-
1
-
-
84879498742
-
Nanostructured scaffolds for bone tissue engineering
-
Li X, Wang L, Fan Y, et al. Nanostructured scaffolds for bone tissue engineering. Journal of Biomedical Materials Research Part A, 2013, 101A(8): 2424-2435.
-
(2013)
Journal of Biomedical Materials Research Part A
, vol.101 A
, Issue.8
, pp. 2424-2435
-
-
Li, X.1
Wang, L.2
Fan, Y.3
-
2
-
-
84899645183
-
Bioinspired scaffolds for osteochondral regeneration
-
Lopa S, Madry H. Bioinspired scaffolds for osteochondral regeneration. Tissue Engineering Part A, 2014, doi: 10. 1089/ten. tea. 2013. 0356.
-
(2014)
Tissue Engineering Part A
-
-
Lopa, S.1
Madry, H.2
-
3
-
-
84893106821
-
Biomimetic polymer scaffolds to promote stem cell-mediated osteogenesis
-
Ko E, Cho S W. Biomimetic polymer scaffolds to promote stem cell-mediated osteogenesis. International Journal of Stem Cells, 2013, 6(2): 87-91.
-
(2013)
International Journal of Stem Cells
, vol.6
, Issue.2
, pp. 87-91
-
-
Ko, E.1
Cho, S.W.2
-
4
-
-
84898631080
-
Biopolymer/calcium phosphate scaffolds for bone tissue engineering
-
Li J, Baker B A, Mou X, et al. Biopolymer/calcium phosphate scaffolds for bone tissue engineering. Advanced Healthcare Materials, 2014, doi: 10. 1002/adhm. 201300562.
-
(2014)
Advanced Healthcare Materials
-
-
Li, J.1
Baker, B.A.2
Mou, X.3
-
5
-
-
29744458411
-
Mechanisms of mechanotransduction
-
Orr A W, Helmke B P, Blackman B R, et al. Mechanisms of mechanotransduction. Developmental Cell, 2006, 10(1): 11-20.
-
(2006)
Developmental Cell
, vol.10
, Issue.1
, pp. 11-20
-
-
Orr, A.W.1
Helmke, B.P.2
Blackman, B.R.3
-
6
-
-
40149087864
-
Mechanotransduction and fracture repair
-
Morgan E F, Gleason R E, Hayward L N M, et al. Mechanotransduction and fracture repair. The Journal of Bone & Joint Surgery, 2008, 90(Suppl 1): 25-30.
-
(2008)
The Journal of Bone & Joint Surgery
, vol.90
, Issue.SUPPL. 1
, pp. 25-30
-
-
Morgan, E.F.1
Gleason, R.E.2
Hayward, L.N.M.3
-
7
-
-
51649090131
-
An update on recent advances in bone regeneration
-
Soucacos P N, Johnson E O, Babis G. An update on recent advances in bone regeneration. Injury, 2008, 39(Suppl 2): S1-S4.
-
(2008)
Injury
, vol.39
, Issue.SUPPL. 2
-
-
Soucacos, P.N.1
Johnson, E.O.2
Babis, G.3
-
8
-
-
79952808954
-
Mechanobiology of bone healing and regeneration: in vivo models
-
Epari D R, Duda G N, Thompson M S. Mechanobiology of bone healing and regeneration: in vivo models. Proceedings of the Institution of Mechanical Engineers Part H: Journal of Engineering in Medicine, 2010, 224(12): 1543-1553.
-
(2010)
Proceedings of the Institution of Mechanical Engineers Part H: Journal of Engineering in Medicine
, vol.224
, Issue.12
, pp. 1543-1553
-
-
Epari, D.R.1
Duda, G.N.2
Thompson, M.S.3
-
9
-
-
77949603251
-
Osteocytes and WNT: the mechanical control of bone formation
-
Galli C, Passeri G, Macaluso G M. Osteocytes and WNT: the mechanical control of bone formation. Journal of Dental Research, 2010, 89(4): 331-343.
