메뉴 건너뛰기




Volumn 11, Issue 12, 2015, Pages

Minor Loops in Major Folds: Enhancer–Promoter Looping, Chromatin Restructuring, and Their Association with Transcriptional Regulation and Disease

Author keywords

[No Author keywords available]

Indexed keywords

CHROMATIN;

EID: 84953295207     PISSN: 15537390     EISSN: 15537404     Source Type: Journal    
DOI: 10.1371/journal.pgen.1005640     Document Type: Review
Times cited : (54)

References (77)
  • 1
    • 79959484677 scopus 로고    scopus 로고
    • Signals and combinatorial functions of histone modifications
    • Suganuma T, Workman JL, (2011) Signals and combinatorial functions of histone modifications. Annu Rev Biochem 80: 473–499. doi: 10.1146/annurev-biochem-061809-175347 21529160
    • (2011) Annu Rev Biochem , vol.80 , pp. 473-499
    • Suganuma, T.1    Workman, J.L.2
  • 2
    • 84923782190 scopus 로고    scopus 로고
    • Histone exchange, chromatin structure and the regulation of transcription
    • Venkatesh S, Workman JL, (2015) Histone exchange, chromatin structure and the regulation of transcription. Nat Rev Mol Cell Biol 16: 178–189. doi: 10.1038/nrm3941 25650798
    • (2015) Nat Rev Mol Cell Biol , vol.16 , pp. 178-189
    • Venkatesh, S.1    Workman, J.L.2
  • 3
    • 77952936833 scopus 로고    scopus 로고
    • Chromatin dynamics
    • Hubner MR, Spector DL, (2010) Chromatin dynamics. Annu Rev Biophys 39: 471–489. doi: 10.1146/annurev.biophys.093008.131348 20462379
    • (2010) Annu Rev Biophys , vol.39 , pp. 471-489
    • Hubner, M.R.1    Spector, D.L.2
  • 4
    • 79959474485 scopus 로고    scopus 로고
    • A barrier-only boundary element delimits the formation of facultative heterochromatin in Drosophila melanogaster and vertebrates
    • Lin N, Li X, Cui K, Chepelev I, Tie F, et al. (2011) A barrier-only boundary element delimits the formation of facultative heterochromatin in Drosophila melanogaster and vertebrates. Mol Cell Biol 31: 2729–2741. doi: 10.1128/MCB.05165-11 21518956
    • (2011) Mol Cell Biol , vol.31 , pp. 2729-2741
    • Lin, N.1    Li, X.2    Cui, K.3    Chepelev, I.4    Tie, F.5
  • 5
    • 65549104157 scopus 로고    scopus 로고
    • Histone modifications at human enhancers reflect global cell-type-specific gene expression
    • Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, et al. (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459: 108–112. doi: 10.1038/nature07829 19295514
    • (2009) Nature , vol.459 , pp. 108-112
    • Heintzman, N.D.1    Hon, G.C.2    Hawkins, R.D.3    Kheradpour, P.4    Stark, A.5
  • 6
    • 79551655285 scopus 로고    scopus 로고
    • Functional and mechanistic diversity of distal transcription enhancers
    • Bulger M, Groudine M, (2011) Functional and mechanistic diversity of distal transcription enhancers. Cell 144: 327–339. doi: 10.1016/j.cell.2011.01.024 21295696
    • (2011) Cell , vol.144 , pp. 327-339
    • Bulger, M.1    Groudine, M.2
  • 7
    • 79952901680 scopus 로고    scopus 로고
    • Enhancer function: new insights into the regulation of tissue-specific gene expression
    • Ong CT, Corces VG, (2011) Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat Rev Genet 12: 283–293. doi: 10.1038/nrg2957 21358745
    • (2011) Nat Rev Genet , vol.12 , pp. 283-293
    • Ong, C.T.1    Corces, V.G.2
  • 8
    • 77952242784 scopus 로고    scopus 로고
    • The transcriptional interactome: gene expression in 3D
    • Schoenfelder S, Clay I, Fraser P, (2010) The transcriptional interactome: gene expression in 3D. Curr Opin Genet Dev 20: 127–133. doi: 10.1016/j.gde.2010.02.002 20211559
    • (2010) Curr Opin Genet Dev , vol.20 , pp. 127-133
    • Schoenfelder, S.1    Clay, I.2    Fraser, P.3
  • 9
    • 84884294269 scopus 로고    scopus 로고
    • The spatial organization of the human genome
    • Bickmore WA, (2013) The spatial organization of the human genome. Annu Rev Genomics Hum Genet 14: 67–84. doi: 10.1146/annurev-genom-091212-153515 23875797
    • (2013) Annu Rev Genomics Hum Genet , vol.14 , pp. 67-84
    • Bickmore, W.A.1
  • 10
    • 58149463874 scopus 로고    scopus 로고
