-
1
-
-
84921534709
-
Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting
-
Lin R., et al. Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting. Bioconjug. Chem. 2015, 26:71-77.
-
(2015)
Bioconjug. Chem.
, vol.26
, pp. 71-77
-
-
Lin, R.1
-
2
-
-
84889889091
-
Cell-penetrating peptide secures an efficient endosomal escape of an intact cargo upon a brief photo-induction
-
Räägel H., et al. Cell-penetrating peptide secures an efficient endosomal escape of an intact cargo upon a brief photo-induction. Cell. Mol. Life Sci. 2013, 70:4825-4839.
-
(2013)
Cell. Mol. Life Sci.
, vol.70
, pp. 4825-4839
-
-
Räägel, H.1
-
3
-
-
84864402585
-
Arginine topology controls escape of minimally cationic proteins from early endosomes to the cytoplasm
-
Appelbaum J.S., et al. Arginine topology controls escape of minimally cationic proteins from early endosomes to the cytoplasm. Chem. Biol. 2012, 19:819-830.
-
(2012)
Chem. Biol.
, vol.19
, pp. 819-830
-
-
Appelbaum, J.S.1
-
4
-
-
84863768475
-
Effects of tryptophan content and backbone spacing on the uptake efficiency of cell-penetrating peptides
-
Rydberg H., et al. Effects of tryptophan content and backbone spacing on the uptake efficiency of cell-penetrating peptides. Biochemistry 2012, 51:5531-5539.
-
(2012)
Biochemistry
, vol.51
, pp. 5531-5539
-
-
Rydberg, H.1
-
5
-
-
84903178535
-
Early endosomal escape of a cyclic cell-penetrating peptide allows effective cytosolic cargo delivery
-
Qian Z., et al. Early endosomal escape of a cyclic cell-penetrating peptide allows effective cytosolic cargo delivery. Biochemistry 2014, 53:4034-4046.
-
(2014)
Biochemistry
, vol.53
, pp. 4034-4046
-
-
Qian, Z.1
-
6
-
-
84923635416
-
Fluorescence correlation spectroscopy reveals highly efficient cytosolic delivery of certain Penta-Arg proteins and stapled peptides
-
LaRochelle J.R., et al. Fluorescence correlation spectroscopy reveals highly efficient cytosolic delivery of certain Penta-Arg proteins and stapled peptides. J. Am. Chem. Soc. 2015, 137:2536-2541.
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 2536-2541
-
-
LaRochelle, J.R.1
-
7
-
-
70350023192
-
Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides
-
Herce H.D., et al. Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides. Biophys. J. 2009, 97:1917-1925.
-
(2009)
Biophys. J.
, vol.97
, pp. 1917-1925
-
-
Herce, H.D.1
-
8
-
-
79958796013
-
Spontaneous membrane-translocating peptides by orthogonal high-throughput screening
-
Marks J.R., et al. Spontaneous membrane-translocating peptides by orthogonal high-throughput screening. J. Am. Chem. Soc. 2011, 133:8995-9004.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 8995-9004
-
-
Marks, J.R.1
-
9
-
-
0030802359
-
Endocytosis
-
Mukherjee S., et al. Endocytosis. Physiol. Rev. 1997, 77:759-803.
-
(1997)
Physiol. Rev.
, vol.77
, pp. 759-803
-
-
Mukherjee, S.1
-
10
-
-
84889073868
-
Clathrin-independent pathways of endocytosis
-
Mayor S., et al. Clathrin-independent pathways of endocytosis. Cold Spring Harb. Perspect. Biol. 2014, 6:a016758.
-
(2014)
Cold Spring Harb. Perspect. Biol.
, vol.6
-
-
Mayor, S.1
-
11
-
-
33745859044
-
Mechanisms of pathogen entry through the endosomal compartments
-
Gruenberg J., van der Goot F.G. Mechanisms of pathogen entry through the endosomal compartments. Nat. Rev. Mol. Cell Biol. 2006, 7:495-504.
-
(2006)
Nat. Rev. Mol. Cell Biol.
, vol.7
, pp. 495-504
-
-
Gruenberg, J.1
van der Goot, F.G.2
-
12
-
-
11844268027
-
Cationic TAT peptide transduction domain enters cells by macropinocytosis
-
Kaplan I.M., et al. Cationic TAT peptide transduction domain enters cells by macropinocytosis. J. Control. Release 2005, 102:247-253.
-
(2005)
J. Control. Release
, vol.102
, pp. 247-253
-
-
Kaplan, I.M.1
-
13
-
-
0141446039
-
Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins
-
Fittipaldi A., et al. Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J. Biol. Chem. 2003, 278:34141-34149.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 34141-34149
-
-
Fittipaldi, A.1
-
14
-
-
34250835903
-
A comprehensive model for the cellular uptake of cationic cell-penetrating peptides
-
Duchardt F., et al. A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic 2007, 8:848-866.