-
(2010)
Journal of Dental Research
, vol.89
, Issue.4
, pp. 331-343
-
-
Galli, C.1
Passeri, G.2
Macaluso, G.M.3
-
10
-
-
84875845260
-
Multiscale design of surface morphological gradient for osseointegration
-
Chen J, Rungsiyakull C, Li W, et al. Multiscale design of surface morphological gradient for osseointegration. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 20: 387-397.
-
(2013)
Journal of the Mechanical Behavior of Biomedical Materials
, vol.20
, pp. 387-397
-
-
Chen, J.1
Rungsiyakull, C.2
Li, W.3
-
11
-
-
0023271878
-
Effect of a static magnetic field on fracture healing in a rabbit radius. Preliminary results
-
Bruce G K, Howlett C R, Huckstep R L. Effect of a static magnetic field on fracture healing in a rabbit radius. Preliminary results. Clinical Orthopaedics and Related Research, 1987, 222: 300-306.
-
(1987)
Clinical Orthopaedics and Related Research
, vol.222
, pp. 300-306
-
-
Bruce, G.K.1
Howlett, C.R.2
Huckstep, R.L.3
-
12
-
-
0032170466
-
Effects of static magnetic field on bone formation of rat femurs
-
Yan Q C, Tomita N, Ikada Y. Effects of static magnetic field on bone formation of rat femurs. Medical Engineering & Physics, 1998, 20(6): 397-402.
-
(1998)
Medical Engineering & Physics
, vol.20
, Issue.6
, pp. 397-402
-
-
Yan, Q.C.1
Tomita, N.2
Ikada, Y.3
-
13
-
-
79961077424
-
A moderate-intensity static magnetic field enhances repair of cartilage damage in rabbits
-
Jaberi F M, Keshtgar S, Tavakkoli A, et al. A moderate-intensity static magnetic field enhances repair of cartilage damage in rabbits. Archives of Medical Research, 2011, 42(4): 268-273.
-
(2011)
Archives of Medical Research
, vol.42
, Issue.4
, pp. 268-273
-
-
Jaberi, F.M.1
Keshtgar, S.2
Tavakkoli, A.3
-
14
-
-
0036786848
-
Strong static magnetic field stimulates bone formation to a definite orientation in vitro and in vivo
-
Kotani H, Kawaguchi H, Shimoaka T, et al. Strong static magnetic field stimulates bone formation to a definite orientation in vitro and in vivo. Journal of Bone and Mineral Research, 2002, 17(10): 1814-1821.
-
(2002)
Journal of Bone and Mineral Research
, vol.17
, Issue.10
, pp. 1814-1821
-
-
Kotani, H.1
Kawaguchi, H.2
Shimoaka, T.3
-
15
-
-
84878509235
-
The effects of a static magnetic field on bone formation around a sandblasted, large-grit, acid-etched-treated titanium implant
-
Leesungbok R, Ahn S-J, Lee S-W, et al. The effects of a static magnetic field on bone formation around a sandblasted, large-grit, acid-etched-treated titanium implant. Journal of Oral Implantology, 2013, 39(S1): 248-255.
-
(2013)
Journal of Oral Implantology
, vol.39
, Issue.S1
, pp. 248-255
-
-
Leesungbok, R.1
Ahn, S.-J.2
Lee, S.-W.3
-
16
-
-
0021325957
-
Magnetic alignment of collagen during self-assembly
-
Torbet J, Ronzière M-C. Magnetic alignment of collagen during self-assembly. Biochemical Journal, 1984, 219(3): 1057-1059.
-
(1984)
Biochemical Journal
, vol.219
, Issue.3
, pp. 1057-1059
-
-
Torbet, J.1
Ronzière, M.-C.2
-
17
-
-
0021239805
-
Liquid crystallinity in collagen solutions and magnetic orientation of collagen fibrils
-
Murthy N S. Liquid crystallinity in collagen solutions and magnetic orientation of collagen fibrils. Biopolymers, 1984, 23(7): 1261-1267.