    • Chromosomal dynamics at the Shh locus: limb bud-specific differential regulation of competence and active transcription
    • Amano T, Sagai T, Tanabe H, Mizushina Y, Nakazawa H, et al. (2009) Chromosomal dynamics at the Shh locus: limb bud-specific differential regulation of competence and active transcription. Dev Cell 16: 47–57. doi: 10.1016/j.devcel.2008.11.011 19097946
    • (2009) Dev Cell , vol.16 , pp. 47-57
    • Amano, T.1    Sagai, T.2    Tanabe, H.3    Mizushina, Y.4    Nakazawa, H.5
  • 11
    • 84864844206 scopus 로고    scopus 로고
    • Anterior-posterior differences in HoxD chromatin topology in limb development
    • Williamson I, Eskeland R, Lettice LA, Hill AE, Boyle S, et al. (2012) Anterior-posterior differences in HoxD chromatin topology in limb development. Development 139: 3157–3167. doi: 10.1242/dev.081174 22872084
    • (2012) Development , vol.139 , pp. 3157-3167
    • Williamson, I.1    Eskeland, R.2    Lettice, L.A.3    Hill, A.E.4    Boyle, S.5
  • 12
    • 0037083376 scopus 로고    scopus 로고
    • Capturing chromosome conformation
    • Dekker J, Rippe K, Dekker M, Kleckner N, (2002) Capturing chromosome conformation. Science 295: 1306–1311. 11847345
    • (2002) Science , vol.295 , pp. 1306-1311
    • Dekker, J.1    Rippe, K.2    Dekker, M.3    Kleckner, N.4
  • 13
    • 33750203582 scopus 로고    scopus 로고
    • Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions
    • Zhao Z, Tavoosidana G, Sjolinder M, Gondor A, Mariano P, et al. (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38: 1341–1347. 17033624
    • (2006) Nat Genet , vol.38 , pp. 1341-1347
    • Zhao, Z.1    Tavoosidana, G.2    Sjolinder, M.3    Gondor, A.4    Mariano, P.5
  • 14
    • 33749400168 scopus 로고    scopus 로고
    • Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements
    • Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, et al. (2006) Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 16: 1299–1309. 16954542
    • (2006) Genome Res , vol.16 , pp. 1299-1309
    • Dostie, J.1    Richmond, T.A.2    Arnaout, R.A.3    Selzer, R.R.4    Lee, W.L.5
  • 16
    • 70449103609 scopus 로고    scopus 로고
    • An oestrogen-receptor-alpha-bound human chromatin interactome
    • Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, et al. (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462: 58–64. doi: 10.1038/nature08497 19890323
    • (2009) Nature , vol.462 , pp. 58-64
    • Fullwood, M.J.1    Liu, M.H.2    Pan, Y.F.3    Liu, J.4    Xu, H.5
  • 17
    • 84894589713 scopus 로고    scopus 로고
    • Interactome maps of mouse gene regulatory domains reveal basic principles of transcriptional regulation
    • Kieffer-Kwon KR, Tang Z, Mathe E, Qian J, Sung MH, et al. (2013) Interactome maps of mouse gene regulatory domains reveal basic principles of transcriptional regulation. Cell 155: 1507–1520. doi: 10.1016/j.cell.2013.11.039 24360274
    • (2013) Cell , vol.155 , pp. 1507-1520
    • Kieffer-Kwon, K.R.1    Tang, Z.2    Mathe, E.3    Qian, J.4    Sung, M.H.5
  • 18
    • 84890432056 scopus 로고    scopus 로고
    • Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations
    • Zhang Y, Wong CH, Birnbaum RY, Li G, Favaro R, et al. (2013) Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations. Nature 504: 306–310. doi: 10.1038/nature12716 24213634
    • (2013) Nature , vol.504 , pp. 306-310
    • Zhang, Y.1    Wong, C.H.2    Birnbaum, R.Y.3    Li, G.4    Favaro, R.5
  • 19
    • 84895832107 scopus 로고    scopus 로고
    • Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment
    • Hughes JR, Roberts N, McGowan S, Hay D, Giannoulatou E, et al. (2014) Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat Genet 46: 205–212. doi: 10.1038/ng.2871 24413732
    • (2014) Nat Genet , vol.46 , pp. 205-212
    • Hughes, J.R.1    Roberts, N.2    McGowan, S.3    Hay, D.4    Giannoulatou, E.5
  • 20
    • 84988931974 scopus 로고    scopus 로고
    • Two ways to fold the genome during the cell cycle: insights obtained with chromosome conformation capture
