메뉴 건너뛰기




Volumn 54, Issue 2, 2013, Pages 259-266

Metformin temporal and localized effects on gut glucose metabolism assessed using 18F-FDG PET in mice

Author keywords

AMPK; GI tract; Metformin; Positron emission tomography; TXNIP

Indexed keywords

ADENOSINE MONOPHOSPHATE ACTIVATED PROTEIN KINASE; FLUORODEOXYGLUCOSE F 18; MESSENGER RNA; METFORMIN; PROTEIN KINASE; THIOREDOXIN INTERACTING PROTEIN; UNCLASSIFIED DRUG;

EID: 84873553761     PISSN: 01615505     EISSN: None     Source Type: Journal    
DOI: 10.2967/jnumed.112.106666     Document Type: Article
Times cited : (51)

References (30)
  • 2
    • 79955809391 scopus 로고    scopus 로고
    • Increased F-18 FDG intestinal uptake in diabetic patients on metformin: A matched case-control analysis
    • Bybel B, Greenberg ID, Paterson J, Ducharme J, Leslie WD. Increased F-18 FDG intestinal uptake in diabetic patients on metformin: a matched case-control analysis. Clin Nucl Med. 2011;36:452-456.
    • (2011) Clin Nucl Med. , vol.36 , pp. 452-456
    • Bybel, B.1    Greenberg, I.D.2    Paterson, J.3    Ducharme, J.4    Leslie, W.D.5
  • 3
    • 78649723342 scopus 로고    scopus 로고
    • Impact of medication discontinuation on increased intestinal FDG accumulation in diabetic patients treated with metformin
    • Oh JR, Song HC, Chong A, et al. Impact of medication discontinuation on increased intestinal FDG accumulation in diabetic patients treated with metformin. AJR. 2010;195:1404-1410.
    • (2010) AJR , vol.195 , pp. 1404-1410
    • Oh, J.R.1    Song, H.C.2    Chong, A.3
  • 4
    • 77952289793 scopus 로고    scopus 로고
    • Clearance of the high intestinal (18) F-FDG uptake associated with metformin after stopping the drug
    • Ozülker T, Ozülker F, Mert M, Ozpaçaci T. Clearance of the high intestinal (18) F-FDG uptake associated with metformin after stopping the drug. Eur J Nucl Med Mol Imaging. 2010;37:1011-1017.
    • (2010) Eur J Nucl Med Mol Imaging. , vol.37 , pp. 1011-1017
    • Ozülker, T.1    Ozülker, F.2    Mert, M.3    Ozpaçaci, T.4
  • 5
    • 0028232519 scopus 로고
    • Importance of the intestine as a site of metforminstimulated glucose utilization
    • Bailey CJ, Mynett KJ, Page T. Importance of the intestine as a site of metforminstimulated glucose utilization. Br J Pharmacol. 1994;112:671-675.
    • (1994) Br J Pharmacol. , vol.112 , pp. 671-675
    • Bailey, C.J.1    Mynett, K.J.2    Page, T.3
  • 6
    • 0033952266 scopus 로고    scopus 로고
    • Inhibitory effect of metformin on intestinal glucose absorption in the perfused rat intestine
    • Ikeda T, Iwata K, Murakami H. Inhibitory effect of metformin on intestinal glucose absorption in the perfused rat intestine. Biochem Pharmacol. 2000;59: 887-890.
    • (2000) Biochem Pharmacol. , vol.59 , pp. 887-890
    • Ikeda, T.1    Iwata, K.2    Murakami, H.3
  • 7
    • 0001219154 scopus 로고    scopus 로고
    • Relationship between gastrointestinal F-18-fluorodeoxyglucose accumulation and gastrointestinal symptoms in whole-body PET
    • Kim S, Chung JK, Kim BT, et al. Relationship between gastrointestinal F-18-fluorodeoxyglucose accumulation and gastrointestinal symptoms in whole-body PET. Clin Positron Imaging. 1999;2:273-279.
