메뉴 건너뛰기




Volumn 5, Issue 1, 2016, Pages 34-46

Skeletal muscle salt inducible kinase 1 promotes insulin resistance in obesity

Author keywords

CREB; CRTC; Gluconeogenesis; Insulin resistance; Salt inducible kinase; SIK1

Indexed keywords

INSULIN; MESSENGER RNA; REGULATOR PROTEIN; SALT INDUCIBLE KINASE 1; UNCLASSIFIED DRUG;

EID: 84952876726     PISSN: None     EISSN: 22128778     Source Type: Journal    
DOI: 10.1016/j.molmet.2015.10.004     Document Type: Article
Times cited : (46)

References (45)
  • 2
    • 0035856949 scopus 로고    scopus 로고
    • Insulin signalling and the regulation of glucose and lipid metabolism
    • Saltiel A.R., Kahn C.R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001, 414:799-806.
    • (2001) Nature , vol.414 , pp. 799-806
    • Saltiel, A.R.1    Kahn, C.R.2
  • 3
    • 0035855905 scopus 로고    scopus 로고
    • CREB regulates hepatic gluconeogenesis through the coactivator PGC-1
    • Herzig S., Long F., Jhala U.S., Hedrick S., Quinn R., Bauer A., et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 2001, 413:179-183.
    • (2001) Nature , vol.413 , pp. 179-183
    • Herzig, S.1    Long, F.2    Jhala, U.S.3    Hedrick, S.4    Quinn, R.5    Bauer, A.6
  • 4
    • 27144506185 scopus 로고    scopus 로고
    • The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism
    • Koo S.H., Flechner L., Qi L., Zhang X., Screaton R.A., Jeffries S., et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 2005, 437:1109-1111.
    • (2005) Nature , vol.437 , pp. 1109-1111
    • Koo, S.H.1    Flechner, L.2    Qi, L.3    Zhang, X.4    Screaton, R.A.5    Jeffries, S.6
  • 5
    • 34548831102 scopus 로고    scopus 로고
    • Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2
    • Dentin R., Liu Y., Koo S.H., Hedrick S., Vargas T., Heredia J., et al. Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 2007, 449:366-369.
    • (2007) Nature , vol.449 , pp. 366-369
    • Dentin, R.1    Liu, Y.2    Koo, S.H.3    Hedrick, S.4    Vargas, T.5    Heredia, J.6
  • 7
    • 67649657842 scopus 로고    scopus 로고
    • CRTC2 (TORC2) contributes to the transcriptional response to fasting in the liver but is not required for the maintenance of glucose homeostasis
    • Le Lay J., Tuteja G., White P., Dhir R., Ahima R., Kaestner K.H. CRTC2 (TORC2) contributes to the transcriptional response to fasting in the liver but is not required for the maintenance of glucose homeostasis. Cell Metabolism 2009, 10:55-62.
    • (2009) Cell Metabolism , vol.10 , pp. 55-62
    • Le Lay, J.1    Tuteja, G.2    White, P.3    Dhir, R.4    Ahima, R.5    Kaestner, K.H.6
  • 8
    • 40449128605 scopus 로고    scopus 로고
    • Hepatic glucose sensing via the CREB coactivator CRTC2
    • Dentin R., Hedrick S., Xie J., Yates J., Montminy M. Hepatic glucose sensing via the CREB coactivator CRTC2. Science 2008, 319:1402-1405.
    • (2008) Science , vol.319 , pp. 1402-1405
    • Dentin, R.1    Hedrick, S.2    Xie, J.3    Yates, J.4    Montminy, M.5
  • 10
    • 70449927254 scopus 로고    scopus 로고
    • Prevention of hepatic steatosis and hepatic insulin resistance by knockdown of cAMP response element-binding protein
    • Erion D.M., Ignatova I.D., Yonemitsu S., Nagai Y., Chatterjee P., Weismann D., et al. Prevention of hepatic steatosis and hepatic insulin resistance by knockdown of cAMP response element-binding protein. Cell Metabolism 2009, 10:499-506.
    • (2009) Cell Metabolism , vol.10 , pp. 499-506
    • Erion, D.M.1    Ignatova, I.D.2    Yonemitsu, S.3    Nagai, Y.4    Chatterjee, P.5    Weismann, D.6
  • 11
    • 5344228270 scopus 로고    scopus 로고
    • The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector
    • Screaton R.A., Conkright M.D., Katoh Y., Best J.L., Canettieri G., Jeffries S., et al. The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 2004, 119:61-74.