-
(1984)
Biopolymers
, vol.23
, Issue.7
, pp. 1261-1267
-
-
Murthy, N.S.1
-
18
-
-
0019349698
-
Oriented fibrin gels formed by polymerization in strong magnetic fields
-
Torbet J, Freyssinet J M, Hudry-Clergeon G. Oriented fibrin gels formed by polymerization in strong magnetic fields. Nature, 1981, 289(5793): 91-93.
-
(1981)
Nature
, vol.289
, Issue.5793
, pp. 91-93
-
-
Torbet, J.1
Freyssinet, J.M.2
Hudry-Clergeon, G.3
-
19
-
-
0027699120
-
Effects of magnetic fields on fibrin polymerization and fibrinolysis
-
Ueno S, Iwasaka M, Tsuda H. Effects of magnetic fields on fibrin polymerization and fibrinolysis. IEEE Transactions on Magnetics, 1993, 29(6): 3352-3354.
-
(1993)
IEEE Transactions on Magnetics
, vol.29
, Issue.6
, pp. 3352-3354
-
-
Ueno, S.1
Iwasaka, M.2
Tsuda, H.3
-
20
-
-
4344701344
-
Effects of static magnetic fields on bone formation in rat osteoblast cultures
-
Yamamoto Y, Ohsaki Y, Goto T, et al. Effects of static magnetic fields on bone formation in rat osteoblast cultures. Journal of Dental Research, 2003, 82(12): 962-966.
-
(2003)
Journal of Dental Research
, vol.82
, Issue.12
, pp. 962-966
-
-
Yamamoto, Y.1
Ohsaki, Y.2
Goto, T.3
-
21
-
-
10744225313
-
Physical stress by magnetic force accelerates differentiation of human osteoblasts
-
Yuge L, Okubo A, Miyashita T, et al. Physical stress by magnetic force accelerates differentiation of human osteoblasts. Biochemical and Biophysical Research Communications, 2003, 311(1): 32-38.
-
(2003)
Biochemical and Biophysical Research Communications
, vol.311
, Issue.1
, pp. 32-38
-
-
Yuge, L.1
Okubo, A.2
Miyashita, T.3
-
22
-
-
0032170466
-
Effects of static magnetic field on bone formation of rat femurs
-
Yan Q C, Tomita N, Ikada Y. Effects of static magnetic field on bone formation of rat femurs. Medical Engineering & Physics, 1998, 20(6): 397-402.
-
(1998)
Medical Engineering & Physics
, vol.20
, Issue.6
, pp. 397-402
-
-
Yan, Q.C.1
Tomita, N.2
Ikada, Y.3
-
23
-
-
0031953543
-
The effects of pulsed electromagnetism on fresh fracture healing: osteochondral repair in the rat femoral groove
-
Grace K L, Revell W J, Brookes M. The effects of pulsed electromagnetism on fresh fracture healing: osteochondral repair in the rat femoral groove. Orthopedics, 1998, 21(3): 297-302.
-
(1998)
Orthopedics
, vol.21
, Issue.3
, pp. 297-302
-
-
Grace, K.L.1
Revell, W.J.2
Brookes, M.3
-
24
-
-
0027017095
-
Effect of a pulsing electromagnetic field on demineralized bone-matrixinduced bone formation in a bony defect in the premaxilla of rats
-
Takano-Yamamoto T, Kawakami M, Sakuda M. Effect of a pulsing electromagnetic field on demineralized bone-matrixinduced bone formation in a bony defect in the premaxilla of rats. Journal of Dental Research, 1992, 71(12): 1920-1925.
-
(1992)
Journal of Dental Research
, vol.71
, Issue.12
, pp. 1920-1925
-
-
Takano-Yamamoto, T.1
Kawakami, M.2
Sakuda, M.3
-
25
-
-
80055098054
-
Stimulation of bone formation and fracture healing with pulsed electromagnetic fields: biologic responses and clinical implications
-
Chalidis B, Sachinis N, Assiotis A, et al. Stimulation of bone formation and fracture healing with pulsed electromagnetic fields: biologic responses and clinical implications. International Journal of Immunopathology and Pharmacology, 2011, 24(1 Suppl 2): 17-20.