    • (1999) Clin Positron Imaging. , vol.2 , pp. 273-279
    • Kim, S.1    Chung, J.K.2    Kim, B.T.3
  • 8
    • 0034517301 scopus 로고    scopus 로고
    • Effect of N-butylscopolamine on intestinal uptake of fluorine-18- fluorodeoxyglucose in PET imaging of the abdomen
    • Stahl A, Weber WA, Avril N, Schwaiger M. Effect of N-butylscopolamine on intestinal uptake of fluorine-18-fluorodeoxyglucose in PET imaging of the abdomen. Nuklearmedizin. 2000;39:241-245.
    • (2000) Nuklearmedizin. , vol.39 , pp. 241-245
    • Stahl, A.1    Weber, W.A.2    Avril, N.3    Schwaiger, M.4
  • 10
    • 0034773404 scopus 로고    scopus 로고
    • Role of AMP-activated protein kinase in mechanism of metformin action
    • Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108:1167-1174.
    • (2001) J Clin Invest. , vol.108 , pp. 1167-1174
    • Zhou, G.1    Myers, R.2    Li, Y.3
  • 11
    • 83355170596 scopus 로고    scopus 로고
    • AMP-activated protein kinase (AMPK) mediates nutrient regulation of thioredoxin-interacting protein (TXNIP) in pancreatic beta-cells
    • Shaked M, Ketzinel-Gilad M, Cerasi E, Kaiser N, Leibowitz G. AMP-activated protein kinase (AMPK) mediates nutrient regulation of thioredoxin-interacting protein (TXNIP) in pancreatic beta-cells. PLoS ONE. 2011;6:e28804.
    • (2011) PLoS ONE. , vol.6
    • Shaked, M.1    Ketzinel-Gilad, M.2    Cerasi, E.3    Kaiser, N.4    Leibowitz, G.5
  • 12
    • 0003633755 scopus 로고
    • Bethesda, MD: National Institutes of Health;. NIH publication
    • Guide for the Care and Use of Laboratory Animals. Bethesda, MD: National Institutes of Health; 1985. NIH publication 85-23.
    • (1985) Guide for the Care and Use of Laboratory Animals , pp. 85-23
  • 13
    • 0036851840 scopus 로고    scopus 로고
    • Food intake, water intake, and drinking spout side preference of 28 mouse strains
    • Bachmanov AA, Redd DR, Beauchamp GK, Tordoff MG. Food intake, water intake, and drinking spout side preference of 28 mouse strains. Behav Genet. 2002;32:435-443.
    • (2002) Behav Genet. , vol.32 , pp. 435-443
    • Bachmanov, A.A.1    Redd, D.R.2    Beauchamp, G.K.3    Tordoff, M.G.4
  • 14
    • 58149156184 scopus 로고    scopus 로고
    • Therapeutic metformin/AMPK activation promotes the angiogenic phenotype in the ERa negative MDA-MB-435 breast cancer model
    • Phoenix KN, Vumbaca F, Claffey KP. Therapeutic metformin/AMPK activation promotes the angiogenic phenotype in the ERa negative MDA-MB-435 breast cancer model. Breast Cancer Res Treat. 2009;113:101-111.
    • (2009) Breast Cancer Res Treat. , vol.113 , pp. 101-111
    • Phoenix, K.N.1    Vumbaca, F.2    Claffey, K.P.3
  • 15
    • 0020956774 scopus 로고
    • Graphical evaluation of blood-tobrain transfer constants from multiple-time uptake data
    • Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-tobrain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3:1-7.
    • (1983) J Cereb Blood Flow Metab. , vol.3 , pp. 1-7
    • Patlak, C.S.1    Blasberg, R.G.2    Fenstermacher, J.D.3
  • 16
    • 0018484856 scopus 로고
    • Secretion of an insulinotropic factor from isolated, perfused rat intestine