    • (2004) Cell , vol.119 , pp. 61-74
    • Screaton, R.A.1    Conkright, M.D.2    Katoh, Y.3    Best, J.L.4    Canettieri, G.5    Jeffries, S.6
  • 12
    • 33745286771 scopus 로고    scopus 로고
    • Silencing the constitutive active transcription factor CREB by the LKB1-SIK signaling cascade
    • Katoh Y., Takemori H., Lin X.Z., Tamura M., Muraoka M., Satoh T., et al. Silencing the constitutive active transcription factor CREB by the LKB1-SIK signaling cascade. FEBS Journal 2006, 273:2730-2748.
    • (2006) FEBS Journal , vol.273 , pp. 2730-2748
    • Katoh, Y.1    Takemori, H.2    Lin, X.Z.3    Tamura, M.4    Muraoka, M.5    Satoh, T.6
  • 14
    • 84871984301 scopus 로고    scopus 로고
    • Metabolic regulation by salt inducible kinases
    • Berdeaux R. Metabolic regulation by salt inducible kinases. Frontiers in Biology 2011, 6:231-241.
    • (2011) Frontiers in Biology , vol.6 , pp. 231-241
    • Berdeaux, R.1
  • 15
    • 0038043252 scopus 로고    scopus 로고
    • Adipose-specific expression, phosphorylation of Ser794 in insulin receptor substrate-1, and activation in diabetic animals of salt-inducible kinase-2
    • Horike N., Takemori H., Katoh Y., Doi J., Min L., Asano T., et al. Adipose-specific expression, phosphorylation of Ser794 in insulin receptor substrate-1, and activation in diabetic animals of salt-inducible kinase-2. Journal of Biological Chemistry 2003, 278:18440-18447.
    • (2003) Journal of Biological Chemistry , vol.278 , pp. 18440-18447
    • Horike, N.1    Takemori, H.2    Katoh, Y.3    Doi, J.4    Min, L.5    Asano, T.6
  • 16
    • 84947320144 scopus 로고    scopus 로고
    • Salt inducible kinase 1 terminates cAMP signaling by an evolutionarily conserved negative feedback loop in beta cells
    • Kim M.J., Park S.K., Lee J.H., Jung C.Y., Sung D.J., Park J.H., et al. Salt inducible kinase 1 terminates cAMP signaling by an evolutionarily conserved negative feedback loop in beta cells. Diabetes 2015.
    • (2015) Diabetes
    • Kim, M.J.1    Park, S.K.2    Lee, J.H.3    Jung, C.Y.4    Sung, D.J.5    Park, J.H.6
  • 20
    • 80052735268 scopus 로고    scopus 로고
    • CREB is activated by muscle injury and promotes muscle regeneration
    • Stewart R., Flechner L., Montminy M., Berdeaux R. CREB is activated by muscle injury and promotes muscle regeneration. PLoS One 2011, 6:e24714.
    • (2011) PLoS One , vol.6
    • Stewart, R.1    Flechner, L.2    Montminy, M.3    Berdeaux, R.4
  • 21
  • 22
    • 84885723140 scopus 로고    scopus 로고
    • The short isoform of the ubiquitin ligase NEDD4L is a CREB target gene in hepatocytes
    • Fu J., Akhmedov D., Berdeaux R. The short isoform of the ubiquitin ligase NEDD4L is a CREB target gene in hepatocytes. PLoS One 2013, 8:e78522.
    • (2013) PLoS One , vol.8
    • Fu, J.1    Akhmedov, D.2    Berdeaux, R.3
  • 23
    • 6344249127 scopus 로고    scopus 로고
    • Differential oocyte-specific expression of Cre recombinase activity in GDF-9-iCre, Zp3cre, and Msx2Cre transgenic mice
    • Lan Z.J., Xu X., Cooney A.J. Differential oocyte-specific expression of Cre recombinase activity in GDF-9-iCre, Zp3cre, and Msx2Cre transgenic mice. Biology of Reproduction 2004, 71:1469-1474.
    • (2004) Biology of Reproduction , vol.71 , pp. 1469-1474
    • Lan, Z.J.1    Xu, X.2    Cooney, A.J.3
  • 25
    • 79955815135 scopus 로고    scopus 로고
    • Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis
    • Mihaylova M.M., Vasquez D.S., Ravnskjaer K., Denechaud P.D., Yu R.T., Alvarez J.G., et al. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 2011, 145:607-621.
    • (2011) Cell , vol.145 , pp. 607-621
    • Mihaylova, M.M.1    Vasquez, D.S.2    Ravnskjaer, K.3    Denechaud, P.D.4    Yu, R.T.5    Alvarez, J.G.6