-
(2011)
International Journal of Immunopathology and Pharmacology
, vol.24
, Issue.1 SUPPL. 2
, pp. 17-20
-
-
Chalidis, B.1
Sachinis, N.2
Assiotis, A.3
-
26
-
-
0031408610
-
Use of electromagnetic fields in a spinal fusion. A rabbit model
-
Glazer P A, Heilmann MR, Lotz J C, et al. Use of electromagnetic fields in a spinal fusion. A rabbit model. Spine, 1997, 22(20): 2351-2356.
-
(1997)
Spine
, vol.22
, Issue.20
, pp. 2351-2356
-
-
Glazer, P.A.1
Heilmann, M.R.2
Lotz, J.C.3
-
27
-
-
84861953085
-
Pulsed electromagnetic fields for the treatment of tibial delayed unions and nonunions. A prospective clinical study and review of the literature
-
Assiotis A, Sachinis N P, Chalidis B E. Pulsed electromagnetic fields for the treatment of tibial delayed unions and nonunions. A prospective clinical study and review of the literature. Journal of Orthopaedic Surgery and Research, 2012, 7(1): 24.
-
(2012)
Journal of Orthopaedic Surgery and Research
, vol.7
, Issue.1
, pp. 24
-
-
Assiotis, A.1
Sachinis, N.P.2
Chalidis, B.E.3
-
28
-
-
0021240177
-
Electromagnetic stimulation of canine bone grafts
-
Miller G J, Burchardt H, Enneking W F, et al. Electromagnetic stimulation of canine bone grafts. The Journal of Bone & Joint Surgery, 1984, 66(5): 693-698.
-
(1984)
The Journal of Bone & Joint Surgery
, vol.66
, Issue.5
, pp. 693-698
-
-
Miller, G.J.1
Burchardt, H.2
Enneking, W.F.3
-
29
-
-
79953178988
-
Effects of low frequency electromagnetic fields on the chondrogenic differentiation of human mesenchymal stem cells
-
Mayer-Wagner S, Passberger A, Sievers B, et al. Effects of low frequency electromagnetic fields on the chondrogenic differentiation of human mesenchymal stem cells. Bioelectromagnetics, 2011, 32(4): 283-290.
-
(2011)
Bioelectromagnetics
, vol.32
, Issue.4
, pp. 283-290
-
-
Mayer-Wagner, S.1
Passberger, A.2
Sievers, B.3
-
30
-
-
34648831633
-
Differential inducibility of human and porcine dental pulp-derived cells into odontoblasts
-
Tonomura A, Sumita Y, Ando Y, et al. Differential inducibility of human and porcine dental pulp-derived cells into odontoblasts. Connective Tissue Research, 2007, 48(5): 229-238.
-
(2007)
Connective Tissue Research
, vol.48
, Issue.5
, pp. 229-238
-
-
Tonomura, A.1
Sumita, Y.2
Ando, Y.3
-
31
-
-
0036704390
-
Stem cell properties of human dental pulp stem cells
-
Gronthos S, Brahim J, Li W, et al. Stem cell properties of human dental pulp stem cells. Journal of Dental Research, 2002, 81(8): 531-535.
-
(2002)
Journal of Dental Research
, vol.81
, Issue.8
, pp. 531-535
-
-
Gronthos, S.1
Brahim, J.2
Li, W.3
-
32
-
-
77955715711
-
The static magnetic field accelerates the osteogenic differentiation and mineralization of dental pulp cells
-
Hsu S H, Chang J C. The static magnetic field accelerates the osteogenic differentiation and mineralization of dental pulp cells. Cytotechnology, 2010, 62(2): 143-155.
