-
1
-
-
79961187989
-
Physiologic action of glucagon on liver glucose metabolism
-
Ramnanan C.J., Edgerton D.S., Kraft G., Cherrington A.D. Physiologic action of glucagon on liver glucose metabolism. Diabetes, Obesity & Metabolism 2011, 13(Suppl 1):118-125.
-
(2011)
Diabetes, Obesity & Metabolism
, vol.13
, pp. 118-125
-
-
Ramnanan, C.J.1
Edgerton, D.S.2
Kraft, G.3
Cherrington, A.D.4
-
2
-
-
0035856949
-
Insulin signalling and the regulation of glucose and lipid metabolism
-
Saltiel A.R., Kahn C.R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001, 414:799-806.
-
(2001)
Nature
, vol.414
, pp. 799-806
-
-
Saltiel, A.R.1
Kahn, C.R.2
-
3
-
-
0035855905
-
CREB regulates hepatic gluconeogenesis through the coactivator PGC-1
-
Herzig S., Long F., Jhala U.S., Hedrick S., Quinn R., Bauer A., et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 2001, 413:179-183.
-
(2001)
Nature
, vol.413
, pp. 179-183
-
-
Herzig, S.1
Long, F.2
Jhala, U.S.3
Hedrick, S.4
Quinn, R.5
Bauer, A.6
-
4
-
-
27144506185
-
The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism
-
Koo S.H., Flechner L., Qi L., Zhang X., Screaton R.A., Jeffries S., et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 2005, 437:1109-1111.
-
(2005)
Nature
, vol.437
, pp. 1109-1111
-
-
Koo, S.H.1
Flechner, L.2
Qi, L.3
Zhang, X.4
Screaton, R.A.5
Jeffries, S.6
-
5
-
-
34548831102
-
Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2
-
Dentin R., Liu Y., Koo S.H., Hedrick S., Vargas T., Heredia J., et al. Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 2007, 449:366-369.
-
(2007)
Nature
, vol.449
, pp. 366-369
-
-
Dentin, R.1
Liu, Y.2
Koo, S.H.3
Hedrick, S.4
Vargas, T.5
Heredia, J.6
-
6
-
-
77649253906
-
Targeted disruption of the CREB coactivator Crtc2 increases insulin sensitivity
-
Wang Y., Inoue H., Ravnskjaer K., Viste K., Miller N., Liu Y., et al. Targeted disruption of the CREB coactivator Crtc2 increases insulin sensitivity. Proceedings of the National Academy of Sciences of the United States of America 2010, 107:3087-3092.
-
(2010)
Proceedings of the National Academy of Sciences of the United States of America
, vol.107
, pp. 3087-3092
-
-
Wang, Y.1
Inoue, H.2
Ravnskjaer, K.3
Viste, K.4
Miller, N.5
Liu, Y.6
-
7
-
-
67649657842
-
CRTC2 (TORC2) contributes to the transcriptional response to fasting in the liver but is not required for the maintenance of glucose homeostasis
-
Le Lay J., Tuteja G., White P., Dhir R., Ahima R., Kaestner K.H. CRTC2 (TORC2) contributes to the transcriptional response to fasting in the liver but is not required for the maintenance of glucose homeostasis. Cell Metabolism 2009, 10:55-62.
-
(2009)
Cell Metabolism
, vol.10
, pp. 55-62
-
-
Le Lay, J.1
Tuteja, G.2
White, P.3
Dhir, R.4
Ahima, R.5
Kaestner, K.H.6
-
8
-
-
40449128605
-
Hepatic glucose sensing via the CREB coactivator CRTC2
-
Dentin R., Hedrick S., Xie J., Yates J., Montminy M. Hepatic glucose sensing via the CREB coactivator CRTC2. Science 2008, 319:1402-1405.