  • 26
    • 84905457029 scopus 로고    scopus 로고
    • The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver
    • Patel K., Foretz M., Marion A., Campbell D.G., Gourlay R., Boudaba N., et al. The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver. Nature Communications 2014, 5:4535.
    • (2014) Nature Communications , vol.5 , pp. 4535
    • Patel, K.1    Foretz, M.2    Marion, A.3    Campbell, D.G.4    Gourlay, R.5    Boudaba, N.6
  • 27
    • 84908611789 scopus 로고    scopus 로고
    • SIK2 is critical in the regulation of lipid homeostasis and adipogenesis in vivo
    • Park J., Yoon Y.S., Han H.S., Kim Y.H., Ogawa Y., Park K.G., et al. SIK2 is critical in the regulation of lipid homeostasis and adipogenesis in vivo. Diabetes 2014, 63:3659-3673.
    • (2014) Diabetes , vol.63 , pp. 3659-3673
    • Park, J.1    Yoon, Y.S.2    Han, H.S.3    Kim, Y.H.4    Ogawa, Y.5    Park, K.G.6
  • 29
    • 0036940765 scopus 로고    scopus 로고
    • Identification of the nuclear localization domain of salt-inducible kinase
    • Katoh Y., Takemori H., Doi J., Okamoto M. Identification of the nuclear localization domain of salt-inducible kinase. Endocrine Research 2002, 28:315-318.
    • (2002) Endocrine Research , vol.28 , pp. 315-318
    • Katoh, Y.1    Takemori, H.2    Doi, J.3    Okamoto, M.4
  • 30
    • 84922968506 scopus 로고    scopus 로고
    • Transcriptional regulation of autophagy by an FXR-CREB axis
    • Seok S., Fu T., Choi S.E., Li Y., Zhu R., Kumar S., et al. Transcriptional regulation of autophagy by an FXR-CREB axis. Nature 2014, 516:108-111.
    • (2014) Nature , vol.516 , pp. 108-111
    • Seok, S.1    Fu, T.2    Choi, S.E.3    Li, Y.4    Zhu, R.5    Kumar, S.6
  • 31
    • 84878404345 scopus 로고    scopus 로고
    • CAMP-responsive element-binding protein (CREB)-regulated transcription coactivator 2 (CRTC2) promotes glucagon clearance and hepatic amino acid catabolism to regulate glucose homeostasis
    • Erion D.M., Kotas M.E., McGlashon J., Yonemitsu S., Hsiao J.J., Nagai Y., et al. cAMP-responsive element-binding protein (CREB)-regulated transcription coactivator 2 (CRTC2) promotes glucagon clearance and hepatic amino acid catabolism to regulate glucose homeostasis. Journal of Biological Chemistry 2013, 288:16167-16176.
    • (2013) Journal of Biological Chemistry , vol.288 , pp. 16167-16176
    • Erion, D.M.1    Kotas, M.E.2    McGlashon, J.3    Yonemitsu, S.4    Hsiao, J.J.5    Nagai, Y.6
  • 32
    • 84862025421 scopus 로고    scopus 로고
    • Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration
    • Sun Z., Miller R.A., Patel R.T., Chen J., Dhir R., Wang H., et al. Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration. Nature Medicine 2012, 18:934-942.
    • (2012) Nature Medicine , vol.18 , pp. 934-942
    • Sun, Z.1    Miller, R.A.2    Patel, R.T.3    Chen, J.4    Dhir, R.5    Wang, H.6
  • 33
    • 0032898369 scopus 로고    scopus 로고
    • Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase
    • Postic C., Shiota M., Niswender K.D., Jetton T.L., Chen Y., Moates J.M., et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. Journal of Biological Chemistry 1999, 274:305-315.
    • (1999) Journal of Biological Chemistry , vol.274 , pp. 305-315
    • Postic, C.1    Shiota, M.2    Niswender, K.D.3    Jetton, T.L.4    Chen, Y.5    Moates, J.M.6
  • 34
    • 0034535222 scopus 로고    scopus 로고
    • Early myotome specification regulates PDGFA expression and axial skeleton development
    • Tallquist M.D., Weismann K.E., Hellstrom M., Soriano P. Early myotome specification regulates PDGFA expression and axial skeleton development. Development 2000, 127:5059-5070.
    • (2000) Development , vol.127 , pp. 5059-5070