-
(2010)
Cytotechnology
, vol.62
, Issue.2
, pp. 143-155
-
-
Hsu, S.H.1
Chang, J.C.2
-
33
-
-
78649794618
-
Mechanical integrin stress and magnetic forces induce biological responses in mesenchymal stem cells which depend on environmental factors
-
Kasten A, Müller P, Bulnheim U, et al. Mechanical integrin stress and magnetic forces induce biological responses in mesenchymal stem cells which depend on environmental factors. Journal of Cellular Biochemistry, 2010, 111(6): 1586-1597.
-
(2010)
Journal of Cellular Biochemistry
, vol.111
, Issue.6
, pp. 1586-1597
-
-
Kasten, A.1
Müller, P.2
Bulnheim, U.3
-
35
-
-
76349102822
-
A novel calcium phosphate ceramic-magnetic nanoparticle composite as a potential bone substitute
-
Wu Y, Jiang W, Wen X, et al. A novel calcium phosphate ceramic-magnetic nanoparticle composite as a potential bone substitute. Biomedical Materials, 2010, 5(1): 015001.
-
(2010)
Biomedical Materials
, vol.5
, Issue.1
, pp. 015001
-
-
Wu, Y.1
Jiang, W.2
Wen, X.3
-
36
-
-
84860119634
-
4/CS/PVA nanofibrous membranes for bone regeneration
-
4/CS/PVA nanofibrous membranes for bone regeneration. Biomedical Materials, 2011, 6(5): 055008.
-
(2011)
Biomedical Materials
, vol.6
, Issue.5
, pp. 055008
-
-
Wei, Y.1
Zhang, X.2
Song, Y.3
-
37
-
-
84894687105
-
Magnetic hydroxyapatite coatings with oriented nanorod arrays: hydrothermal synthesis, structure and biocompatibility
-
Chen W, Long T, Guo Y-J, et al. Magnetic hydroxyapatite coatings with oriented nanorod arrays: hydrothermal synthesis, structure and biocompatibility. Journal of Materials Chemistry B, 2014, doi: 10. 1039/C3TB21769H.
-
(2014)
Journal of Materials Chemistry B
-
-
Chen, W.1
Long, T.2
Guo, Y.-J.3
-
38
-
-
78649829784
-
Paramagnetic nanofibrous composite films enhance the osteogenic responses of preosteoblast cells
-
Meng J, Zhang Y, Qi X, et al. Paramagnetic nanofibrous composite films enhance the osteogenic responses of preosteoblast cells. Nanoscale, 2010, 2(12): 2565-2569.
-
(2010)
Nanoscale
, vol.2
, Issue.12
, pp. 2565-2569
-
-
Meng, J.1
Zhang, Y.2
Qi, X.3
-
39
-
-
84869989699
-
Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation
-
Zeng X B, Hu H, Xie L Q, et al. Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation. International Journal of Nanomedicine, 2012, 7: 3365-3378.
-
(2012)
International Journal of Nanomedicine
, vol.7
, pp. 3365-3378
-
-
Zeng, X.B.1
Hu, H.2
Xie, L.Q.3
-
40
-
-
84862025136
-
Magnetic hydroxyapatite bone substitutes to enhance tissue regeneration: evaluation in vitro using osteoblast-like cells and in vivo in a bone defect
-
Panseri S, Cunha C, D'Alessandro T, et al. Magnetic hydroxyapatite bone substitutes to enhance tissue regeneration: evaluation in vitro using osteoblast-like cells and in vivo in a bone defect. PLoS ONE, 2012, 7(6): e38710.
-
(2012)
PLoS ONE
, vol.7
, Issue.6
-
-
Panseri, S.1
Cunha, C.2
D'Alessandro, T.3
-
41
-
-
84889078836
-
Cell behaviors on magnetic electrospun poly-D, L-lactide nanofibers
-
Li L, Yang G, Li J, et al. Cell behaviors on magnetic electrospun poly-D, L-lactide nanofibers. Materials Science and Engineering C, 2014, 34(1): 252-261.
