메뉴 건너뛰기




Volumn 140, Issue , 2016, Pages 430-436

Proving the suitability of magnetoelectric stimuli for tissue engineering applications

Author keywords

Bone tissue engineering; Cell proliferation; Magnetic stimulus; Magnetoelectric

Indexed keywords

CELL ENGINEERING; CELL PROLIFERATION; CELLS; CYTOLOGY; MAGNETISM; TISSUE;

EID: 84954341705     PISSN: 09277765     EISSN: 18734367     Source Type: Journal    
DOI: 10.1016/j.colsurfb.2015.12.055     Document Type: Article
Times cited : (131)

References (55)
  • 1
    • 83755196350 scopus 로고    scopus 로고
    • Design concepts and strategies for tissue engineering scaffolds
    • Chung S., King M.W. Design concepts and strategies for tissue engineering scaffolds. Biotechnol. Appl. Biochem. 2011, 58:423-438.
    • (2011) Biotechnol. Appl. Biochem. , vol.58 , pp. 423-438
    • Chung, S.1    King, M.W.2
  • 2
    • 19644367664 scopus 로고    scopus 로고
    • Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering
    • Lutolf M.P., Hubbell J.A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 2005, 23:47-55.
    • (2005) Nat. Biotechnol. , vol.23 , pp. 47-55
    • Lutolf, M.P.1    Hubbell, J.A.2
  • 3
    • 84925503883 scopus 로고    scopus 로고
    • Fracture healing: mechanisms and interventions
    • Einhorn T.A., Gerstenfeld L.C. Fracture healing: mechanisms and interventions. Nat. Rev. Rheumatol. 2015, 11:45-54.
    • (2015) Nat. Rev. Rheumatol. , vol.11 , pp. 45-54
    • Einhorn, T.A.1    Gerstenfeld, L.C.2
  • 4
    • 84917690564 scopus 로고    scopus 로고
    • Development of collagen-hydroxyapatite scaffolds incorporating PLGA and alginate microparticles for the controlled delivery of rhBMP-2 for bone tissue engineering
    • Quinlan E., López-Noriega A., Thompson E., Kelly H.M., Cryan S.A., O'Brien F.J. Development of collagen-hydroxyapatite scaffolds incorporating PLGA and alginate microparticles for the controlled delivery of rhBMP-2 for bone tissue engineering. J. Control. Release 2015, 198:71-79.
    • (2015) J. Control. Release , vol.198 , pp. 71-79
    • Quinlan, E.1    López-Noriega, A.2    Thompson, E.3    Kelly, H.M.4    Cryan, S.A.5    O'Brien, F.J.6
  • 5
    • 84925245220 scopus 로고    scopus 로고
    • Artificial organs 2014: a year in review
    • Malchesky P.S. Artificial organs 2014: a year in review. Artif. Organs 2015, 39:260-287.
    • (2015) Artif. Organs , vol.39 , pp. 260-287
    • Malchesky, P.S.1
  • 6
    • 33750608853 scopus 로고    scopus 로고
    • Challenges in tissue engineering
    • Ikada Y. Challenges in tissue engineering. J. R. Soc. Interface 2006, 3:589-601.
    • (2006) J. R. Soc. Interface , vol.3 , pp. 589-601
    • Ikada, Y.1
  • 7
    • 80053442576 scopus 로고    scopus 로고
    • Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants
    • Bacakova L., Filova E., Parizek M., Ruml T., Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011, 29:739-767.
    • (2011) Biotechnol. Adv. , vol.29 , pp. 739-767
    • Bacakova, L.1    Filova, E.2    Parizek, M.3    Ruml, T.4    Svorcik, V.5
  • 8
    • 79952420018 scopus 로고    scopus 로고
    • Biomaterials & scaffolds for tissue engineering
    • O'Brien F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today 2011, 14:88-95.
    • (2011) Mater. Today , vol.14 , pp. 88-95
    • O'Brien, F.J.1
  • 9
    • 80052982295 scopus 로고    scopus 로고