-
(2008)
Science
, vol.319
, pp. 1402-1405
-
-
Dentin, R.1
Hedrick, S.2
Xie, J.3
Yates, J.4
Montminy, M.5
-
9
-
-
70350447639
-
Novel liver-specific TORC2 siRNA corrects hyperglycemia in rodent models of type 2 diabetes
-
Saberi M., Bjelica D., Schenk S., Imamura T., Bandyopadhyay G., Li P., et al. Novel liver-specific TORC2 siRNA corrects hyperglycemia in rodent models of type 2 diabetes. American Journal of Physiology - Endocrinology and Metabolism 2009.
-
(2009)
American Journal of Physiology - Endocrinology and Metabolism
-
-
Saberi, M.1
Bjelica, D.2
Schenk, S.3
Imamura, T.4
Bandyopadhyay, G.5
Li, P.6
-
10
-
-
70449927254
-
Prevention of hepatic steatosis and hepatic insulin resistance by knockdown of cAMP response element-binding protein
-
Erion D.M., Ignatova I.D., Yonemitsu S., Nagai Y., Chatterjee P., Weismann D., et al. Prevention of hepatic steatosis and hepatic insulin resistance by knockdown of cAMP response element-binding protein. Cell Metabolism 2009, 10:499-506.
-
(2009)
Cell Metabolism
, vol.10
, pp. 499-506
-
-
Erion, D.M.1
Ignatova, I.D.2
Yonemitsu, S.3
Nagai, Y.4
Chatterjee, P.5
Weismann, D.6
-
11
-
-
5344228270
-
The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector
-
Screaton R.A., Conkright M.D., Katoh Y., Best J.L., Canettieri G., Jeffries S., et al. The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 2004, 119:61-74.
-
(2004)
Cell
, vol.119
, pp. 61-74
-
-
Screaton, R.A.1
Conkright, M.D.2
Katoh, Y.3
Best, J.L.4
Canettieri, G.5
Jeffries, S.6
-
12
-
-
33745286771
-
Silencing the constitutive active transcription factor CREB by the LKB1-SIK signaling cascade
-
Katoh Y., Takemori H., Lin X.Z., Tamura M., Muraoka M., Satoh T., et al. Silencing the constitutive active transcription factor CREB by the LKB1-SIK signaling cascade. FEBS Journal 2006, 273:2730-2748.
-
(2006)
FEBS Journal
, vol.273
, pp. 2730-2748
-
-
Katoh, Y.1
Takemori, H.2
Lin, X.Z.3
Tamura, M.4
Muraoka, M.5
Satoh, T.6
-
13
-
-
48249109104
-
Glucose controls CREB activity in islet cells via regulated phosphorylation of TORC2
-
Jansson D., Ng A.C., Fu A., Depatie C., Al Azzabi M., Screaton R.A. Glucose controls CREB activity in islet cells via regulated phosphorylation of TORC2. Proceedings of the National Academy of Sciences of the United States of America 2008, 105:10161-10166.
-
(2008)
Proceedings of the National Academy of Sciences of the United States of America
, vol.105
, pp. 10161-10166
-
-
Jansson, D.1
Ng, A.C.2
Fu, A.3
Depatie, C.4
Al Azzabi, M.5
Screaton, R.A.6
-
14
-
-
84871984301
-
Metabolic regulation by salt inducible kinases
-
Berdeaux R. Metabolic regulation by salt inducible kinases. Frontiers in Biology 2011, 6:231-241.
-
(2011)
Frontiers in Biology
, vol.6
, pp. 231-241
-
-
Berdeaux, R.1
-
15
-
-
0038043252
-
Adipose-specific expression, phosphorylation of Ser794 in insulin receptor substrate-1, and activation in diabetic animals of salt-inducible kinase-2
-
Horike N., Takemori H., Katoh Y., Doi J., Min L., Asano T., et al. Adipose-specific expression, phosphorylation of Ser794 in insulin receptor substrate-1, and activation in diabetic animals of salt-inducible kinase-2. Journal of Biological Chemistry 2003, 278:18440-18447.