    • Dekker J, (2014) Two ways to fold the genome during the cell cycle: insights obtained with chromosome conformation capture. Epigenetics Chromatin 7: 25. doi: 10.1186/1756-8935-7-25 25435919
    • (2014) Epigenetics Chromatin , vol.7 , pp. 25
    • Dekker, J.1
  • 21
    • 84878011578 scopus 로고    scopus 로고
    • Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data
    • Dekker J, Marti-Renom MA, Mirny LA, (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet 14: 390–403. doi: 10.1038/nrg3454 23657480
    • (2013) Nat Rev Genet , vol.14 , pp. 390-403
    • Dekker, J.1    Marti-Renom, M.A.2    Mirny, L.A.3
  • 22
    • 84875463382 scopus 로고    scopus 로고
    • Disclosure of a structural milieu for the proximity ligation reveals the elusive nature of an active chromatin hub
    • Gavrilov AA, Gushchanskaya ES, Strelkova O, Zhironkina O, Kireev II, et al. (2013) Disclosure of a structural milieu for the proximity ligation reveals the elusive nature of an active chromatin hub. Nucleic Acids Res 41: 3563–3575. doi: 10.1093/nar/gkt067 23396278
    • (2013) Nucleic Acids Res , vol.41 , pp. 3563-3575
    • Gavrilov, A.A.1    Gushchanskaya, E.S.2    Strelkova, O.3    Zhironkina, O.4    Kireev, I.I.5
  • 23
    • 84875464666 scopus 로고    scopus 로고
    • Actual ligation frequencies in the chromosome conformation capture procedure
    • Gavrilov AA, Golov AK, Razin SV, (2013) Actual ligation frequencies in the chromosome conformation capture procedure. PLoS One 8: e60403. doi: 10.1371/journal.pone.0060403 23555968
    • (2013) PLoS One , vol.8 , pp. e60403
    • Gavrilov, A.A.1    Golov, A.K.2    Razin, S.V.3
  • 24
    • 84918510740 scopus 로고    scopus 로고
    • Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization
    • Williamson I, Berlivet S, Eskeland R, Boyle S, Illingworth RS, et al. (2014) Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization. Genes Dev 28: 2778–2791. doi: 10.1101/gad.251694.114 25512564
    • (2014) Genes Dev , vol.28 , pp. 2778-2791
    • Williamson, I.1    Berlivet, S.2    Eskeland, R.3    Boyle, S.4    Illingworth, R.S.5
  • 25
    • 0035316574 scopus 로고    scopus 로고
    • Chromosome territories, nuclear architecture and gene regulation in mammalian cells
    • Cremer T, Cremer C, (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2: 292–301. 11283701
    • (2001) Nat Rev Genet , vol.2 , pp. 292-301
    • Cremer, T.1    Cremer, C.2
  • 26
    • 0033758019 scopus 로고    scopus 로고
    • Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture
    • Cremer T, Kreth G, Koester H, Fink RH, Heintzmann R, et al. (2000) Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture. Crit Rev Eukaryot Gene Expr 10: 179–212. 11186332
    • (2000) Crit Rev Eukaryot Gene Expr , vol.10 , pp. 179-212
    • Cremer, T.1    Kreth, G.2    Koester, H.3    Fink, R.H.4    Heintzmann, R.5
  • 27
    • 84911478490 scopus 로고    scopus 로고
    • Topologically associating domains are stable units of replication-timing regulation
    • Pope BD, Ryba T, Dileep V, Yue F, Wu W, et al. (2014) Topologically associating domains are stable units of replication-timing regulation. Nature 515: 402–405. doi: 10.1038/nature13986 25409831
    • (2014) Nature , vol.515 , pp. 402-405
    • Pope, B.D.1    Ryba, T.2    Dileep, V.3    Yue, F.4    Wu, W.5
  • 28
    • 84861095603 scopus 로고    scopus 로고
    • Topological domains in mammalian genomes identified by analysis of chromatin interactions
    • Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, et al. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485: 376–380. doi: 10.1038/nature11082 22495300
    • (2012) Nature , vol.485 , pp. 376-380
    • Dixon, J.R.1    Selvaraj, S.2    Yue, F.3    Kim, A.4    Li, Y.5
  • 29
    • 84921443442 scopus 로고    scopus 로고
    • Architectural proteins: regulators of 3D genome organization in cell fate
    • Gomez-Diaz E, Corces VG, (2014) Architectural proteins: regulators of 3D genome organization in cell fate. Trends Cell Biol 24: 703–711. doi: 10.1016/j.tcb.2014.08.003 25218583
    • (2014) Trends Cell Biol , vol.24 , pp. 703-711
    • Gomez-Diaz, E.1    Corces, V.G.2
  • 30
    • 84878860751 scopus 로고    scopus 로고