    • Scaffolds based bone tissue engineering: the role of chitosan
    • Costa-Pinto A.R., Reis R.L., Neves N.M. Scaffolds based bone tissue engineering: the role of chitosan. Tissue Eng. B 2011, 17:331-347.
    • (2011) Tissue Eng. B , vol.17 , pp. 331-347
    • Costa-Pinto, A.R.1    Reis, R.L.2    Neves, N.M.3
  • 10
    • 84923000595 scopus 로고    scopus 로고
    • Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review
    • Pina S., Oliveira J.M., Reis R.L. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv. Mater. 2015, 27:1143-1169.
    • (2015) Adv. Mater. , vol.27 , pp. 1143-1169
    • Pina, S.1    Oliveira, J.M.2    Reis, R.L.3
  • 13
    • 0035342569 scopus 로고    scopus 로고
    • A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degradation behaviour
    • Gomes M.E., Ribeiro A.S., Malafaya P.B., Reis R.L., Cunha A.M. A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degradation behaviour. Biomaterials 2001, 22:883-889.
    • (2001) Biomaterials , vol.22 , pp. 883-889
    • Gomes, M.E.1    Ribeiro, A.S.2    Malafaya, P.B.3    Reis, R.L.4    Cunha, A.M.5
  • 14
    • 33745799503 scopus 로고    scopus 로고
    • Electrospinning of polymeric nanofibers for tissue engineering applications: a review
    • Pham Q.P., Sharma U., Mikos A.G. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 2006, 12:1197-1211.
    • (2006) Tissue Eng. , vol.12 , pp. 1197-1211
    • Pham, Q.P.1    Sharma, U.2    Mikos, A.G.3
  • 15
    • 0033382823 scopus 로고    scopus 로고
    • Dynamic mechanical properties of hydroxyapatite-reinforced and porous starch-based degradable biomaterials
    • Mano J.F., Vaz C.M., Mendes S.C., Reis R.L., Cunha A.M. Dynamic mechanical properties of hydroxyapatite-reinforced and porous starch-based degradable biomaterials. J. Mater. Sci. Mater. Med. 1999, 10:857-862.
    • (1999) J. Mater. Sci. Mater. Med. , vol.10 , pp. 857-862
    • Mano, J.F.1    Vaz, C.M.2    Mendes, S.C.3    Reis, R.L.4    Cunha, A.M.5
  • 16
    • 0001406145 scopus 로고
    • On the piezoelectric effect of bone
    • Fukada E., Yasuda I. On the piezoelectric effect of bone. J. Phys. Soc. Jpn. 1957, 12:1158-1162.
    • (1957) J. Phys. Soc. Jpn. , vol.12 , pp. 1158-1162
    • Fukada, E.1    Yasuda, I.2
  • 19
    • 60349087521 scopus 로고    scopus 로고
    • β-PVDF membranes induce cellular proliferation and differentiation in static and dynamic conditions
    • Rodrigues M.T., Gomes M.E., Mano J.F., Reis R.L. β-PVDF membranes induce cellular proliferation and differentiation in static and dynamic conditions. Mater. Sci. Forum 2008, 587-588:72-76.
    • (2008) Mater. Sci. Forum , pp. 72-76
    • Rodrigues, M.T.1    Gomes, M.E.2    Mano, J.F.3    Reis, R.L.4
  • 21
    • 84865303887 scopus 로고    scopus 로고
    • Biomaterial delivery of morphogens to mimic the natural healing cascade in bone
    • Mehta M., Schmidt-Bleek K., Duda G.N., Mooney D.J. Biomaterial delivery of morphogens to mimic the natural healing cascade in bone. Adv. Drug Deliv. Rev. 2012, 64:1257-1276.
    • (2012) Adv. Drug Deliv. Rev. , vol.64 , pp. 1257-1276
    • Mehta, M.1    Schmidt-Bleek, K.2    Duda, G.N.3    Mooney, D.J.4
  • 22
    • 40449131527 scopus 로고    scopus 로고
    • Remote control of cellular behaviour with magnetic nanoparticles
    • Dobson J. Remote control of cellular behaviour with magnetic nanoparticles. Nat. Nanotechnol. 2008, 3:139-143.