-
(2007)
Traffic
, vol.8
, pp. 848-866
-
-
Duchardt, F.1
-
15
-
-
20444403719
-
Effects of cargo molecules on the cellular uptake of arginine-rich cell-penetrating peptides
-
Maiolo J.R., et al. Effects of cargo molecules on the cellular uptake of arginine-rich cell-penetrating peptides. Biochim. Biophys. Acta Biomembr. 2005, 1712:161-172.
-
(2005)
Biochim. Biophys. Acta Biomembr.
, vol.1712
, pp. 161-172
-
-
Maiolo, J.R.1
-
16
-
-
1642304434
-
Membrane binding and translocation of cell-penetrating peptides
-
Thoran P.E.G., et al. Membrane binding and translocation of cell-penetrating peptides. Biochemistry 2004, 43:3471-3489.
-
(2004)
Biochemistry
, vol.43
, pp. 3471-3489
-
-
Thoran, P.E.G.1
-
17
-
-
0141907727
-
Cellular uptake of the Tat peptide: an endocytosis mechanism following ionic interactions
-
Vives E. Cellular uptake of the Tat peptide: an endocytosis mechanism following ionic interactions. J. Mol. Recognit. 2003, 16:265-271.
-
(2003)
J. Mol. Recognit.
, vol.16
, pp. 265-271
-
-
Vives, E.1
-
18
-
-
84929631281
-
A heparan sulfate-binding cell penetrating peptide for tumor targeting and migration inhibition
-
Chen C.J., et al. A heparan sulfate-binding cell penetrating peptide for tumor targeting and migration inhibition. Biomed. Res. Int. 2015, 2015:237969.
-
(2015)
Biomed. Res. Int.
, vol.2015
-
-
Chen, C.J.1
-
19
-
-
0035793619
-
Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans
-
Tyagi M., et al. Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J. Biol. Chem. 2001, 276:3254-3261.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 3254-3261
-
-
Tyagi, M.1
-
20
-
-
84923172299
-
Single liposome analysis of peptide translocation by the ABC transporter TAPL
-
Zollmann T., et al. Single liposome analysis of peptide translocation by the ABC transporter TAPL. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:2046-2051.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. 2046-2051
-
-
Zollmann, T.1
-
21
-
-
78650476432
-
The proton sponge: a trick to enter cells the viruses did not exploit. CHIMIA Int
-
Behr J.P. The proton sponge: a trick to enter cells the viruses did not exploit. CHIMIA Int. J. Chem. 1997, 51:34-36.
-
(1997)
J. Chem.
, vol.51
, pp. 34-36
-
-
Behr, J.P.1
-
22
-
-
84862260149
-
CPPsite: a curated database of cell penetrating peptides
-
bas015
-
Gautam A., et al. CPPsite: a curated database of cell penetrating peptides. Database (Oxford) 2012, 2012:bas015.
-
(2012)
Database (Oxford)
, vol.2012
-
-
Gautam, A.1
-
23
-
-
83155180672
-
Peptide nucleic acid (PNA) cell penetrating peptide (CPP) conjugates as carriers for cellular delivery of antisense oligomers
-
Nielsen P.E., Shiraishi T. Peptide nucleic acid (PNA) cell penetrating peptide (CPP) conjugates as carriers for cellular delivery of antisense oligomers. Artific. DNA PNA XNA 2011, 2:90-99.
-
(2011)
Artific. DNA PNA XNA
, vol.2
, pp. 90-99
-
-
Nielsen, P.E.1
Shiraishi, T.2
-
24
-
-
0029738872
-
Experimentally determined hydrophobicity scale for proteins at membrane interfaces
-
Wimley W.C., White S.H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat. Struct. Biol. 1996, 3:842-848.
-
(1996)
Nat. Struct. Biol.
, vol.3
, pp. 842-848
-
-
Wimley, W.C.1
White, S.H.2
-
25
-
-
69249142709
-
Mechanisms of antimicrobial, cytolytic, and cell-penetrating peptides: from kinetics to thermodynamics
-
Almeida P.F., Pokorny A. Mechanisms of antimicrobial, cytolytic, and cell-penetrating peptides: from kinetics to thermodynamics. Biochemistry 2009, 48:8083-8093.
-
(2009)
Biochemistry
, vol.48
, pp. 8083-8093
-
-
Almeida, P.F.1
Pokorny, A.2
-
26
-
-
0032987478
-
Membrane protein folding and stability: physical principles
-
White S.H., Wimley W.C. Membrane protein folding and stability: physical principles. Annu. Rev. Biophys. Biomol. Struct. 1999, 28:319-365.