-
(2003)
Journal of Biological Chemistry
, vol.278
, pp. 18440-18447
-
-
Horike, N.1
Takemori, H.2
Katoh, Y.3
Doi, J.4
Min, L.5
Asano, T.6
-
16
-
-
84947320144
-
Salt inducible kinase 1 terminates cAMP signaling by an evolutionarily conserved negative feedback loop in beta cells
-
Kim M.J., Park S.K., Lee J.H., Jung C.Y., Sung D.J., Park J.H., et al. Salt inducible kinase 1 terminates cAMP signaling by an evolutionarily conserved negative feedback loop in beta cells. Diabetes 2015.
-
(2015)
Diabetes
-
-
Kim, M.J.1
Park, S.K.2
Lee, J.H.3
Jung, C.Y.4
Sung, D.J.5
Park, J.H.6
-
17
-
-
34249664888
-
SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes
-
Berdeaux R., Goebel N., Banaszynski L., Takemori H., Wandless T., Shelton G.D., et al. SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nature Medicine 2007, 13:597-603.
-
(2007)
Nature Medicine
, vol.13
, pp. 597-603
-
-
Berdeaux, R.1
Goebel, N.2
Banaszynski, L.3
Takemori, H.4
Wandless, T.5
Shelton, G.D.6
-
18
-
-
84871982174
-
Regulation of SIK1 abundance and stability is critical for myogenesis
-
Stewart R., Akhmedov D., Robb C., Leiter C., Berdeaux R. Regulation of SIK1 abundance and stability is critical for myogenesis. Proceedings of the National Academy of Sciences of the United States of America 2013, 110:117-122.
-
(2013)
Proceedings of the National Academy of Sciences of the United States of America
, vol.110
, pp. 117-122
-
-
Stewart, R.1
Akhmedov, D.2
Robb, C.3
Leiter, C.4
Berdeaux, R.5
-
19
-
-
84899860437
-
Creb coactivators direct anabolic responses and enhance performance of skeletal muscle
-
Bruno N.E., Kelly K.A., Hawkins R., Bramah-Lawani M., Amelio A.L., Nwachukwu J.C., et al. Creb coactivators direct anabolic responses and enhance performance of skeletal muscle. EMBO Journal 2014, 33:1027-1043.
-
(2014)
EMBO Journal
, vol.33
, pp. 1027-1043
-
-
Bruno, N.E.1
Kelly, K.A.2
Hawkins, R.3
Bramah-Lawani, M.4
Amelio, A.L.5
Nwachukwu, J.C.6
-
20
-
-
80052735268
-
CREB is activated by muscle injury and promotes muscle regeneration
-
Stewart R., Flechner L., Montminy M., Berdeaux R. CREB is activated by muscle injury and promotes muscle regeneration. PLoS One 2011, 6:e24714.
-
(2011)
PLoS One
, vol.6
-
-
Stewart, R.1
Flechner, L.2
Montminy, M.3
Berdeaux, R.4
-
21
-
-
33645509321
-
Farnesoid X receptor is essential for normal glucose homeostasis
-
Ma K., Saha P.K., Chan L., Moore D.D. Farnesoid X receptor is essential for normal glucose homeostasis. Journal of Clinical Investigation 2006, 116:1102-1109.
-
(2006)
Journal of Clinical Investigation
, vol.116
, pp. 1102-1109
-
-
Ma, K.1
Saha, P.K.2
Chan, L.3
Moore, D.D.4
-
22
-
-
84885723140
-
The short isoform of the ubiquitin ligase NEDD4L is a CREB target gene in hepatocytes
-
Fu J., Akhmedov D., Berdeaux R. The short isoform of the ubiquitin ligase NEDD4L is a CREB target gene in hepatocytes. PLoS One 2013, 8:e78522.
-
(2013)
PLoS One
, vol.8
-
-
Fu, J.1
Akhmedov, D.2
Berdeaux, R.3
-
23
-
-
6344249127
-
Differential oocyte-specific expression of Cre recombinase activity in GDF-9-iCre, Zp3cre, and Msx2Cre transgenic mice
-
Lan Z.J., Xu X., Cooney A.J. Differential oocyte-specific expression of Cre recombinase activity in GDF-9-iCre, Zp3cre, and Msx2Cre transgenic mice. Biology of Reproduction 2004, 71:1469-1474.