    • Architectural protein subclasses shape 3D organization of genomes during lineage commitment
    • Phillips-Cremins JE, Sauria ME, Sanyal A, Gerasimova TI, Lajoie BR, et al. (2013) Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153: 1281–1295. doi: 10.1016/j.cell.2013.04.053 23706625
    • (2013) Cell , vol.153 , pp. 1281-1295
    • Phillips-Cremins, J.E.1    Sauria, M.E.2    Sanyal, A.3    Gerasimova, T.I.4    Lajoie, B.R.5
  • 31
    • 85006305723 scopus 로고    scopus 로고
    • Insulator function and topological domain border strength scale with architectural protein occupancy
    • Van Bortle K, Nichols MH, Li L, Ong CT, Takenaka N, et al. (2014) Insulator function and topological domain border strength scale with architectural protein occupancy. Genome Biol 15: R82. doi: 10.1186/gb-2014-15-5-r82 24981874
    • (2014) Genome Biol , vol.15 , pp. R82
    • Van Bortle, K.1    Nichols, M.H.2    Li, L.3    Ong, C.T.4    Takenaka, N.5
  • 32
    • 45149084413 scopus 로고    scopus 로고
    • Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions
    • Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, et al. (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453: 948–951. doi: 10.1038/nature06947 18463634
    • (2008) Nature , vol.453 , pp. 948-951
    • Guelen, L.1    Pagie, L.2    Brasset, E.3    Meuleman, W.4    Faza, M.B.5
  • 33
    • 84918539650 scopus 로고    scopus 로고
    • Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells
    • Therizols P, Illingworth RS, Courilleau C, Boyle S, Wood AJ, et al. (2014) Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells. Science 346: 1238–1242. doi: 10.1126/science.1259587 25477464
    • (2014) Science , vol.346 , pp. 1238-1242
    • Therizols, P.1    Illingworth, R.S.2    Courilleau, C.3    Boyle, S.4    Wood, A.J.5
  • 34
    • 34250159068 scopus 로고    scopus 로고
    • The ins and outs of gene regulation and chromosome territory organisation
    • Heard E, Bickmore W, (2007) The ins and outs of gene regulation and chromosome territory organisation. Curr Opin Cell Biol 19: 311–316. 17467967
    • (2007) Curr Opin Cell Biol , vol.19 , pp. 311-316
    • Heard, E.1    Bickmore, W.2
  • 35
    • 33745844849 scopus 로고    scopus 로고
    • Chromosome organization and chromatin modification: influence on genome function and evolution
    • Holmquist GP, Ashley T, (2006) Chromosome organization and chromatin modification: influence on genome function and evolution. Cytogenet Genome Res 114: 96–125. 16825762
    • (2006) Cytogenet Genome Res , vol.114 , pp. 96-125
    • Holmquist, G.P.1    Ashley, T.2
  • 36
    • 33846283384 scopus 로고    scopus 로고
    • Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions
    • Lanctot C, Cheutin T, Cremer M, Cavalli G, Cremer T, (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8: 104–115. 17230197
    • (2007) Nat Rev Genet , vol.8 , pp. 104-115
    • Lanctot, C.1    Cheutin, T.2    Cremer, M.3    Cavalli, G.4    Cremer, T.5
  • 37
    • 84943200502 scopus 로고    scopus 로고
    • The 4D nucleome: Evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments
    • Cremer T, Cremer M, Hubner B, Strickfaden H, Smeets D, et al. (2015) The 4D nucleome: Evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments. FEBS Lett 589: 2931–43. doi: 10.1016/j.febslet.2015.05.037 26028501
    • (2015) FEBS Lett , vol.589 , pp. 2931-2943
    • Cremer, T.1    Cremer, M.2    Hubner, B.3    Strickfaden, H.4    Smeets, D.5
  • 39
    • 34547624303 scopus 로고    scopus 로고
    • Genome-wide maps of chromatin state in pluripotent and lineage-committed cells
    • Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, et al. (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448: 553–560. 17603471
    • (2007) Nature , vol.448 , pp. 553-560
    • Mikkelsen, T.S.1    Ku, M.2    Jaffe, D.B.3    Issac, B.4    Lieberman, E.5
  • 40
    • 75649092667 scopus 로고    scopus 로고
    • Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis
    • Hiratani I, Ryba T, Itoh M, Rathjen J, Kulik M, et al. (2010) Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis. Genome Res 20: 155–169. doi: 10.1101/gr.099796.109 19952138