-
(1999)
Annu. Rev. Biophys. Biomol. Struct.
, vol.28
, pp. 319-365
-
-
White, S.H.1
Wimley, W.C.2
-
27
-
-
0024392386
-
Mutational analysis of HIV-1 Tat minimal domain peptides: identification of trans-dominant mutants that suppress HIV-LTR-driven gene expression
-
Green M., et al. Mutational analysis of HIV-1 Tat minimal domain peptides: identification of trans-dominant mutants that suppress HIV-LTR-driven gene expression. Cell 1989, 58:215-223.
-
(1989)
Cell
, vol.58
, pp. 215-223
-
-
Green, M.1
-
28
-
-
0030904245
-
A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus
-
Vives E., et al. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 1997, 272:16010-16017.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 16010-16017
-
-
Vives, E.1
-
29
-
-
0346460957
-
Cell-penetrating peptides: a reevaluation of the mechanism of cellular uptake
-
Richard J.P., et al. Cell-penetrating peptides: a reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 2003, 278:585-590.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 585-590
-
-
Richard, J.P.1
-
30
-
-
0033794501
-
Polyarginine enters cells more efficiently than other polycationic homopolymers
-
Mitchell D.J., et al. Polyarginine enters cells more efficiently than other polycationic homopolymers. J. Pept. Res. 2000, 56:318-325.
-
(2000)
J. Pept. Res.
, vol.56
, pp. 318-325
-
-
Mitchell, D.J.1
-
31
-
-
42149127014
-
Live-cell analysis of cell penetration ability and toxicity of oligo-arginines
-
Tunnemann G., et al. Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. J. Pept. Sci. 2008, 14:469-476.
-
(2008)
J. Pept. Sci.
, vol.14
, pp. 469-476
-
-
Tunnemann, G.1
-
32
-
-
0037103242
-
Arginine-rich molecular transporters for drug delivery: role of backbone spacing in cellular uptake
-
Rothbard J.B., et al. Arginine-rich molecular transporters for drug delivery: role of backbone spacing in cellular uptake. J. Med. Chem. 2002, 45:3612-3618.
-
(2002)
J. Med. Chem.
, vol.45
, pp. 3612-3618
-
-
Rothbard, J.B.1
-
33
-
-
84885642741
-
Direct cytosolic delivery of polar cargo to cells by spontaneous membrane-translocating peptides
-
He J., et al. Direct cytosolic delivery of polar cargo to cells by spontaneous membrane-translocating peptides. J. Biol. Chem. 2013, 288:29974-29986.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 29974-29986
-
-
He, J.1
-
34
-
-
84943233764
-
Efficient entry of cell-penetrating peptide nona-arginine into adherent cells involves a transient increase in intracellular calcium
-
Melikov K., et al. Efficient entry of cell-penetrating peptide nona-arginine into adherent cells involves a transient increase in intracellular calcium. Biochem. J. 2015, 471:221-230.
-
(2015)
Biochem. J.
, vol.471
, pp. 221-230
-
-
Melikov, K.1
-
35
-
-
0028239908
-
The third helix of the Antennapedia homeodomain translocates through biological membranes
-
Derossi D., et al. The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 1994, 269:10444-10450.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 10444-10450
-
-
Derossi, D.1
-
36
-
-
79952201682
-
Penetratin story: an overview
-
Dupont E., et al. Penetratin story: an overview. Methods Mol. Biol. 2011, 683:21-29.
-
(2011)
Methods Mol. Biol.
, vol.683
, pp. 21-29
-
-
Dupont, E.1
-
37
-
-
71749092534
-
Translocation and endocytosis for cell-penetrating peptide internalization
-
Jiao C.Y., et al. Translocation and endocytosis for cell-penetrating peptide internalization. J. Biol. Chem. 2009, 284:33957-33965.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 33957-33965
-
-
Jiao, C.Y.1
-
38
-
-
80052451032
-
Relationships between membrane binding, affinity and cell internalization efficacy of a cell-penetrating peptide: penetratin as a case study
-
Alves I.D., et al. Relationships between membrane binding, affinity and cell internalization efficacy of a cell-penetrating peptide: penetratin as a case study. PLoS ONE 2011, 6:e24096.
-
(2011)
PLoS ONE
, vol.6
, pp. e24096
-
-
Alves, I.D.1
-
39
-
-
84927171675
-
Massive glycosaminoglycan-dependent entry of Trp-containing cell-penetrating peptides induced by exogenous sphingomyelinase or cholesterol depletion
-
Bechara C.R., et al. Massive glycosaminoglycan-dependent entry of Trp-containing cell-penetrating peptides induced by exogenous sphingomyelinase or cholesterol depletion. Cell. Mol. Life Sci. 2014, 72:809-820.