-
(2004)
Biology of Reproduction
, vol.71
, pp. 1469-1474
-
-
Lan, Z.J.1
Xu, X.2
Cooney, A.J.3
-
24
-
-
79955802436
-
A hormone-dependent module regulating energy balance
-
Wang B., Moya N., Niessen S., Hoover H., Mihaylova M.M., Shaw R.J., et al. A hormone-dependent module regulating energy balance. Cell 2011, 145:596-606.
-
(2011)
Cell
, vol.145
, pp. 596-606
-
-
Wang, B.1
Moya, N.2
Niessen, S.3
Hoover, H.4
Mihaylova, M.M.5
Shaw, R.J.6
-
25
-
-
79955815135
-
Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis
-
Mihaylova M.M., Vasquez D.S., Ravnskjaer K., Denechaud P.D., Yu R.T., Alvarez J.G., et al. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 2011, 145:607-621.
-
(2011)
Cell
, vol.145
, pp. 607-621
-
-
Mihaylova, M.M.1
Vasquez, D.S.2
Ravnskjaer, K.3
Denechaud, P.D.4
Yu, R.T.5
Alvarez, J.G.6
-
26
-
-
84905457029
-
The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver
-
Patel K., Foretz M., Marion A., Campbell D.G., Gourlay R., Boudaba N., et al. The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver. Nature Communications 2014, 5:4535.
-
(2014)
Nature Communications
, vol.5
, pp. 4535
-
-
Patel, K.1
Foretz, M.2
Marion, A.3
Campbell, D.G.4
Gourlay, R.5
Boudaba, N.6
-
27
-
-
84908611789
-
SIK2 is critical in the regulation of lipid homeostasis and adipogenesis in vivo
-
Park J., Yoon Y.S., Han H.S., Kim Y.H., Ogawa Y., Park K.G., et al. SIK2 is critical in the regulation of lipid homeostasis and adipogenesis in vivo. Diabetes 2014, 63:3659-3673.
-
(2014)
Diabetes
, vol.63
, pp. 3659-3673
-
-
Park, J.1
Yoon, Y.S.2
Han, H.S.3
Kim, Y.H.4
Ogawa, Y.5
Park, K.G.6
-
28
-
-
84937501227
-
Salt inducible kinase 3 signaling is important for the gluconeogenic programs in mouse hepatocytes
-
Itoh Y., Sanosaka M., Fuchino H., Yahara Y., Kumagai A., Takemoto D., et al. Salt inducible kinase 3 signaling is important for the gluconeogenic programs in mouse hepatocytes. Journal of Biological Chemistry 2015.
-
(2015)
Journal of Biological Chemistry
-
-
Itoh, Y.1
Sanosaka, M.2
Fuchino, H.3
Yahara, Y.4
Kumagai, A.5
Takemoto, D.6
-
29
-
-
0036940765
-
Identification of the nuclear localization domain of salt-inducible kinase
-
Katoh Y., Takemori H., Doi J., Okamoto M. Identification of the nuclear localization domain of salt-inducible kinase. Endocrine Research 2002, 28:315-318.
-
(2002)
Endocrine Research
, vol.28
, pp. 315-318
-
-
Katoh, Y.1
Takemori, H.2
Doi, J.3
Okamoto, M.4
-
30
-
-
84922968506
-
Transcriptional regulation of autophagy by an FXR-CREB axis
-
Seok S., Fu T., Choi S.E., Li Y., Zhu R., Kumar S., et al. Transcriptional regulation of autophagy by an FXR-CREB axis. Nature 2014, 516:108-111.
