메뉴 건너뛰기




Volumn 64, Issue 11, 2015, Pages 3659-3669

Elevated hepatic MIR-22-3p expression impairs gluconeogenesis by silencing the wnt-responsive transcription factor Tcf7

Author keywords

[No Author keywords available]

Indexed keywords

ANTAGOMIR; GLUCOSE; INSULIN; MICRORNA 22; MICRORNA 22 3P; SMALL INTERFERING RNA; TRANSCRIPTION FACTOR 7; UNCLASSIFIED DRUG; GLUCOSE BLOOD LEVEL; HEPATOCYTE NUCLEAR FACTOR 1ALPHA; HNF1A PROTEIN, MOUSE; LIPID; MICRORNA; MIRN22 MICRORNA, MOUSE;

EID: 84954390921     PISSN: 00121797     EISSN: 1939327X     Source Type: Journal    
DOI: 10.2337/db14-1924     Document Type: Article
Times cited : (71)

References (43)
  • 1
    • 0347444723 scopus 로고    scopus 로고
    • MicroRNAs: Genomics, biogenesis, mechanism, and function
    • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-297
    • (2004) Cell , vol.116 , pp. 281-297
    • Bartel, D.P.1
  • 2
    • 28044471565 scopus 로고    scopus 로고
    • MicroRNA functions in animal development and human disease
    • Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development 2005;132:4653-4662
    • (2005) Development , vol.132 , pp. 4653-4662
    • Alvarez-Garcia, I.1    Miska, E.A.2
  • 3
    • 72449197565 scopus 로고    scopus 로고
    • Novel functions for small RNA molecules
    • Zhang C. Novel functions for small RNA molecules. Curr Opin Mol Ther 2009;11:641-651
    • (2009) Curr Opin Mol Ther , vol.11 , pp. 641-651
    • Zhang, C.1
  • 4
    • 36349032759 scopus 로고    scopus 로고
    • MicroRNAs in disease and potential therapeutic applications
    • Soifer HS, Rossi JJ, Saetrom P. MicroRNAs in disease and potential therapeutic applications. Mol Ther 2007;15:2070-2079
    • (2007) Mol Ther , vol.15 , pp. 2070-2079
    • Soifer, H.S.1    Rossi, J.J.2    Saetrom, P.3
  • 5
    • 84858776574 scopus 로고    scopus 로고
    • MicroRNAs in metabolism and metabolic disorders
    • Rottiers V, Näär AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 2012;13:239-250
    • (2012) Nat Rev Mol Cell Biol , vol.13 , pp. 239-250
    • Rottiers, V.1    Näär, A.M.2
  • 6
    • 70349393847 scopus 로고    scopus 로고
    • Differential expression of microRNAs in mouse liver under aberrant energy metabolic status
    • Li S, Chen X, Zhang H, et al. Differential expression of microRNAs in mouse liver under aberrant energy metabolic status. J Lipid Res 2009;50:1756-1765
    • (2009) J Lipid Res , vol.50 , pp. 1756-1765
    • Li, S.1    Chen, X.2    Zhang, H.3
  • 7
    • 84899081933 scopus 로고    scopus 로고
    • Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization
    • Ortega FJ, Mercader JM, Moreno-Navarrete JM, et al. Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care 2014;37:1375-1383
    • (2014) Diabetes Care , vol.37 , pp. 1375-1383
    • Ortega, F.J.1    Mercader, J.M.2    Moreno-Navarrete, J.M.3
  • 8
    • 79953317808 scopus 로고    scopus 로고
    • Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism
    • Jordan SD, Krüger M, Willmes DM, et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol 2011;13:434-446
    • (2011) Nat Cell Biol , vol.13 , pp. 434-446
    • Jordan, S.D.1    Krüger, M.2    Willmes, D.M.3
  • 9
    • 79959845414 scopus 로고    scopus 로고
    • MicroRNAs 103 and 107 regulate insulin sensitivity
    • Trajkovski M, Hausser J, Soutschek J, et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 2011;474:649-653
    • (2011) Nature , vol.474 , pp. 649-653
    • Trajkovski, M.1    Hausser, J.2    Soutschek, J.3
  • 10
    • 84874715061 scopus 로고    scopus 로고
    • Obesity-induced overexpression of MIR-802 impairs glucose metabolism through silencing of Hnf1b
    • Kornfeld JW, Baitzel C, Könner AC, et al. Obesity-induced overexpression of MIR-802 impairs glucose metabolism through silencing of Hnf1b. Nature 2013;494:111-115
    • (2013) Nature , vol.494 , pp. 111-115
    • Kornfeld, J.W.1    Baitzel, C.2    Könner, A.C.3
  • 11
    • 80755175400 scopus 로고    scopus 로고
    • Comprehensive miRNome and in silico analyses identify the Wnt signaling pathway to be altered in the diabetic liver
