 , pp. 746-752
    • Hadad, S.M.1    Hardie, D.G.2    Appleyard, V.3    Thompson, A.M.4
  • 17
    • 0034614420 scopus 로고    scopus 로고
    • Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I
    • El-Mir, M. Y. et al. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain Complex I. J. Biol. Chem. 275, 223-228 (2000).
    • (2000) J. Biol. Chem. , vol.275 , pp. 223-228
    • El-Mir, M.Y.1
  • 18
    • 84890327829 scopus 로고    scopus 로고
    • Metformin impairs glucose consumption and survival in Calu-1 cells by direct inhibition of hexokinase-II
    • Salani, B. et al. Metformin impairs glucose consumption and survival in Calu-1 cells by direct inhibition of hexokinase-II. Sci. Rep. 3, 2070 (2013).
    • (2013) Sci. Rep. , vol.3 , pp. 2070
    • Salani, B.1
  • 19
    • 84890353160 scopus 로고    scopus 로고
    • Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancer
    • Marini, C. et al. Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancer. Cell Cycle 12, 3490-3499 (2013).
    • (2013) Cell Cycle , vol.12 , pp. 3490-3499
    • Marini, C.1
  • 20
    • 33746927077 scopus 로고    scopus 로고
    • Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt
    • Robey, R. B. & Hay, N. Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene 25, 4683-4696 (2006).
    • (2006) Oncogene , vol.25 , pp. 4683-4696
    • Robey, R.B.1    Hay, N.2
  • 21
    • 0034904776 scopus 로고    scopus 로고
    • Growth factors can influence cell growth and survival through effects on glucose metabolism
    • Vander Heiden, M. G. et al. Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol. Cell. Biol. 21, 5899-5912 (2001).
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 5899-5912
    • Vander Heiden, M.G.1
  • 22
    • 0036097775 scopus 로고    scopus 로고
    • Intrahepatic mechanisms underlying the effect of metformin in decreasing basal glucose production in rats fed a high-fat diet
    • Mithieux, G., Guignot, L., Bordet, J. C. & Wiernsperger, N. Intrahepatic mechanisms underlying the effect of metformin in decreasing basal glucose production in rats fed a high-fat diet. Diabetes 51, 139-143 (2002).
    • (2002) Diabetes , vol.51 , pp. 139-143
    • Mithieux, G.1    Guignot, L.2    Bordet, J.C.3    Wiernsperger, N.4
  • 23
    • 0015785648 scopus 로고
    • Comparison of the effects of anoxia and whole heart ischemia on carbohydrate utilization in isolated working rat hearts
    • Rovetto, M. J., Whitmer, J. T. & Neely, J. R. Comparison of the effects of anoxia and whole heart ischemia on carbohydrate utilization in isolated working rat hearts. Circ. Res. 32, 699-711 (1973).
    • (1973) Circ. Res. , vol.32 , pp. 699-711
    • Rovetto, M.J.1    Whitmer, J.T.2    Neely, J.R.3
  • 24
    • 70349769764 scopus 로고    scopus 로고
    • Reactive oxygen species production by mitochondria
    • Lambert, A. J. & Brand, M. D. Reactive oxygen species production by mitochondria. Methods. Mol. Biol. 554, 165-181 (2009).
    • (2009) Methods. Mol. Biol. , vol.554 , pp. 165-181
    • Lambert, A.J.1    Brand, M.D.2
  • 25
    • 0142150051 scopus 로고    scopus 로고
    • Mitochondrial formation of reactive oxygen species
    • Turrens, J. F. Mitochondrial formation of reactive oxygen species. J. Physiol. 552, 335-344 (2003).
    • (2003) J. Physiol. , vol.552 , pp. 335-344
    • Turrens, J.F.1
  • 26
    • 76049086567 scopus 로고    scopus 로고
    • Contribution of the FAD and quinone binding sites to the production of reactive oxygen species from Ascaris suum mitochondrial Complex II
    • Paranagama, M. P. et al. Contribution of the FAD and quinone binding sites to the production of reactive oxygen species from Ascaris suum mitochondrial Complex II. Mitochondrion 10, 158-165 (2010).
    • (2010) Mitochondrion , vol.10 , pp. 158-165
    • Paranagama, M.P.1
  • 27
    • 0000466588 scopus 로고
    • Respiratory chain linked H(2)O(2) production in pigeon heart mitochondria
    • Loschen, G., Flohé, L. & Chance, B. Respiratory chain linked H(2)O(2) production in pigeon heart mitochondria. FEBS Lett. 18, 261-264 (1971).
    • (1971) FEBS Lett. , vol.18 , pp. 261-264
    • Loschen, G.1    Flohé, L.2    Chance, B.3
  • 28
    • 0018393931 scopus 로고
    • NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation
    • Takeshige, K. & Minakami, S. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation. Biochem. J. 180, 129-135 (1979).