    • (2010) Genome Res , vol.20 , pp. 155-169
    • Hiratani, I.1    Ryba, T.2    Itoh, M.3    Rathjen, J.4    Kulik, M.5
  • 41
    • 0027932522 scopus 로고
    • Colinearity and functional hierarchy among genes of the homeotic complexes
    • Duboule D, Morata G, (1994) Colinearity and functional hierarchy among genes of the homeotic complexes. Trends Genet 10: 358–364. 7985240
    • (1994) Trends Genet , vol.10 , pp. 358-364
    • Duboule, D.1    Morata, G.2
  • 42
    • 0027953771 scopus 로고
    • Hox genes in vertebrate development
    • Krumlauf R, (1994) Hox genes in vertebrate development. Cell 78: 191–201. 7913880
    • (1994) Cell , vol.78 , pp. 191-201
    • Krumlauf, R.1
  • 43
    • 81855227640 scopus 로고    scopus 로고
    • A regulatory archipelago controls Hox genes transcription in digits
    • Montavon T, Soshnikova N, Mascrez B, Joye E, Thevenet L, et al. (2011) A regulatory archipelago controls Hox genes transcription in digits. Cell 147: 1132–1145. doi: 10.1016/j.cell.2011.10.023 22118467
    • (2011) Cell , vol.147 , pp. 1132-1145
    • Montavon, T.1    Soshnikova, N.2    Mascrez, B.3    Joye, E.4    Thevenet, L.5
  • 44
    • 66749180667 scopus 로고    scopus 로고
    • Epigenetic temporal control of mouse Hox genes in vivo
    • Soshnikova N, Duboule D, (2009) Epigenetic temporal control of mouse Hox genes in vivo. Science 324: 1320–1323. doi: 10.1126/science.1171468 19498168
    • (2009) Science , vol.324 , pp. 1320-1323
    • Soshnikova, N.1    Duboule, D.2
  • 45
    • 84899894562 scopus 로고    scopus 로고
    • Temporal dynamics and developmental memory of 3D chromatin architecture at Hox gene loci
    • Noordermeer D, Leleu M, Schorderet P, Joye E, Chabaud F, et al. (2014) Temporal dynamics and developmental memory of 3D chromatin architecture at Hox gene loci. Elife 3: e02557. doi: 10.7554/eLife.02557 24843030
    • (2014) Elife , vol.3 , pp. e02557
    • Noordermeer, D.1    Leleu, M.2    Schorderet, P.3    Joye, E.4    Chabaud, F.5
  • 46
    • 84927641804 scopus 로고    scopus 로고
    • In search of the determinants of enhancer-promoter interaction specificity
    • van Arensbergen J, van Steensel B, Bussemaker HJ, (2014) In search of the determinants of enhancer-promoter interaction specificity. Trends Cell Biol 24: 695–702. doi: 10.1016/j.tcb.2014.07.004 25160912
    • (2014) Trends Cell Biol , vol.24 , pp. 695-702
    • van Arensbergen, J.1    van Steensel, B.2    Bussemaker, H.J.3
  • 47
    • 3543018516 scopus 로고    scopus 로고
    • Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops
    • Murrell A, Heeson S, Reik W, (2004) Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat Genet 36: 889–893. 15273689
    • (2004) Nat Genet , vol.36 , pp. 889-893
    • Murrell, A.1    Heeson, S.2    Reik, W.3
  • 48
    • 84927711843 scopus 로고    scopus 로고
    • Spatial enhancer clustering and regulation of enhancer-proximal genes by cohesin
    • Ing-Simmons E, Seitan V, Faure A, Flicek P, Carroll T, et al. (2015) Spatial enhancer clustering and regulation of enhancer-proximal genes by cohesin. Genome Res 25: 504–13. doi: 10.1101/gr.184986.114 25677180
    • (2015) Genome Res , vol.25 , pp. 504-513
    • Ing-Simmons, E.1    Seitan, V.2    Faure, A.3    Flicek, P.4    Carroll, T.5
  • 49
    • 36749056884 scopus 로고    scopus 로고
    • A positive role for NLI/Ldb1 in long-range beta-globin locus control region function
    • Song SH, Hou C, Dean A, (2007) A positive role for NLI/Ldb1 in long-range beta-globin locus control region function. Mol Cell 28: 810–822. 18082606
    • (2007) Mol Cell , vol.28 , pp. 810-822
    • Song, S.H.1    Hou, C.2    Dean, A.3
  • 50
    • 84908439526 scopus 로고    scopus 로고
    • Reactivation of developmentally silenced globin genes by forced chromatin looping
    • Deng W, Rupon JW, Krivega I, Breda L, Motta I, et al. (2014) Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell 158: 849–860. doi: 10.1016/j.cell.2014.05.050 25126789
    • (2014) Cell , vol.158 , pp. 849-860