-
(2014)
Nature
, vol.516
, pp. 108-111
-
-
Seok, S.1
Fu, T.2
Choi, S.E.3
Li, Y.4
Zhu, R.5
Kumar, S.6
-
31
-
-
84878404345
-
CAMP-responsive element-binding protein (CREB)-regulated transcription coactivator 2 (CRTC2) promotes glucagon clearance and hepatic amino acid catabolism to regulate glucose homeostasis
-
Erion D.M., Kotas M.E., McGlashon J., Yonemitsu S., Hsiao J.J., Nagai Y., et al. cAMP-responsive element-binding protein (CREB)-regulated transcription coactivator 2 (CRTC2) promotes glucagon clearance and hepatic amino acid catabolism to regulate glucose homeostasis. Journal of Biological Chemistry 2013, 288:16167-16176.
-
(2013)
Journal of Biological Chemistry
, vol.288
, pp. 16167-16176
-
-
Erion, D.M.1
Kotas, M.E.2
McGlashon, J.3
Yonemitsu, S.4
Hsiao, J.J.5
Nagai, Y.6
-
32
-
-
84862025421
-
Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration
-
Sun Z., Miller R.A., Patel R.T., Chen J., Dhir R., Wang H., et al. Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration. Nature Medicine 2012, 18:934-942.
-
(2012)
Nature Medicine
, vol.18
, pp. 934-942
-
-
Sun, Z.1
Miller, R.A.2
Patel, R.T.3
Chen, J.4
Dhir, R.5
Wang, H.6
-
33
-
-
0032898369
-
Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase
-
Postic C., Shiota M., Niswender K.D., Jetton T.L., Chen Y., Moates J.M., et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. Journal of Biological Chemistry 1999, 274:305-315.
-
(1999)
Journal of Biological Chemistry
, vol.274
, pp. 305-315
-
-
Postic, C.1
Shiota, M.2
Niswender, K.D.3
Jetton, T.L.4
Chen, Y.5
Moates, J.M.6
-
34
-
-
0034535222
-
Early myotome specification regulates PDGFA expression and axial skeleton development
-
Tallquist M.D., Weismann K.E., Hellstrom M., Soriano P. Early myotome specification regulates PDGFA expression and axial skeleton development. Development 2000, 127:5059-5070.
-
(2000)
Development
, vol.127
, pp. 5059-5070
-
-
Tallquist, M.D.1
Weismann, K.E.2
Hellstrom, M.3
Soriano, P.4
-
35
-
-
79952155359
-
Transcriptional control of adipose lipid handling by IRF4
-
Eguchi J., Wang X., Yu S., Kershaw E.E., Chiu P.C., Dushay J., et al. Transcriptional control of adipose lipid handling by IRF4. Cell Metabolism 2011, 13:249-259.
-
(2011)
Cell Metabolism
, vol.13
, pp. 249-259
-
-
Eguchi, J.1
Wang, X.2
Yu, S.3
Kershaw, E.E.4
Chiu, P.C.5
Dushay, J.6
-
36
-
-
84924226921
-
Increased arterial blood pressure and vascular remodeling in mice lacking salt-inducible kinase 1 (SIK1)
-
Bertorello A.M., Pires N., Igreja B., Pinho M.J., Vorkapic E., Wagsater D., et al. Increased arterial blood pressure and vascular remodeling in mice lacking salt-inducible kinase 1 (SIK1). Circulation Research 2015, 116:642-652.
-
(2015)
Circulation Research
, vol.116
, pp. 642-652
-
-
Bertorello, A.M.1
Pires, N.2
Igreja, B.3
Pinho, M.J.4
Vorkapic, E.5
Wagsater, D.6
-
37
-
-
28844433635
-
The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
-
Shaw R.J., Lamia K.A., Vasquez D., Koo S.H., Bardeesy N., Depinho R.A., et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 2005, 310:1642-1646.
-
(2005)
Science
, vol.310
, pp. 1642-1646
-
-
Shaw, R.J.1
Lamia, K.A.2
Vasquez, D.3
Koo, S.H.4
Bardeesy, N.5
Depinho, R.A.6
-
38
-
-
77954933558
-
Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state
-
Foretz M., Hebrard S., Leclerc J., Zarrinpashneh E., Soty M., Mithieux G., et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. Journal of Clinical Investigation 2010, 120:2355-2369.