-
(2014)
Cell. Mol. Life Sci.
, vol.72
, pp. 809-820
-
-
Bechara, C.R.1
-
40
-
-
2642680830
-
Cell penetration by transportan
-
Pooga M., et al. Cell penetration by transportan. FASEB J. 1998, 12:67-77.
-
(1998)
FASEB J.
, vol.12
, pp. 67-77
-
-
Pooga, M.1
-
41
-
-
0035575843
-
Cargo delivery kinetics of cell-penetrating peptides
-
Hällbrink M., et al. Cargo delivery kinetics of cell-penetrating peptides. Biochim. Biophys. Acta Biomembr. 2001, 1515:101-109.
-
(2001)
Biochim. Biophys. Acta Biomembr.
, vol.1515
, pp. 101-109
-
-
Hällbrink, M.1
-
42
-
-
42149175926
-
Cellular uptake of cell-penetrating peptides pVEC and transportan in plants
-
Chugh A., Eudes F. Cellular uptake of cell-penetrating peptides pVEC and transportan in plants. J. Pept. Sci. 2008, 14:477-481.
-
(2008)
J. Pept. Sci.
, vol.14
, pp. 477-481
-
-
Chugh, A.1
Eudes, F.2
-
43
-
-
84907829502
-
Effects of cargo molecules on membrane perturbation caused by transportan 10 based cell-penetrating peptides
-
Vasconcelos L., et al. Effects of cargo molecules on membrane perturbation caused by transportan 10 based cell-penetrating peptides. Biochim. Biophys. Acta Biomembr. 2014, 1838:3118-3129.
-
(2014)
Biochim. Biophys. Acta Biomembr.
, vol.1838
, pp. 3118-3129
-
-
Vasconcelos, L.1
-
44
-
-
77958085274
-
Describing the mechanism of antimicrobial peptide action with the interfacial activity model
-
Wimley W.C. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem. Biol. 2010, 5:905-917.
-
(2010)
ACS Chem. Biol.
, vol.5
, pp. 905-917
-
-
Wimley, W.C.1
-
45
-
-
84859932101
-
Membrane interactions of two arginine-rich peptides with different cell internalization capacities
-
Walrant A., et al. Membrane interactions of two arginine-rich peptides with different cell internalization capacities. Biochim. Biophys. Acta Biomembr. 2012, 1818:1755-1763.
-
(2012)
Biochim. Biophys. Acta Biomembr.
, vol.1818
, pp. 1755-1763
-
-
Walrant, A.1
-
46
-
-
84873034419
-
Modeling the endosomal escape of cell-penetrating peptides using a transmembrane pH gradient
-
Madani F., et al. Modeling the endosomal escape of cell-penetrating peptides using a transmembrane pH gradient. Biochim. Biophys. Acta Biomembr. 2013, 1828:1198-1204.
-
(2013)
Biochim. Biophys. Acta Biomembr.
, vol.1828
, pp. 1198-1204
-
-
Madani, F.1
-
47
-
-
68749107071
-
Lipid reorganization induced by membrane-active peptides probed using differential scanning calorimetry
-
Joanne P., et al. Lipid reorganization induced by membrane-active peptides probed using differential scanning calorimetry. Biochim. Biophys. Acta Biomembr. 2009, 1788:1772-1781.
-
(2009)
Biochim. Biophys. Acta Biomembr.
, vol.1788
, pp. 1772-1781
-
-
Joanne, P.1
-
48
-
-
84870716717
-
Structure and dynamics of the two amphipathic arginine-rich peptides RW9 and RL9 in a lipid environment investigated by solid-state NMR and MD simulations
-
Witte K., et al. Structure and dynamics of the two amphipathic arginine-rich peptides RW9 and RL9 in a lipid environment investigated by solid-state NMR and MD simulations. Biochim. Biophys. Acta Biomembr. 2013, 1828:824-833.
-
(2013)
Biochim. Biophys. Acta Biomembr.
, vol.1828
, pp. 824-833
-
-
Witte, K.1
-
49
-
-
40149084042
-
Small changes in the primary structure of transportan 10 alter the thermodynamics and kinetics of its interaction with phospholipid vesicles
-
Yandek L.E., et al. Small changes in the primary structure of transportan 10 alter the thermodynamics and kinetics of its interaction with phospholipid vesicles. Biochemistry 2008, 47:3051-3060.
-
(2008)
Biochemistry
, vol.47
, pp. 3051-3060
-
-
Yandek, L.E.1
-
50
-
-
84874933223
-
The enhanced membrane interaction and perturbation of a cell penetrating peptide in the presence of anionic lipids: toward an understanding of its selectivity for cancer cells
-
Jobin M.L., et al. The enhanced membrane interaction and perturbation of a cell penetrating peptide in the presence of anionic lipids: toward an understanding of its selectivity for cancer cells. Biochim. Biophys. Acta Biomembr. 2013, 1828:1457-1470.