    • (2008) Nat. Nanotechnol. , vol.3 , pp. 139-143
    • Dobson, J.1
  • 23
    • 84900506391 scopus 로고    scopus 로고
    • Magnetic field-controlled release of Paclitaxel drug from functionalized magnetoelectric nanoparticles
    • Guduru R., Khizroev S. Magnetic field-controlled release of Paclitaxel drug from functionalized magnetoelectric nanoparticles. Part. Part. Syst. Char. 2014, 31:605-611.
    • (2014) Part. Part. Syst. Char. , vol.31 , pp. 605-611
    • Guduru, R.1    Khizroev, S.2
  • 27
  • 28
  • 30
    • 80052152334 scopus 로고    scopus 로고
    • Multiferroic polymer composites with greatly enhanced magnetoelectric effect under a low magnetic bias
    • Jin J., Lu S.G., Chanthad C., Zhang Q., Haque M.A., Wang Q. Multiferroic polymer composites with greatly enhanced magnetoelectric effect under a low magnetic bias. Adv. Mater. 2011, 23:3853-3858.
    • (2011) Adv. Mater. , vol.23 , pp. 3853-3858
    • Jin, J.1    Lu, S.G.2    Chanthad, C.3    Zhang, Q.4    Haque, M.A.5    Wang, Q.6
  • 31
    • 84887595501 scopus 로고    scopus 로고
    • Optimization of the magnetoelectric response of poly(vinylidene fluoride)/epoxy/vitrovac laminatesmization of the magnetoelectric response of poly(vinylidene fluoride)/epoxy/vitrovac laminates
    • Silva M., Reis S., Lehmann C.S., Martins P., Lanceros-Mendez S., Lasheras A., Gutiérrez J., Barandiarán J.M. Optimization of the magnetoelectric response of poly(vinylidene fluoride)/epoxy/vitrovac laminatesmization of the magnetoelectric response of poly(vinylidene fluoride)/epoxy/vitrovac laminates. ACS Appl. Mater. Interfaces 2013, 5:10912-10919.
    • (2013) ACS Appl. Mater. Interfaces , vol.5 , pp. 10912-10919
    • Silva, M.1    Reis, S.2    Lehmann, C.S.3    Martins, P.4    Lanceros-Mendez, S.5    Lasheras, A.6    Gutiérrez, J.7    Barandiarán, J.M.8
  • 33
    • 84899654354 scopus 로고    scopus 로고
    • Magnetic responsive scaffolds and magnetic fields in bone repair and regeneration
    • Xu H.Y., Gu N. Magnetic responsive scaffolds and magnetic fields in bone repair and regeneration. Front. Mater. Sci. 2014, 8:20-31.
    • (2014) Front. Mater. Sci. , vol.8 , pp. 20-31
    • Xu, H.Y.1    Gu, N.2
  • 34
    • 84900333482 scopus 로고    scopus 로고
    • Magnetic composite biomaterials for tissue engineering
    • Gil S., Mano J.F. Magnetic composite biomaterials for tissue engineering. Biomater. Sci. 2014, 2:812-818.
    • (2014) Biomater. Sci. , vol.2 , pp. 812-818
    • Gil, S.1    Mano, J.F.2
  • 38
  • 39
    • 84897094940 scopus 로고    scopus 로고
    • Electroactive phases of poly(vinylidene fluoride): determination, processing and applications
    • Martins P., Lopes A.C., Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 2014, 39:683-706.
    • (2014) Prog. Polym. Sci. , vol.39 , pp. 683-706
    • Martins, P.1    Lopes, A.C.2    Lanceros-Mendez, S.3
  • 41
    • 84930074427 scopus 로고    scopus 로고
    • Determination of the magnetostrictive response of nanoparticles via magnetoelectric measurements
    • Martins P., Silva M., lanceros-mendez S. Determination of the magnetostrictive response of nanoparticles via magnetoelectric measurements. Nanoscale 2015, 21:9457-9461.
    • (2015) Nanoscale , vol.21 , pp. 9457-9461
    • Martins, P.1    Silva, M.2    lanceros-mendez, S.3
  • 42