    • Kaur K, Pandey AK, Srivastava S, Srivastava AK, Datta M. Comprehensive miRNome and in silico analyses identify the Wnt signaling pathway to be altered in the diabetic liver. Mol Biosyst 2011;7:3234-3244
    • (2011) Mol Biosyst , vol.7 , pp. 3234-3244
    • Kaur, K.1    Pandey, A.K.2    Srivastava, S.3    Srivastava, A.K.4    Datta, M.5
  • 12
    • 78649670044 scopus 로고    scopus 로고
    • The Wnt/β-catenin signaling pathway in liver biology and disease
    • Behari J. The Wnt/β-catenin signaling pathway in liver biology and disease. Expert Rev Gastroenterol Hepatol 2010;4:745-756
    • (2010) Expert Rev Gastroenterol Hepatol , vol.4 , pp. 745-756
    • Behari, J.1
  • 13
    • 76149088123 scopus 로고    scopus 로고
    • Liver-specific beta-catenin knockout mice exhibit defective bile acid and cholesterol homeostasis and increased susceptibility to diet-induced steatohepatitis
    • Behari J, Yeh TH, Krauland L, et al. Liver-specific beta-catenin knockout mice exhibit defective bile acid and cholesterol homeostasis and increased susceptibility to diet-induced steatohepatitis. Am J Pathol 2010;176:744-753
    • (2010) Am J Pathol , vol.176 , pp. 744-753
    • Behari, J.1    Yeh, T.H.2    Krauland, L.3
  • 14
    • 79551707018 scopus 로고    scopus 로고
    • Wnt signaling regulates hepatic metabolism
    • Liu H, Fergusson MM, Wu JJ, et al. Wnt signaling regulates hepatic metabolism. Sci Signal 2011;4:ra6
    • (2011) Sci Signal , vol.4 , pp. ra6
    • Liu, H.1    Fergusson, M.M.2    Wu, J.J.3
  • 15
    • 4143151942 scopus 로고    scopus 로고
    • Pathogenesis of type 2 diabetes mellitus
    • ix
    • DeFronzo RA. Pathogenesis of type 2 diabetes mellitus. Med Clin North Am 2004;88:787-835, ix
    • (2004) Med Clin North Am , vol.88 , pp. 787-835
    • De Fronzo, R.A.1
  • 16
    • 3042701667 scopus 로고    scopus 로고
    • Both fasting glucose production and disappearance are abnormal in people with "mild" and "severe" type 2 diabetes
    • Basu R, Schwenk WF, Rizza RA. Both fasting glucose production and disappearance are abnormal in people with "mild" and "severe" type 2 diabetes. Am J Physiol Endocrinol Metab 2004;287:E55-E62
    • (2004) Am J Physiol Endocrinol Metab , vol.287 , pp. E55-E62
    • Basu, R.1    Schwenk, W.F.2    Rizza, R.A.3
  • 17
    • 0026488079 scopus 로고
    • Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study
    • Magnusson I, Rothman DL, Katz LD, Shulman RG, Shulman GI. Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J Clin Invest 1992;90:1323-1327
    • (1992) J Clin Invest , vol.90 , pp. 1323-1327
    • Magnusson, I.1    Rothman, D.L.2    Katz, L.D.3    Shulman, R.G.4    Shulman, G.I.5
  • 18
    • 0141866862 scopus 로고    scopus 로고
    • Measurement of fractional whole-body gluconeogenesis in humans from blood samples using 2H nuclear magnetic resonance spectroscopy
    • Kunert O, Stingl H, Rosian E, et al. Measurement of fractional whole-body gluconeogenesis in humans from blood samples using 2H nuclear magnetic resonance spectroscopy. Diabetes 2003;52:2475-2482
    • (2003) Diabetes , vol.52 , pp. 2475-2482
    • Kunert, O.1    Stingl, H.2    Rosian, E.3
  • 19
    • 4043101702 scopus 로고    scopus 로고
    • Separate contribution of diabetes, total fat mass, and fat topography to glucose production, gluconeogenesis, and glycogenolysis
    • Gastaldelli A, Miyazaki Y, Pettiti M, et al. Separate contribution of diabetes, total fat mass, and fat topography to glucose production, gluconeogenesis, and glycogenolysis. J Clin Endocrinol Metab 2004;89:3914-3921
    • (2004) J Clin Endocrinol Metab , vol.89 , pp. 3914-3921
    • Gastaldelli, A.1    Miyazaki, Y.2    Pettiti, M.3
  • 20
    • 0033636523 scopus 로고    scopus 로고
    • Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction
    • Michael MD, Kulkarni RN, Postic C, et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 2000;6:87-97
    • (2000) Mol Cell , vol.6 , pp. 87-97
    • Michael, M.D.1    Kulkarni, R.N.2    Postic, C.3
  • 21
    • 84874826222 scopus 로고    scopus 로고