-
(2010)
Journal of Clinical Investigation
, vol.120
, pp. 2355-2369
-
-
Foretz, M.1
Hebrard, S.2
Leclerc, J.3
Zarrinpashneh, E.4
Soty, M.5
Mithieux, G.6
-
39
-
-
12144287284
-
LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1
-
Lizcano J.M., Goransson O., Toth R., Deak M., Morrice N.A., Boudeau J., et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO Journal 2004, 23:833-843.
-
(2004)
EMBO Journal
, vol.23
, pp. 833-843
-
-
Lizcano, J.M.1
Goransson, O.2
Toth, R.3
Deak, M.4
Morrice, N.A.5
Boudeau, J.6
-
40
-
-
84857254443
-
SIK3 is essential for chondrocyte hypertrophy during skeletal development in mice
-
Sasagawa S., Takemori H., Uebi T., Ikegami D., Hiramatsu K., Ikegawa S., et al. SIK3 is essential for chondrocyte hypertrophy during skeletal development in mice. Development 2012, 139:1153-1163.
-
(2012)
Development
, vol.139
, pp. 1153-1163
-
-
Sasagawa, S.1
Takemori, H.2
Uebi, T.3
Ikegami, D.4
Hiramatsu, K.5
Ikegawa, S.6
-
41
-
-
84861473712
-
Involvement of SIK3 in glucose and lipid homeostasis in mice
-
Uebi T., Itoh Y., Hatano O., Kumagai A., Sanosaka M., Sasaki T., et al. Involvement of SIK3 in glucose and lipid homeostasis in mice. PLoS One 2012, 7:e37803.
-
(2012)
PLoS One
, vol.7
-
-
Uebi, T.1
Itoh, Y.2
Hatano, O.3
Kumagai, A.4
Sanosaka, M.5
Sasaki, T.6
-
42
-
-
84922161593
-
SIK2 regulates CRTCs, HDAC4 and glucose uptake in adipocytes
-
Henriksson E., Sall J., Gormand A., Wasserstrom S., Morrice N.A., Fritzen A.M., et al. SIK2 regulates CRTCs, HDAC4 and glucose uptake in adipocytes. Journal of Cell Science 2015, 128:472-486.
-
(2015)
Journal of Cell Science
, vol.128
, pp. 472-486
-
-
Henriksson, E.1
Sall, J.2
Gormand, A.3
Wasserstrom, S.4
Morrice, N.A.5
Fritzen, A.M.6
-
43
-
-
0035368548
-
Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta)
-
Cho H., Mu J., Kim J.K., Thorvaldsen J.L., Chu Q., Crenshaw E.B., et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 2001, 292:1728-1731.
-
(2001)
Science
, vol.292
, pp. 1728-1731
-
-
Cho, H.1
Mu, J.2
Kim, J.K.3
Thorvaldsen, J.L.4
Chu, Q.5
Crenshaw, E.B.6
-
44
-
-
33847026801
-
Ceramide- and oxidant-induced insulin resistance involve loss of insulin-dependent Rac-activation and actin remodeling in muscle cells
-
JeBailey L., Wanono O., Niu W., Roessler J., Rudich A., Klip A. Ceramide- and oxidant-induced insulin resistance involve loss of insulin-dependent Rac-activation and actin remodeling in muscle cells. Diabetes 2007, 56:394-403.
-
(2007)
Diabetes
, vol.56
, pp. 394-403
-
-
JeBailey, L.1
Wanono, O.2
Niu, W.3
Roessler, J.4
Rudich, A.5
Klip, A.6
-
45
-
-
84880949120
-
Exercise, GLUT4, and skeletal muscle glucose uptake
-
Richter E.A., Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiological Reviews 2013, 93:993-1017.
-
(2013)
Physiological Reviews
, vol.93
, pp. 993-1017
-
-
Richter, E.A.1
Hargreaves, M.2
|