    • Deng, W.1    Rupon, J.W.2    Krivega, I.3    Breda, L.4    Motta, I.5
  • 51
    • 41949142533 scopus 로고    scopus 로고
    • Transcription and chromatin organization of a housekeeping gene cluster containing an integrated beta-globin locus control region
    • Noordermeer D, Branco MR, Splinter E, Klous P, van Ijcken W, et al. (2008) Transcription and chromatin organization of a housekeeping gene cluster containing an integrated beta-globin locus control region. PLoS Genet 4: e1000016. doi: 10.1371/journal.pgen.1000016 18369441
    • (2008) PLoS Genet , vol.4 , pp. e1000016
    • Noordermeer, D.1    Branco, M.R.2    Splinter, E.3    Klous, P.4    van Ijcken, W.5
  • 52
    • 79960980390 scopus 로고    scopus 로고
    • Variegated gene expression caused by cell-specific long-range DNA interactions
    • Noordermeer D, de Wit E, Klous P, van de Werken H, Simonis M, et al. (2011) Variegated gene expression caused by cell-specific long-range DNA interactions. Nat Cell Biol 13: 944–951. doi: 10.1038/ncb2278 21706023
    • (2011) Nat Cell Biol , vol.13 , pp. 944-951
    • Noordermeer, D.1    de Wit, E.2    Klous, P.3    van de Werken, H.4    Simonis, M.5
  • 53
    • 84862777531 scopus 로고    scopus 로고
    • Insulators, long-range interactions, and genome function
    • Yang J, Corces VG, (2012) Insulators, long-range interactions, and genome function. Curr Opin Genet Dev 22: 86–92. doi: 10.1016/j.gde.2011.12.007 22265227
    • (2012) Curr Opin Genet Dev , vol.22 , pp. 86-92
    • Yang, J.1    Corces, V.G.2
  • 54
    • 84924366664 scopus 로고    scopus 로고
    • A discrete transition zone organizes the topological and regulatory autonomy of the adjacent tfap2c and bmp7 genes
    • Tsujimura T, Klein FA, Langenfeld K, Glaser J, Huber W, et al. (2015) A discrete transition zone organizes the topological and regulatory autonomy of the adjacent tfap2c and bmp7 genes. PLoS Genet 11: e1004897. doi: 10.1371/journal.pgen.1004897 25569170
    • (2015) PLoS Genet , vol.11 , pp. e1004897
    • Tsujimura, T.1    Klein, F.A.2    Langenfeld, K.3    Glaser, J.4    Huber, W.5
  • 55
    • 77952367798 scopus 로고    scopus 로고
    • Widespread transcription at neuronal activity-regulated enhancers
    • Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, et al. (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465: 182–187. doi: 10.1038/nature09033 20393465
    • (2010) Nature , vol.465 , pp. 182-187
    • Kim, T.K.1    Hemberg, M.2    Gray, J.M.3    Costa, A.M.4    Bear, D.M.5
  • 56
    • 84883756441 scopus 로고    scopus 로고
    • eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci
    • Mousavi K, Zare H, Dell'orso S, Grontved L, Gutierrez-Cruz G, et al. (2013) eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci. Mol Cell 51: 606–617. doi: 10.1016/j.molcel.2013.07.022 23993744
    • (2013) Mol Cell , vol.51 , pp. 606-617
    • Mousavi, K.1    Zare, H.2    Dell'orso, S.3    Grontved, L.4    Gutierrez-Cruz, G.5
  • 57
    • 84897459814 scopus 로고    scopus 로고
    • An atlas of active enhancers across human cell types and tissues
    • Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, et al. (2014) An atlas of active enhancers across human cell types and tissues. Nature 507: 455–461. doi: 10.1038/nature12787 24670763
    • (2014) Nature , vol.507 , pp. 455-461
    • Andersson, R.1    Gebhard, C.2    Miguel-Escalada, I.3    Hoof, I.4    Bornholdt, J.5
  • 58
    • 84873456575 scopus 로고    scopus 로고
    • eRNAs are required for p53-dependent enhancer activity and gene transcription
    • Melo CA, Drost J, Wijchers PJ, van de Werken H, de Wit E, et al. (2013) eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol Cell 49: 524–535. doi: 10.1016/j.molcel.2012.11.021 23273978
    • (2013) Mol Cell , vol.49 , pp. 524-535
    • Melo, C.A.1    Drost, J.2    Wijchers, P.J.3    van de Werken, H.4    de Wit, E.5
  • 59
    • 84881171344 scopus 로고    scopus 로고
    • Enhancer transcripts mark active estrogen receptor binding sites
    • Hah N, Murakami S, Nagari A, Danko CG, Kraus WL, (2013) Enhancer transcripts mark active estrogen receptor binding sites. Genome Res 23: 1210–1223. doi: 10.1101/gr.152306.112 23636943