-
(2013)
Biochim. Biophys. Acta Biomembr.
, vol.1828
, pp. 1457-1470
-
-
Jobin, M.L.1
-
51
-
-
84877711951
-
Direct translocation of cell-penetrating peptides in liposomes: a combined mass spectrometry quantification and fluorescence detection study
-
Walrant A., et al. Direct translocation of cell-penetrating peptides in liposomes: a combined mass spectrometry quantification and fluorescence detection study. Anal. Biochem. 2013, 438:1-10.
-
(2013)
Anal. Biochem.
, vol.438
, pp. 1-10
-
-
Walrant, A.1
-
52
-
-
84922460774
-
Translocation mechanism(s) of cell-penetrating peptides: biophysical studies using artificial membrane bilayers
-
Di Pisa M., et al. Translocation mechanism(s) of cell-penetrating peptides: biophysical studies using artificial membrane bilayers. Biochemistry 2015, 54:194-207.
-
(2015)
Biochemistry
, vol.54
, pp. 194-207
-
-
Di Pisa, M.1
-
53
-
-
84864435306
-
Insertion mechanism of cell-penetrating peptides into supported phospholipid membranes revealed by X-ray and neutron reflection
-
Choi D., et al. Insertion mechanism of cell-penetrating peptides into supported phospholipid membranes revealed by X-ray and neutron reflection. Soft Matter 2012, 8:8294.
-
(2012)
Soft Matter
, vol.8
, pp. 8294
-
-
Choi, D.1
-
54
-
-
84896294280
-
Basic cell penetrating peptides induce plasma membrane positive curvature, lipid domain separation and protein redistribution
-
Maniti O., et al. Basic cell penetrating peptides induce plasma membrane positive curvature, lipid domain separation and protein redistribution. Int. J. Biochem. Cell Biol. 2014, 50:73-81.
-
(2014)
Int. J. Biochem. Cell Biol.
, vol.50
, pp. 73-81
-
-
Maniti, O.1
-
55
-
-
77951902057
-
Arginine-rich cell-penetrating peptides
-
Schmidt N., et al. Arginine-rich cell-penetrating peptides. FEBS Lett. 2010, 584:1806-1813.
-
(2010)
FEBS Lett.
, vol.584
, pp. 1806-1813
-
-
Schmidt, N.1
-
56
-
-
84898543428
-
The efficacies of cell-penetrating peptides in accumulating in large unilamellar vesicles depend on their ability to form inverted micelles
-
Swiecicki J.M., et al. The efficacies of cell-penetrating peptides in accumulating in large unilamellar vesicles depend on their ability to form inverted micelles. ChemBioChem 2014, 15:884-891.
-
(2014)
ChemBioChem
, vol.15
, pp. 884-891
-
-
Swiecicki, J.M.1
-
57
-
-
77958115870
-
Lipid domain separation, bilayer thickening and pearling induced by the cell penetrating peptide penetratin
-
Lamaziere A., et al. Lipid domain separation, bilayer thickening and pearling induced by the cell penetrating peptide penetratin. Biochim. Biophys. Acta Biomembr. 2010, 1798:2223-2230.
-
(2010)
Biochim. Biophys. Acta Biomembr.
, vol.1798
, pp. 2223-2230
-
-
Lamaziere, A.1
-
58
-
-
84887912736
-
A 2H solid-state NMR study of lipid clustering by cationic antimicrobial and cell-penetrating peptides in model bacterial membranes
-
Kwon B., et al. A 2H solid-state NMR study of lipid clustering by cationic antimicrobial and cell-penetrating peptides in model bacterial membranes. Biophys. J. 2013, 105:2333-2342.
-
(2013)
Biophys. J.
, vol.105
, pp. 2333-2342
-
-
Kwon, B.1
-
59
-
-
84857371360
-
Antimicrobial and cell-penetrating peptides induce lipid vesicle fusion by folding and aggregation
-
Wadhwani P., et al. Antimicrobial and cell-penetrating peptides induce lipid vesicle fusion by folding and aggregation. Eur. Biophys. J. 2012, 41:177-187.
-
(2012)
Eur. Biophys. J.
, vol.41
, pp. 177-187
-
-
Wadhwani, P.1
-
60
-
-
84869861771
-
Antimicrobial and cell-penetrating properties of penetratin analogs: effect of sequence and secondary structure
-
Bahnsen J.S.B., et al. Antimicrobial and cell-penetrating properties of penetratin analogs: effect of sequence and secondary structure. Biochim. Biophys. Acta Biomembr. 2013, 1828:223-232.