    • Levin SR, Pehlevanian MZ, Lavee AE, Adachi RI. Secretion of an insulinotropic factor from isolated, perfused rat intestine. Am J Physiol. 1979;236: E710-720.
    • (1979) Am J Physiol. , vol.236
    • Levin, S.R.1    Pehlevanian, M.Z.2    Lavee, A.E.3    Adachi, R.I.4
  • 17
    • 84856528344 scopus 로고    scopus 로고
    • Caveolin-1 is essential for metformin inhibitory effect on IGF1 action in non-small-cell lung cancer cells
    • Salani B, Maffioli S, Hamoudane M, et al. Caveolin-1 is essential for metformin inhibitory effect on IGF1 action in non-small-cell lung cancer cells. FASEB J. 2012;26:788-798.
    • (2012) FASEB J. , vol.26 , pp. 788-798
    • Salani, B.1    Maffioli, S.2    Hamoudane, M.3
  • 18
    • 0032789150 scopus 로고    scopus 로고
    • Membrane physiology as a basis for the cellular effects of metformin in insulin resistance and diabetes
    • Wiernsperger NF. Membrane physiology as a basis for the cellular effects of metformin in insulin resistance and diabetes. Diabetes Metab. 1999;25:110-127.
    • (1999) Diabetes Metab. , vol.25 , pp. 110-127
    • Wiernsperger, N.F.1
  • 19
    • 12144291275 scopus 로고    scopus 로고
    • Thiazolidinediones, like metformin, inhibit respiratory complex I: A common mechanism contributing to their antidiabetic actions?
    • Brunmair B, Staniek K, Gras F, et al. Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions? Diabetes. 2004;53:1052-1059.
    • (2004) Diabetes. , vol.53 , pp. 1052-1059
    • Brunmair, B.1    Staniek, K.2    Gras, F.3
  • 20
    • 0025289594 scopus 로고
    • Sites of metformin-stimulated glucose metabolism
    • Wilcock C, Bailey CJ. Sites of metformin-stimulated glucose metabolism. Biochem Pharmacol. 1990;39:1831-1834.
    • (1990) Biochem Pharmacol. , vol.39 , pp. 1831-1834
    • Wilcock, C.1    Bailey, C.J.2
  • 21
    • 0028023143 scopus 로고
    • Isolation and characterization of a novel cDNA from HL-60 cells treated with 1,25-dihydroxyvitamin D-3
    • Chen KS, DeLuca HF. Isolation and characterization of a novel cDNA from HL-60 cells treated with 1,25-dihydroxyvitamin D-3. Biochim Biophys Acta. 1994;1219:26-32.
    • (1994) Biochim Biophys Acta. , vol.1219 , pp. 26-32
    • Chen, K.S.1    Deluca, H.F.2
  • 22
    • 0033618398 scopus 로고    scopus 로고
    • Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression
    • Nishiyama A, Matsui M, Iwata S, et al. Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J Biol Chem. 1999;274:21645-21650.
    • (1999) J Biol Chem. , vol.274 , pp. 21645-21650
    • Nishiyama, A.1    Matsui, M.2    Iwata, S.3
  • 23
    • 30744446278 scopus 로고    scopus 로고
    • Impaired fatty acid utilization in thioredoxin binding protein-2 (TBP-2)-deficient mice: A unique animal model of Reye syndrome
    • Oka S, Liu W, Masutani H, et al. Impaired fatty acid utilization in thioredoxin binding protein-2 (TBP-2)-deficient mice: a unique animal model of Reye syndrome. FASEB J. 2006;20:121-123.
    • (2006) FASEB J. , vol.20 , pp. 121-123
    • Oka, S.1    Liu, W.2    Masutani, H.3
  • 24
    • 77955494531 scopus 로고    scopus 로고
    • Thioredoxin-interacting protein (Txnip) gene expression: Sensing oxidative phosphorylation status and glycolytic rate