    • 84919907944 scopus 로고    scopus 로고
    • Electrical stimulation enhances cell migration and integrative repair in the meniscus
    • Yuan X., Arkonac D.E., Chao P.H.G., Vunjak-Novakovic G. Electrical stimulation enhances cell migration and integrative repair in the meniscus. Sci. Rep. 2015, 4:3674.
    • (2015) Sci. Rep. , vol.4 , pp. 3674
    • Yuan, X.1    Arkonac, D.E.2    Chao, P.H.G.3    Vunjak-Novakovic, G.4
  • 43
    • 0033598598 scopus 로고    scopus 로고
    • Impact of sleep debt on metabolic and endocrine function
    • Spiegel K., Leproult R., Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet 1999, 1435-1439.
    • (1999) Lancet , pp. 1435-1439
    • Spiegel, K.1    Leproult, R.2    Van Cauter, E.3
  • 45
    • 84884251137 scopus 로고    scopus 로고
    • Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo
    • Meng J., Xiao B., Zhang Y., Liu J., Xue H., Lei J., Kong H., Huang Y., Jin Z., Gu N., Xu H. Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo. Sci Reports 2013, 3:2655.
    • (2013) Sci Reports , vol.3 , pp. 2655
    • Meng, J.1    Xiao, B.2    Zhang, Y.3    Liu, J.4    Xue, H.5    Lei, J.6    Kong, H.7    Huang, Y.8    Jin, Z.9    Gu, N.10    Xu, H.11
  • 47
    • 67349287368 scopus 로고    scopus 로고
    • Ultra-sensitive detection of magnetic field and its direction using bilayer PVDF/Metglas laminate
    • Dong X.W., Wang B., Wang K.F., Wan J.G., Liu J.M. Ultra-sensitive detection of magnetic field and its direction using bilayer PVDF/Metglas laminate. Sens. Actuator A-Phys. 2009, 153:64-68.
    • (2009) Sens. Actuator A-Phys. , vol.153 , pp. 64-68
    • Dong, X.W.1    Wang, B.2    Wang, K.F.3    Wan, J.G.4    Liu, J.M.5
  • 51
    • 84921530878 scopus 로고    scopus 로고
    • The influence of inducing magnetic field on the magnetoelectric effect of particulate magnetoelectric composites
    • Zeng Y., Bao G., Yi J., Zhang G., Jiang S. The influence of inducing magnetic field on the magnetoelectric effect of particulate magnetoelectric composites. J. Alloys Compd. 2015, 630:183-188.
    • (2015) J. Alloys Compd. , vol.630 , pp. 183-188
    • Zeng, Y.1    Bao, G.2    Yi, J.3    Zhang, G.4    Jiang, S.5
  • 52
    • 33744930349 scopus 로고    scopus 로고
    • The review of cellular effects of a static magnetic field
    • Miyakoshi J. The review of cellular effects of a static magnetic field. Sci. Technol. Adv. Mater. 2006, 7:305-307.
    • (2006) Sci. Technol. Adv. Mater. , vol.7 , pp. 305-307
    • Miyakoshi, J.1
  • 53
    • 84875235433 scopus 로고    scopus 로고
    • Mechanical cues in cellular signalling and communication
    • Bukoreshtliev N.V., Haase K., Pelling A.E. Mechanical cues in cellular signalling and communication. Cell Tissue Res. 2013, 352:77-94.
    • (2013) Cell Tissue Res. , vol.352 , pp. 77-94
    • Bukoreshtliev, N.V.1    Haase, K.2    Pelling, A.E.3
  • 55
    • 84912138954 scopus 로고    scopus 로고
    • Electric stimulation at 448kHz promotes proliferation of human mesenchymal stem cells
    • Hernández-Bule M.L., Paíno C.L., Trillo M.A., Úbeda A. Electric stimulation at 448kHz promotes proliferation of human mesenchymal stem cells. Cell Phys. Biochem. 2014, 34:1741-1755.
    • (2014) Cell Phys. Biochem. , vol.34 , pp. 1741-1755
    • Hernández-Bule, M.L.1    Paíno, C.L.2    Trillo, M.A.3    Úbeda, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.