    • Tallquist, M.D.1    Weismann, K.E.2    Hellstrom, M.3    Soriano, P.4
  • 36
    • 84924226921 scopus 로고    scopus 로고
    • Increased arterial blood pressure and vascular remodeling in mice lacking salt-inducible kinase 1 (SIK1)
    • Bertorello A.M., Pires N., Igreja B., Pinho M.J., Vorkapic E., Wagsater D., et al. Increased arterial blood pressure and vascular remodeling in mice lacking salt-inducible kinase 1 (SIK1). Circulation Research 2015, 116:642-652.
    • (2015) Circulation Research , vol.116 , pp. 642-652
    • Bertorello, A.M.1    Pires, N.2    Igreja, B.3    Pinho, M.J.4    Vorkapic, E.5    Wagsater, D.6
  • 37
    • 28844433635 scopus 로고    scopus 로고
    • The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
    • Shaw R.J., Lamia K.A., Vasquez D., Koo S.H., Bardeesy N., Depinho R.A., et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 2005, 310:1642-1646.
    • (2005) Science , vol.310 , pp. 1642-1646
    • Shaw, R.J.1    Lamia, K.A.2    Vasquez, D.3    Koo, S.H.4    Bardeesy, N.5    Depinho, R.A.6
  • 38
    • 77954933558 scopus 로고    scopus 로고
    • Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state
    • Foretz M., Hebrard S., Leclerc J., Zarrinpashneh E., Soty M., Mithieux G., et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. Journal of Clinical Investigation 2010, 120:2355-2369.
    • (2010) Journal of Clinical Investigation , vol.120 , pp. 2355-2369
    • Foretz, M.1    Hebrard, S.2    Leclerc, J.3    Zarrinpashneh, E.4    Soty, M.5    Mithieux, G.6
  • 39
    • 12144287284 scopus 로고    scopus 로고
    • LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1
    • Lizcano J.M., Goransson O., Toth R., Deak M., Morrice N.A., Boudeau J., et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO Journal 2004, 23:833-843.
    • (2004) EMBO Journal , vol.23 , pp. 833-843
    • Lizcano, J.M.1    Goransson, O.2    Toth, R.3    Deak, M.4    Morrice, N.A.5    Boudeau, J.6
  • 40
    • 84857254443 scopus 로고    scopus 로고
    • SIK3 is essential for chondrocyte hypertrophy during skeletal development in mice
    • Sasagawa S., Takemori H., Uebi T., Ikegami D., Hiramatsu K., Ikegawa S., et al. SIK3 is essential for chondrocyte hypertrophy during skeletal development in mice. Development 2012, 139:1153-1163.
    • (2012) Development , vol.139 , pp. 1153-1163
    • Sasagawa, S.1    Takemori, H.2    Uebi, T.3    Ikegami, D.4    Hiramatsu, K.5    Ikegawa, S.6
  • 43
    • 0035368548 scopus 로고    scopus 로고
    • Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta)
    • Cho H., Mu J., Kim J.K., Thorvaldsen J.L., Chu Q., Crenshaw E.B., et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 2001, 292:1728-1731.
    • (2001) Science , vol.292 , pp. 1728-1731
    • Cho, H.1    Mu, J.2    Kim, J.K.3    Thorvaldsen, J.L.4    Chu, Q.5    Crenshaw, E.B.6
  • 44
    • 33847026801 scopus 로고    scopus 로고
    • Ceramide- and oxidant-induced insulin resistance involve loss of insulin-dependent Rac-activation and actin remodeling in muscle cells
    • JeBailey L., Wanono O., Niu W., Roessler J., Rudich A., Klip A. Ceramide- and oxidant-induced insulin resistance involve loss of insulin-dependent Rac-activation and actin remodeling in muscle cells. Diabetes 2007, 56:394-403.
    • (2007) Diabetes , vol.56 , pp. 394-403
    • JeBailey, L.1    Wanono, O.2    Niu, W.3    Roessler, J.4    Rudich, A.5    Klip, A.6
  • 45
    • 84880949120 scopus 로고    scopus 로고
    • Exercise, GLUT4, and skeletal muscle glucose uptake
    • Richter E.A., Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiological Reviews 2013, 93:993-1017.
    • (2013) Physiological Reviews , vol.93 , pp. 993-1017
    • Richter, E.A.1    Hargreaves, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.