    • (1979) Biochem. J. , vol.180 , pp. 129-135
    • Takeshige, K.1    Minakami, S.2
  • 30
    • 0014202058 scopus 로고
    • Specific inhibition of gluconeogenesis by biguanides
    • Meyer, F., Ipaktchi, M. & Clauser. H. Specific inhibition of gluconeogenesis by biguanides. Nature 213, 203-204 (1967).
    • (1967) Nature , vol.213 , pp. 203-204
    • Meyer, F.1    Ipaktchi, M.2    Clauser, H.3
  • 31
    • 69249222515 scopus 로고    scopus 로고
    • Metformin suppresses glucose-6-phosphatase expression by a Complex I inhibition and AMPK activation-independent mechanism
    • Ota, S. et al. Metformin suppresses glucose-6-phosphatase expression by a Complex I inhibition and AMPK activation-independent mechanism. Biochem. Biophys. Res. Commun. 388, 311-316 (2009).
    • (2009) Biochem. Biophys. Res. Commun. , vol.388 , pp. 311-316
    • Ota, S.1
  • 32
    • 2942579233 scopus 로고    scopus 로고
    • 5th edition, Directorate for the Quality of Medicines (EDQM), Council of Europe, Strasbourg Cedex, France, Supplement 5.1, 5.2
    • European Pharmacopoeia 5th edition, Directorate for the Quality of Medicines (EDQM), Council of Europe, Strasbourg Cedex, France, Supplement 5.1, 5.2 (2005).
    • (2005) European Pharmacopoeia
  • 33
    • 58149156184 scopus 로고    scopus 로고
    • Therapeutic metformin/AMPK activation promotes the angiogenic phenotype in the ERalpha negative MDA-MB-435 breast cancer model
    • Phoenix, K. N., Vumbaca, F. & Claffey, K. P. Therapeutic metformin/AMPK activation promotes the angiogenic phenotype in the ERalpha negative MDA-MB-435 breast cancer model. Breast Cancer Res. Treat. 113, 101-111 (2009).
    • (2009) Breast Cancer Res. Treat. , vol.113 , pp. 101-111
    • Phoenix, K.N.1    Vumbaca, F.2    Claffey, K.P.3
  • 34
    • 84873553761 scopus 로고    scopus 로고
    • Metformin temporal and localized effects on gut glucose metabolism assessed using 18F-FDG PET in mice
    • Massollo, M. et al. Metformin temporal and localized effects on gut glucose metabolism assessed using 18F-FDG PET in mice. J. Nucl. Med. 54, 259-266 (2013).
    • (2013) J. Nucl. Med. , vol.54 , pp. 259-266
    • Massollo, M.1
  • 35
    • 33746053886 scopus 로고    scopus 로고
    • 18F-FDG assessment of glucose disposal and production rates during fasting and insulin stimulation: A validation study
    • Iozzo, P. et al. 18F-FDG assessment of glucose disposal and production rates during fasting and insulin stimulation: a validation study. J. Nucl. Med. 47, 1016-1022 (2006).
    • (2006) J. Nucl. Med. , vol.47 , pp. 1016-1022
    • Iozzo, P.1
  • 36
    • 0020956774 scopus 로고
    • Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data
    • Patlak, C. S., Blasberg, R. G. & Fenstermacher, J. D. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J. Cereb. Blood Flow Metab. 3, 1-7 (1983).
    • (1983) J. Cereb. Blood Flow Metab. , vol.3 , pp. 1-7
    • Patlak, C.S.1    Blasberg, R.G.2    Fenstermacher, J.D.3
  • 37
    • 57449099865 scopus 로고    scopus 로고
    • MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteomewide protein quantification
    • Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteomewide protein quantification. Nat. Biotechnol. 26, 1367-1372 (2008).
    • (2008) Nat. Biotechnol. , vol.26 , pp. 1367-1372
    • Cox, J.1    Mann, M.2
  • 38
    • 34447124424 scopus 로고    scopus 로고
    • Combined therapeutic effects of vinblastine and rapamycin on human neuroblastoma growth, apoptosis, and angiogenesis
    • Marimpietri, D. et al. Combined therapeutic effects of vinblastine and rapamycin on human neuroblastoma growth, apoptosis, and angiogenesis. Clin. Cancer Res. 13, 3977-3988 (2007).
    • (2007) Clin. Cancer Res. , vol.13 , pp. 3977-3988
    • Marimpietri, D.1
  • 39
    • 0032054944 scopus 로고    scopus 로고
    • The statistics of synergism
    • Slinker, B. K. The statistics of synergism. J. Mol. Cell. Cardiol. 30, 723-731(1998).
    • (1998) J. Mol. Cell. Cardiol. , vol.30 , pp. 723-731
    • Slinker, B.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.