-
(2013)
Biochim. Biophys. Acta Biomembr.
, vol.1828
, pp. 223-232
-
-
Bahnsen, J.S.B.1
-
61
-
-
77952761421
-
Membrane-mediated peptide conformation change from alpha-monomers to beta-aggregates
-
Lee C.C., et al. Membrane-mediated peptide conformation change from alpha-monomers to beta-aggregates. Biophys. J. 2010, 98:2236-2245.
-
(2010)
Biophys. J.
, vol.98
, pp. 2236-2245
-
-
Lee, C.C.1
-
62
-
-
79952077574
-
A thermodynamic approach to the mechanism of cell-penetrating peptides in model membranes
-
McKeown A.N., et al. A thermodynamic approach to the mechanism of cell-penetrating peptides in model membranes. Biochemistry 2011, 50:654-662.
-
(2011)
Biochemistry
, vol.50
, pp. 654-662
-
-
McKeown, A.N.1
-
63
-
-
79952840265
-
Molecular dynamics studies of transportan 10 (Tp10) interacting with a POPC lipid bilayer
-
Dunkin C.M., et al. Molecular dynamics studies of transportan 10 (Tp10) interacting with a POPC lipid bilayer. J. Phys. Chem. B 2011, 115:1188-1198.
-
(2011)
J. Phys. Chem. B
, vol.115
, pp. 1188-1198
-
-
Dunkin, C.M.1
-
64
-
-
84903545886
-
Structure analysis and conformational transitions of the cell penetrating peptide transportan 10 in the membrane-bound state
-
Fanghanel S., et al. Structure analysis and conformational transitions of the cell penetrating peptide transportan 10 in the membrane-bound state. PLoS ONE 2014, 9:e99653.
-
(2014)
PLoS ONE
, vol.9
, pp. e99653
-
-
Fanghanel, S.1
-
65
-
-
84887665716
-
Translocation of cationic amphipathic peptides across the membranes of pure phospholipid giant vesicles
-
Wheaten S., et al. Translocation of cationic amphipathic peptides across the membranes of pure phospholipid giant vesicles. J. Am. Chem. Soc. 2013, 135:16517-16525.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 16517-16525
-
-
Wheaten, S.1
-
66
-
-
84878881683
-
A membrane translocating peptide penetrates into bilayers without significant bilayer perturbations
-
Cruz J., et al. A membrane translocating peptide penetrates into bilayers without significant bilayer perturbations. Biophys. J. 2013, 104:2419-2428.
-
(2013)
Biophys. J.
, vol.104
, pp. 2419-2428
-
-
Cruz, J.1
-
67
-
-
79955669580
-
Antimicrobial peptides: successes, challenges and unanswered questions
-
Wimley W.C., Hristova K. Antimicrobial peptides: successes, challenges and unanswered questions. J. Membr. Biol. 2011, 239:27-34.
-
(2011)
J. Membr. Biol.
, vol.239
, pp. 27-34
-
-
Wimley, W.C.1
Hristova, K.2
-
68
-
-
84875174578
-
In silico approaches for designing highly effective cell penetrating peptides
-
Gautam A., et al. In silico approaches for designing highly effective cell penetrating peptides. J. Transl. Med. 2013, 11:74.
-
(2013)
J. Transl. Med.
, vol.11
, pp. 74
-
-
Gautam, A.1
-
69
-
-
84864839075
-
Tumour lineage-homing cell-penetrating peptides as anticancer molecular delivery systems
-
Kondo E., et al. Tumour lineage-homing cell-penetrating peptides as anticancer molecular delivery systems. Nat. Commun. 2012, 3:951.
-
(2012)
Nat. Commun.
, vol.3
, pp. 951
-
-
Kondo, E.1
-
70
-
-
70549109798
-
Isolation of novel cell-penetrating peptides from a random peptide library using in vitro virus and their modifications
-
Kamide K., et al. Isolation of novel cell-penetrating peptides from a random peptide library using in vitro virus and their modifications. Int. J. Mol. Med. 2010, 25:41-51.
-
(2010)
Int. J. Mol. Med.
, vol.25
, pp. 41-51
-
-
Kamide, K.1
-
71
-
-
84975261080
-
Accumulation of cell-penetrating peptides in large unilamellar vesicles - a straightforward screening assay for investigating the internalization mechanism
-
Swiecicki J.M., et al. Accumulation of cell-penetrating peptides in large unilamellar vesicles - a straightforward screening assay for investigating the internalization mechanism. Biopolymers 2015, 104:533-543.