    • Pathogenesis of prediabetes: Role of the liver in isolated fasting hyperglycemia and combined fasting and postprandial hyperglycemia
    • Basu R, Barosa C, Jones J, et al. Pathogenesis of prediabetes: role of the liver in isolated fasting hyperglycemia and combined fasting and postprandial hyperglycemia. J Clin Endocrinol Metab 2013;98:E409-E417
    • (2013) J Clin Endocrinol Metab , vol.98 , pp. E409-E417
    • Basu, R.1    Barosa, C.2    Jones, J.3
  • 22
    • 28444469246 scopus 로고    scopus 로고
    • Silencing of microRNAs in vivo with "antagomirs"
    • Krützfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with "antagomirs". Nature 2005;438:685-689
    • (2005) Nature , vol.438 , pp. 685-689
    • Krützfeldt, J.1    Rajewsky, N.2    Braich, R.3
  • 23
    • 34250877841 scopus 로고    scopus 로고
    • A mammalian microRNA expression atlas based on small RNA library sequencing
    • Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007;129:1401-1414
    • (2007) Cell , vol.129 , pp. 1401-1414
    • Landgraf, P.1    Rusu, M.2    Sheridan, R.3
  • 24
    • 0038320388 scopus 로고    scopus 로고
    • A polymorphism in the TCF7 gene, C883A, is associated with type 1 diabetes
    • Noble JA, White AM, Lazzeroni LC, et al. A polymorphism in the TCF7 gene, C883A, is associated with type 1 diabetes. Diabetes 2003;52:1579-1582
    • (2003) Diabetes , vol.52 , pp. 1579-1582
    • Noble, J.A.1    White, A.M.2    Lazzeroni, L.C.3
  • 26
    • 32544451924 scopus 로고    scopus 로고
    • Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes
    • Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 2006;38:320-323
    • (2006) Nat Genet , vol.38 , pp. 320-323
    • Grant, S.F.1    Thorleifsson, G.2    Reynisdottir, I.3
  • 27
    • 33750892139 scopus 로고    scopus 로고
    • Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals
    • Saxena R, Gianniny L, Burtt NP, et al. Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals. Diabetes 2006;55:2890-2895
    • (2006) Diabetes , vol.55 , pp. 2890-2895
    • Saxena, R.1    Gianniny, L.2    Burtt, N.P.3
  • 28
    • 84880570961 scopus 로고    scopus 로고
    • MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling
    • Song SJ, Poliseno L, Song MS, et al. MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell 2013;154:311-324
    • (2013) Cell , vol.154 , pp. 311-324
    • Song, S.J.1    Poliseno, L.2    Song, M.S.3
  • 29
    • 84877583076 scopus 로고    scopus 로고
    • MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress
    • Huang ZP, Chen J, Seok HY, et al. MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress. Circ Res 2013;112:1234-1243
    • (2013) Circ Res , vol.112 , pp. 1234-1243
    • Huang, Z.P.1    Chen, J.2    Seok, H.Y.3
  • 30
    • 84861986053 scopus 로고    scopus 로고
    • Wnt/β-catenin signaling and disease
    • Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell 2012;149:1192-1205
    • (2012) Cell , vol.149 , pp. 1192-1205
    • Clevers, H.1    Nusse, R.2
  • 31
    • 84891914472 scopus 로고    scopus 로고
    • Mice deficient in Sfrp1 exhibit increased adiposity, dysregulated glucose metabolism, and enhanced macrophage infiltration
    • Gauger KJ, Bassa LM, Henchey EM, et al. Mice deficient in Sfrp1 exhibit increased adiposity, dysregulated glucose metabolism, and enhanced macrophage infiltration. PLoS One 2013;8:e78320
    • (2013) PLoS One , vol.8 , pp. e78320
    • Gauger, K.J.1    Bassa, L.M.2    Henchey, E.M.3
  • 32
    • 33845936147 scopus 로고    scopus 로고
    • Common variants in the TCF7L2 gene are strongly associated with type 2 diabetes mellitus in the Indian population
    • Chandak GR, Janipalli CS, Bhaskar S, et al. Common variants in the TCF7L2 gene are strongly associated with type 2 diabetes mellitus in the Indian population. Diabetologia 2007;50:63-67
    • (2007) Diabetologia , vol.50 , pp. 63-67
    • Chandak, G.R.1    Janipalli, C.S.2    Bhaskar, S.3
  • 33
    • 0026520193 scopus 로고
    • Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis
    • Pilkis SJ, Granner DK. Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu Rev Physiol 1992;54:885-909
    • (1992) Annu Rev Physiol , vol.54 , pp. 885-909
    • Pilkis, S.J.1    Granner, D.K.2
  • 34
    • 0034064790 scopus 로고    scopus 로고
    • Gluconeogenesis in non-obese diabetic (NOD) mice: In vivo effects of vandadate treatment on hepatic glucose-6-phoshatase and phosphoenolpyruvate carboxykinase
    • Mosseri R, Waner T, Shefi M, Shafrir E, Meyerovitch J. Gluconeogenesis in non-obese diabetic (NOD) mice: in vivo effects of vandadate treatment on hepatic glucose-6-phoshatase and phosphoenolpyruvate carboxykinase. Metabolism 2000;49:321-325
    • (2000) Metabolism , vol.49 , pp. 321-325
    • Mosseri, R.1    Waner, T.2    Shefi, M.3    Shafrir, E.4    Meyerovitch, J.5
  • 35
    • 83555166240 scopus 로고    scopus 로고
    • Transcription factors and coactivators controlling nutrient and hormonal regulation of hepatic gluconeogenesis
    • Jitrapakdee S. Transcription factors and coactivators controlling nutrient and hormonal regulation of hepatic gluconeogenesis. Int J Biochem Cell Biol 2012;44:33-45
    • (2012) Int J Biochem Cell Biol , vol.44 , pp. 33-45
    • Jitrapakdee, S.1
  • 36
    • 84863526545 scopus 로고    scopus 로고
    • Stat3-mediated activation of microRNA-23a suppresses gluconeogenesis in hepatocellular carcinoma by down-regulating glucose-6-phosphatase and peroxisome proliferator-activated receptor gamma, coactivator 1 alpha
    • Wang B, Hsu SH, Frankel W, Ghoshal K, Jacob ST. Stat3-mediated activation of microRNA-23a suppresses gluconeogenesis in hepatocellular carcinoma by down-regulating glucose-6-phosphatase and peroxisome proliferator-activated receptor gamma, coactivator 1 alpha. Hepatology 2012;56:186-197
    • (2012) Hepatology , vol.56 , pp. 186-197
    • Wang, B.1    Hsu, S.H.2    Frankel, W.3    Ghoshal, K.4    Jacob, S.T.5
  • 37
    • 84880656915 scopus 로고    scopus 로고
    • MicroRNA 33 regulates glucose metabolism
    • Ramírez CM, Goedeke L, Rotllan N, et al. MicroRNA 33 regulates glucose metabolism. Mol Cell Biol 2013;33:2891-2902
    • (2013) Mol Cell Biol , vol.33 , pp. 2891-2902
    • Ramírez, C.M.1    Goedeke, L.2    Rotllan, N.3
  • 38
    • 84919460671 scopus 로고    scopus 로고
    • MIR-22 as a prognostic factor targets glucose transporter protein type 1 in breast cancer
    • Supplement 2
    • Chen B, Tang H, Liu X, et al. MIR-22 as a prognostic factor targets glucose transporter protein type 1 in breast cancer. Cancer Lett 2015;356(Suppl. 2 Pt B):410-417
    • (2015) Cancer Lett , vol.356 , pp. 410-417
    • Chen, B.1    Tang, H.2    Liu, X.3
  • 39
    • 0141446037 scopus 로고    scopus 로고
    • Tissue-specific ablation of the GLUT4 glucose transporter or the insulin receptor challenges assumptions about insulin action and glucose homeostasis
    • Minokoshi Y, Kahn CR, Kahn BB. Tissue-specific ablation of the GLUT4 glucose transporter or the insulin receptor challenges assumptions about insulin action and glucose homeostasis. J Biol Chem 2003;278:33609-33612
    • (2003) J Biol Chem , vol.278 , pp. 33609-33612
    • Minokoshi, Y.1    Kahn, C.R.2    Kahn, B.B.3
  • 40
    • 0033522897 scopus 로고    scopus 로고
    • Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway
    • Nakae J, Park BC, Accili D. Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway. J Biol Chem 1999;274:15982-15985
    • (1999) J Biol Chem , vol.274 , pp. 15982-15985
    • Nakae, J.1    Park, B.C.2    Accili, D.3
  • 41
    • 84866890442 scopus 로고    scopus 로고
    • TCF7L2 modulates glucose homeostasis by regulating CREB- and FoxO1-dependent transcriptional pathway in the liver
    • Oh KJ, Park J, Kim SS, Oh H, Choi CS, Koo SH. TCF7L2 modulates glucose homeostasis by regulating CREB- and FoxO1-dependent transcriptional pathway in the liver. PLoS Genet 2012;8:e1002986
    • (2012) PLoS Genet , vol.8 , pp. e1002986
    • Oh, K.J.1    Park, J.2    Kim, S.S.3    Oh, H.4    Choi, C.S.5    Koo, S.H.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.