    • (2013) Genome Res , vol.23 , pp. 1210-1223
    • Hah, N.1    Murakami, S.2    Nagari, A.3    Danko, C.G.4    Kraus, W.L.5
  • 60
    • 79955836460 scopus 로고    scopus 로고
    • A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells
    • Hah N, Danko CG, Core L, Waterfall JJ, Siepel A, et al. (2011) A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells. Cell 145: 622–634. doi: 10.1016/j.cell.2011.03.042 21549415
    • (2011) Cell , vol.145 , pp. 622-634
    • Hah, N.1    Danko, C.G.2    Core, L.3    Waterfall, J.J.4    Siepel, A.5
  • 61
    • 79959198166 scopus 로고    scopus 로고
    • Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA
    • Wang D, Garcia-Bassets I, Benner C, Li W, Su X, et al. (2011) Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474: 390–394. doi: 10.1038/nature10006 21572438
    • (2011) Nature , vol.474 , pp. 390-394
    • Wang, D.1    Garcia-Bassets, I.2    Benner, C.3    Li, W.4    Su, X.5
  • 62
    • 40849085514 scopus 로고    scopus 로고
    • FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription
    • Lupien M, Eeckhoute J, Meyer CA, Wang Q, Zhang Y, et al. (2008) FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132: 958–970. doi: 10.1016/j.cell.2008.01.018 18358809
    • (2008) Cell , vol.132 , pp. 958-970
    • Lupien, M.1    Eeckhoute, J.2    Meyer, C.A.3    Wang, Q.4    Zhang, Y.5
  • 63
    • 84883132550 scopus 로고    scopus 로고
    • lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs
    • Yang L, Lin C, Jin C, Yang JC, Tanasa B, et al. (2013) lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature 500: 598–602. doi: 10.1038/nature12451 23945587
    • (2013) Nature , vol.500 , pp. 598-602
    • Yang, L.1    Lin, C.2    Jin, C.3    Yang, J.C.4    Tanasa, B.5
  • 64
    • 81355148487 scopus 로고    scopus 로고
    • Enhancer-adoption as a mechanism of human developmental disease
    • Lettice LA, Daniels S, Sweeney E, Venkataraman S, Devenney PS, et al. (2011) Enhancer-adoption as a mechanism of human developmental disease. Hum Mutat 32: 1492–1499. doi: 10.1002/humu.21615 21948517
    • (2011) Hum Mutat , vol.32 , pp. 1492-1499
    • Lettice, L.A.1    Daniels, S.2    Sweeney, E.3    Venkataraman, S.4    Devenney, P.S.5
  • 65
    • 84898494315 scopus 로고    scopus 로고
    • A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia
    • Groschel S, Sanders MA, Hoogenboezem R, de Wit E, Bouwman BA, et al. (2014) A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell 157: 369–381. doi: 10.1016/j.cell.2014.02.019 24703711
    • (2014) Cell , vol.157 , pp. 369-381
    • Groschel, S.1    Sanders, M.A.2    Hoogenboezem, R.3    de Wit, E.4    Bouwman, B.A.5
  • 66
    • 84857192750 scopus 로고    scopus 로고
    • HERC2 rs12913832 modulates human pigmentation by attenuating chromatin-loop formation between a long-range enhancer and the OCA2 promoter
    • Visser M, Kayser M, Palstra RJ, (2012) HERC2 rs12913832 modulates human pigmentation by attenuating chromatin-loop formation between a long-range enhancer and the OCA2 promoter. Genome Res 22: 446–455. doi: 10.1101/gr.128652.111 22234890
    • (2012) Genome Res , vol.22 , pp. 446-455
    • Visser, M.1    Kayser, M.2    Palstra, R.J.3
  • 67
    • 84930714663 scopus 로고    scopus 로고
    • A large genomic deletion leads to enhancer adoption by the lamin B1 gene: a second path to autosomal dominant leukodystrophy (ADLD)
    • Giorgio E, Robyr D, Spielmann M, Ferrero E, Di Gregorio E, et al. (2015) A large genomic deletion leads to enhancer adoption by the lamin B1 gene: a second path to autosomal dominant leukodystrophy (ADLD). Hum Mol Genet 24: 3143–54. doi: 10.1093/hmg/ddv065 25701871
    • (2015) Hum Mol Genet , vol.24 , pp. 3143-3154
    • Giorgio, E.1    Robyr, D.2    Spielmann, M.3    Ferrero, E.4    Di Gregorio, E.5
  • 68
    • 77749323471 scopus 로고    scopus 로고
    • Upregulation of c-MYC in cis through a large chromatin loop linked to a cancer risk-associated single-nucleotide polymorphism in colorectal cancer cells