-
(2015)
Biopolymers
, vol.104
, pp. 533-543
-
-
Swiecicki, J.M.1
-
72
-
-
84863844388
-
A highly charged voltage sensor helix translocates spontaneously across membranes
-
He J., et al. A highly charged voltage sensor helix translocates spontaneously across membranes. Angew. Chem. Int. Ed. 2012, 51:7150-7153.
-
(2012)
Angew. Chem. Int. Ed.
, vol.51
, pp. 7150-7153
-
-
He, J.1
-
73
-
-
84905019391
-
Translocation of cell-penetrating peptides across the plasma membrane is controlled by cholesterol and microenvironment created by membranous proteins
-
Pae J., et al. Translocation of cell-penetrating peptides across the plasma membrane is controlled by cholesterol and microenvironment created by membranous proteins. J. Control. Release 2014, 192:103-113.
-
(2014)
J. Control. Release
, vol.192
, pp. 103-113
-
-
Pae, J.1
-
74
-
-
79960104118
-
Penetration without cells: membrane translocation of cell-penetrating peptides in the model giant plasma membrane vesicles
-
Säälik P., et al. Penetration without cells: membrane translocation of cell-penetrating peptides in the model giant plasma membrane vesicles. J. Control. Release 2011, 153:117-125.
-
(2011)
J. Control. Release
, vol.153
, pp. 117-125
-
-
Säälik, P.1
-
75
-
-
79955814107
-
Binding of cell-penetrating penetratin peptides to plasma membrane vesicles correlates directly with cellular uptake
-
Amand H.L., et al. Binding of cell-penetrating penetratin peptides to plasma membrane vesicles correlates directly with cellular uptake. Biochim. Biophys. Acta Biomembr. 2011, 1808:1860-1867.
-
(2011)
Biochim. Biophys. Acta Biomembr.
, vol.1808
, pp. 1860-1867
-
-
Amand, H.L.1
-
77
-
-
79955650131
-
A look at arginine in membranes
-
Hristova K., Wimley W.C. A look at arginine in membranes. J. Membr. Biol. 2010, 239:49-56.
-
(2010)
J. Membr. Biol.
, vol.239
, pp. 49-56
-
-
Hristova, K.1
Wimley, W.C.2
-
78
-
-
33845365529
-
A voltage-sensor water pore
-
Freites J.A., et al. A voltage-sensor water pore. Biophys. J. 2006, 91:L90-L92.
-
(2006)
Biophys. J.
, vol.91
, pp. L90-L92
-
-
Freites, J.A.1
-
79
-
-
77954831684
-
Membrane-bound dynamic structure of an arginine-rich cell-penetrating peptide, the protein transduction domain of HIV tat, from solid-state NMR
-
Su Y., et al. Membrane-bound dynamic structure of an arginine-rich cell-penetrating peptide, the protein transduction domain of HIV tat, from solid-state NMR. Biochemistry 2010, 49:6009-6020.
-
(2010)
Biochemistry
, vol.49
, pp. 6009-6020
-
-
Su, Y.1
-
80
-
-
13844272403
-
Adaptive translocation: the role of hydrogen bonding and membrane potential in the uptake of guanidinium-rich transporters into cells
-
Rothbard J.B., et al. Adaptive translocation: the role of hydrogen bonding and membrane potential in the uptake of guanidinium-rich transporters into cells. Adv. Drug Deliv. Rev. 2005, 57:495-504.
-
(2005)
Adv. Drug Deliv. Rev.
, vol.57
, pp. 495-504
-
-
Rothbard, J.B.1
-
81
-
-
27244444569
-
Interface connections of a transmembrane voltage sensor
-
Freites J.A., et al. Interface connections of a transmembrane voltage sensor. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:15059-15064.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 15059-15064
-
-
Freites, J.A.1
-
82
-
-
84919341605
-
Fundamental molecular mechanism for the cellular uptake of guanidinium-rich molecules
-
Herce H.D., et al. Fundamental molecular mechanism for the cellular uptake of guanidinium-rich molecules. J. Am. Chem. Soc. 2014, 136:17459-17467.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 17459-17467
-
-
Herce, H.D.1
-
83
-
-
58249095956
-
The membrane repair response masks membrane disturbances caused by cell-penetrating peptide uptake
-
Palm-Apergi C., et al. The membrane repair response masks membrane disturbances caused by cell-penetrating peptide uptake. FASEB J. 2009, 23:214-223.
-
(2009)
FASEB J.
, vol.23
, pp. 214-223
-
-
Palm-Apergi, C.1
-
84
-
-
78049324771
-
Cell-penetrating peptide induces leaky fusion of liposomes containing late endosome-specific anionic lipid
-
Yang S.T., et al. Cell-penetrating peptide induces leaky fusion of liposomes containing late endosome-specific anionic lipid. Biophys. J. 2010, 99:2525-2533.
-
(2010)
Biophys. J.