-
(2014)
Materials Science and Engineering C
, vol.34
, Issue.1
, pp. 252-261
-
-
Li, L.1
Yang, G.2
Li, J.3
-
42
-
-
84884251137
-
Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo
-
Meng J, Xiao B, Zhang Y, et al. Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo. Scientific Reports, 2013, 3: 2655 (7 pages).
-
(2013)
Scientific Reports
, vol.3
, pp. 2655
-
-
Meng, J.1
Xiao, B.2
Zhang, Y.3
-
43
-
-
80052266276
-
Multifunctional magnetic mesoporous bioactive glass scaffolds with a hierarchical pore structure
-
Wu C, Fan W, Zhu Y, et al. Multifunctional magnetic mesoporous bioactive glass scaffolds with a hierarchical pore structure. Acta Biomaterialia, 2011, 7(10): 3563-3572.
-
(2011)
Acta Biomaterialia
, vol.7
, Issue.10
, pp. 3563-3572
-
-
Wu, C.1
Fan, W.2
Zhu, Y.3
-
44
-
-
75149177046
-
A novel route in bone tissue engineering: magnetic biomimetic scaffolds
-
Bock N, Riminucci A, Dionigi C, et al. A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Acta Biomaterialia, 2010, 6(3): 786-796.
-
(2010)
Acta Biomaterialia
, vol.6
, Issue.3
, pp. 786-796
-
-
Bock, N.1
Riminucci, A.2
Dionigi, C.3
-
45
-
-
84864401726
-
Innovative magnetic scaffolds for orthopedic tissue engineering
-
Panseri S, Russo A, Giavaresi G, et al. Innovative magnetic scaffolds for orthopedic tissue engineering. Journal of Biomedical Materials Research Part A, 2012, 100(9): 2278-2286.
-
(2012)
Journal of Biomedical Materials Research Part A
, vol.100
, Issue.9
, pp. 2278-2286
-
-
Panseri, S.1
Russo, A.2
Giavaresi, G.3
-
46
-
-
79251547045
-
A conceptually new type of bio-hybrid scaffold for bone regeneration
-
Tampieri A, Landi E, Valentini F, et al. A conceptually new type of bio-hybrid scaffold for bone regeneration. Nanotechnology, 2011, 22(1): 015104.
-
(2011)
Nanotechnology
, vol.22
, Issue.1
, pp. 015104
-
-
Tampieri, A.1
Landi, E.2
Valentini, F.3
-
47
-
-
84867206835
-
A new approach to scaffold fixation by magnetic forces: Application to large osteochondral defects
-
Russo A, Shelyakova T, Casino D, et al. A new approach to scaffold fixation by magnetic forces: Application to large osteochondral defects. Medical Engineering & Physics, 2012, 34(9): 1287-1293.
-
(2012)
Medical Engineering & Physics
, vol.34
, Issue.9
, pp. 1287-1293
-
-
Russo, A.1
Shelyakova, T.2
Casino, D.3
-
48
-
-
84881224024
-
Modifying bone scaffold architecture in vivo with permanent magnets to facilitate fixation of magnetic scaffolds
-
Panseri S, Russo A, Sartori M, et al. Modifying bone scaffold architecture in vivo with permanent magnets to facilitate fixation of magnetic scaffolds. Bone, 2013, 56(2): 432-439.
-
(2013)
Bone
, vol.56
, Issue.2
, pp. 432-439
-
-
Panseri, S.1
Russo, A.2
Sartori, M.3
-
49
-
-
84896737285
-
Pressureless mechanical induction of stem cell differentiation is dose and frequency dependent
-
Fuhrer R, Hofmann S, Hild N, et al. Pressureless mechanical induction of stem cell differentiation is dose and frequency dependent. PLoS ONE, 2013, 8(11): e81362.
-
(2013)
PLoS ONE
, vol.8
, Issue.11
-
-
Fuhrer, R.1
Hofmann, S.2
Hild, N.3
|