    • Wright JB, Brown SJ, Cole MD, (2010) Upregulation of c-MYC in cis through a large chromatin loop linked to a cancer risk-associated single-nucleotide polymorphism in colorectal cancer cells. Mol Cell Biol 30: 1411–1420. doi: 10.1128/MCB.01384-09 20065031
    • (2010) Mol Cell Biol , vol.30 , pp. 1411-1420
    • Wright, J.B.1    Brown, S.J.2    Cole, M.D.3
  • 69
    • 0042810698 scopus 로고    scopus 로고
    • A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly
    • Lettice LA, Heaney SJ, Purdie LA, Li L, de Beer P, et al. (2003) A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum Mol Genet 12: 1725–1735. 12837695
    • (2003) Hum Mol Genet , vol.12 , pp. 1725-1735
    • Lettice, L.A.1    Heaney, S.J.2    Purdie, L.A.3    Li, L.4    de Beer, P.5
  • 70
    • 79955019510 scopus 로고    scopus 로고
    • cis-regulatory mutations are a genetic cause of human limb malformations
    • VanderMeer JE, Ahituv N, (2011) cis-regulatory mutations are a genetic cause of human limb malformations. Dev Dyn 240: 920–930. doi: 10.1002/dvdy.22535 21509892
    • (2011) Dev Dyn , vol.240 , pp. 920-930
    • VanderMeer, J.E.1    Ahituv, N.2
  • 71
    • 58149463874 scopus 로고    scopus 로고
    • Chromosomal dynamics at the Shh locus: limb bud-specific differential regulation of competence and active transcription
    • Amano T, Sagai T, Tanabe H, Mizushina Y, Nakazawa H, et al. (2009) Chromosomal dynamics at the Shh locus: limb bud-specific differential regulation of competence and active transcription. Dev Cell 16: 47–57. doi: 10.1016/j.devcel.2008.11.011 19097946
    • (2009) Dev Cell , vol.16 , pp. 47-57
    • Amano, T.1    Sagai, T.2    Tanabe, H.3    Mizushina, Y.4    Nakazawa, H.5
  • 72
    • 84930091577 scopus 로고    scopus 로고
    • Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions
    • Lupianez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, et al. (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161: 1012–1025. doi: 10.1016/j.cell.2015.04.004 25959774
    • (2015) Cell , vol.161 , pp. 1012-1025
    • Lupianez, D.G.1    Kraft, K.2    Heinrich, V.3    Krawitz, P.4    Brancati, F.5
  • 73
    • 84882455458 scopus 로고    scopus 로고
    • Single-cell sequencing-based technologies will revolutionize whole-organism science
    • Shapiro E, Biezuner T, Linnarsson S, (2013) Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 14: 618–630. doi: 10.1038/nrg3542 23897237
    • (2013) Nat Rev Genet , vol.14 , pp. 618-630
    • Shapiro, E.1    Biezuner, T.2    Linnarsson, S.3
  • 74
    • 84896739948 scopus 로고    scopus 로고
    • Single cell genomics: advances and future perspectives
    • Macaulay IC, Voet T, (2014) Single cell genomics: advances and future perspectives. PLoS Genet 10: e1004126. doi: 10.1371/journal.pgen.1004126 24497842
    • (2014) PLoS Genet , vol.10 , pp. e1004126
    • Macaulay, I.C.1    Voet, T.2
  • 75
    • 84885617426 scopus 로고    scopus 로고
    • Single-cell Hi-C reveals cell-to-cell variability in chromosome structure
    • Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, et al. (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502: 59–64. doi: 10.1038/nature12593 24067610
    • (2013) Nature , vol.502 , pp. 59-64
    • Nagano, T.1    Lubling, Y.2    Stevens, T.J.3    Schoenfelder, S.4    Yaffe, E.5
  • 76
    • 84929665381 scopus 로고    scopus 로고
    • 3D imaging of Sox2 enhancer clusters in embryonic stem cells
    • Liu Z, Legant WR, Chen BC, Li L, Grimm JB, et al. (2014) 3D imaging of Sox2 enhancer clusters in embryonic stem cells. Elife 3: e04236. doi: 10.7554/eLife.04236 25537195
    • (2014) Elife , vol.3 , pp. e04236
    • Liu, Z.1    Legant, W.R.2    Chen, B.C.3    Li, L.4    Grimm, J.B.5
  • 77
    • 84924962557 scopus 로고    scopus 로고
    • Enhancer-promoter interaction facilitated by transiently forming G-quadruplexes
    • Hegyi H, (2015) Enhancer-promoter interaction facilitated by transiently forming G-quadruplexes. Sci Rep 5: 9165. doi: 10.1038/srep09165 25772493
    • (2015) Sci Rep , vol.5 , pp. 9165
    • Hegyi, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.