, vol.99
, pp. 2525-2533
-
-
Yang, S.T.1
-
85
-
-
84961567772
-
Fusion between intraluminal vesicles of late endosomes as a possible mechanism of endosomal escape by cell-penetrating peptides
-
672A
-
Yang S.T., et al. Fusion between intraluminal vesicles of late endosomes as a possible mechanism of endosomal escape by cell-penetrating peptides. Biophys. J. 2010, 98:672A.
-
(2010)
Biophys. J.
, vol.98
-
-
Yang, S.T.1
-
86
-
-
34249991192
-
Peptide degradation is a critical determinant for cell-penetrating peptide uptake
-
Palm C., et al. Peptide degradation is a critical determinant for cell-penetrating peptide uptake. Biochim. Biophys. Acta Biomembr. 2007, 1768:1769-1776.
-
(2007)
Biochim. Biophys. Acta Biomembr.
, vol.1768
, pp. 1769-1776
-
-
Palm, C.1
-
87
-
-
39749114895
-
Real-time fluorescence detection of protein transduction into live cells
-
Lee Y.J., et al. Real-time fluorescence detection of protein transduction into live cells. J. Am. Chem. Soc. 2008, 130:2398-2399.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 2398-2399
-
-
Lee, Y.J.1
-
88
-
-
84938153934
-
Study of CPP mechanism by mass spectrometry
-
Sagan S., et al. Study of CPP mechanism by mass spectrometry. Methods Mol. Biol. 2015, 1324:107-111.
-
(2015)
Methods Mol. Biol.
, vol.1324
, pp. 107-111
-
-
Sagan, S.1
-
89
-
-
33748648777
-
Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells
-
Tunnemann G., et al. Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells. FASEB J. 2006, 20:1775-1784.
-
(2006)
FASEB J.
, vol.20
, pp. 1775-1784
-
-
Tunnemann, G.1
-
90
-
-
9644303253
-
Uptake of cell-penetrating peptides is dependent on peptide-to-cell ratio rather than on peptide concentration
-
Hällbrink M., et al. Uptake of cell-penetrating peptides is dependent on peptide-to-cell ratio rather than on peptide concentration. Biochim. Biophys. Acta 2004, 1667:222-228.
-
(2004)
Biochim. Biophys. Acta
, vol.1667
, pp. 222-228
-
-
Hällbrink, M.1
-
91
-
-
84922070478
-
Covalent attachment of cyclic TAT peptides to GFP results in protein delivery into live cells with immediate bioavailability
-
Nischan N., et al. Covalent attachment of cyclic TAT peptides to GFP results in protein delivery into live cells with immediate bioavailability. Angew. Chem. Int. Ed. Engl. 2015, 54:1950-1953.
-
(2015)
Angew. Chem. Int. Ed. Engl.
, vol.54
, pp. 1950-1953
-
-
Nischan, N.1
-
93
-
-
84871394690
-
The future of peptide-based drugs
-
Craik D.J., et al. The future of peptide-based drugs. Chem. Biol. Drug Des. 2013, 81:136-147.
-
(2013)
Chem. Biol. Drug Des.
, vol.81
, pp. 136-147
-
-
Craik, D.J.1
-
94
-
-
84938075406
-
Experiences with CPP-based self assembling peptide systems for topical delivery of Botulinum toxin
-
Lee J., et al. Experiences with CPP-based self assembling peptide systems for topical delivery of Botulinum toxin. Methods Mol. Biol. 2015, 1324:397-415.
-
(2015)
Methods Mol. Biol.
, vol.1324
, pp. 397-415
-
-
Lee, J.1
-
95
-
-
84876556683
-
Synthetic molecular evolution of pore-forming peptides by iterative combinatorial library screening
-
Krauson A.J., et al. Synthetic molecular evolution of pore-forming peptides by iterative combinatorial library screening. ACS Chem. Biol. 2013, 8:823-831.
-
(2013)
ACS Chem. Biol.
, vol.8
, pp. 823-831
-
-
Krauson, A.J.1
-
96
-
-
73149101885
-
MPEx: a tool for exploring membrane proteins
-
Snider C., et al. MPEx: a tool for exploring membrane proteins. Protein Sci. 2009, 18:2624-2628.
-
(2009)
Protein Sci.
, vol.18
, pp. 2624-2628
-
-
Snider, C.1
-
97
-
-
84890456140
-
Improved assays for determining the cytosolic access of peptides, proteins, and their mimetics
-
Holub J.M., et al. Improved assays for determining the cytosolic access of peptides, proteins, and their mimetics. Biochemistry 2013, 52:9036-9046.
-
(2013)
Biochemistry
, vol.52
, pp. 9036-9046
-
-
Holub, J.M.1
|