    • Yu FX, Chai TF, He H, Hagen T, Luo Y. Thioredoxin-interacting protein (Txnip) gene expression: sensing oxidative phosphorylation status and glycolytic rate. J Biol Chem. 2010;285:25822-25830.
    • (2010) J Biol Chem. , vol.285 , pp. 25822-25830
    • Yu, F.X.1    Chai, T.F.2    He, H.3    Hagen, T.4    Luo, Y.5
  • 25
    • 84861577144 scopus 로고    scopus 로고
    • A potential mechanism of metformin-mediated regulation of glucose homeostasis: Inhibition of thioredoxin-interacting protein (Txnip) gene expression
    • Chai TF, Hong SY, He H, et al. A potential mechanism of metformin-mediated regulation of glucose homeostasis: inhibition of thioredoxin-interacting protein (Txnip) gene expression. Cell Signal. 2012;24:1700-1705.
    • (2012) Cell Signal. , vol.24 , pp. 1700-1705
    • Chai, T.F.1    Hong, S.Y.2    He, H.3
  • 26
    • 0742267552 scopus 로고    scopus 로고
    • Effects of metformin and rosiglitazone monotherapy on insulin-mediated hepatic glucose uptake and their relation to visceral fat in type 2 diabetes
    • Iozzo P, Hallsten K, Oikonen V, et al. Effects of metformin and rosiglitazone monotherapy on insulin-mediated hepatic glucose uptake and their relation to visceral fat in type 2 diabetes. Diabetes Care. 2003;26:2069-2074.
    • (2003) Diabetes Care. , vol.26 , pp. 2069-2074
    • Iozzo, P.1    Hallsten, K.2    Oikonen, V.3
  • 27
    • 84858693012 scopus 로고    scopus 로고
    • Reduced risk of colorectal cancer with metformin therapy in patients with type 2 diabetes
    • Zhang ZJ, Zhen ZJ, Kahn H, et al. Reduced risk of colorectal cancer with metformin therapy in patients with type 2 diabetes. Diabetes Care. 2011;34: 2323-2328.
    • (2011) Diabetes Care. , vol.34 , pp. 2323-2328
    • Zhang, Z.J.1    Zhen, Z.J.2    Kahn, H.3
  • 28
    • 80051714418 scopus 로고    scopus 로고
    • Metformin abolishes increased tumor (18)F-2-fluoro-2-deoxy-D-glucose uptake associated with a high energy diet
    • Mashhedi H, Blouin MJ, Zakikhani M, et al. Metformin abolishes increased tumor (18)F-2-fluoro-2-deoxy-D-glucose uptake associated with a high energy diet. Cell Cycle. 2011;10:2770-2778.
    • (2011) Cell Cycle. , vol.10 , pp. 2770-2778
    • Mashhedi, H.1    Blouin, M.J.2    Zakikhani, M.3
  • 29
    • 34547114031 scopus 로고    scopus 로고
    • Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth
    • Buzzai M, Jones RG, Amaravadi RK, et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 2007;67:6745-6752.
    • (2007) Cancer Res. , vol.67 , pp. 6745-6752
    • Buzzai, M.1    Jones, R.G.2    Amaravadi, R.K.3
  • 30
    • 84857480181 scopus 로고    scopus 로고
    • The streptozotocin-induced diabetic nude mouse model: Differences between animals from different sources
    • Graham ML, Janecek JL, Kittredge JA, Hering BJ, Schuurnan HJ. The streptozotocin-induced diabetic nude mouse model: differences between animals from different sources. Comp Med. 2011;61:356-360.
    • (2011) Comp Med. , vol.61 , pp. 356-360
    • Graham, M.L.1    Janecek, J.L.2    Kittredge, J.A.3    Hering, B.J.4    Schuurnan, H.J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.