메뉴 건너뛰기




Volumn 8, Issue 1, 2015, Pages

Engineering transcription factors to improve tolerance against alkane biofuels in Saccharomyces cerevisiae

Author keywords

Alkanes; Biofuels; Pleiotropic drug resistance; Saccharomyces cerevisiae; Site mutagenesis; Tolerance; Transcription factors

Indexed keywords

BIOFUELS; DRUG THERAPY; FITS AND TOLERANCES; GENE EXPRESSION; GENES; PARAFFINS; POLYMERASE CHAIN REACTION; PRODUCTIVITY; TRANSCRIPTION FACTORS; YEAST;

EID: 84952305527     PISSN: 17546834     EISSN: None     Source Type: Journal    
DOI: 10.1186/s13068-015-0411-z     Document Type: Article
Times cited : (20)

References (34)
  • 1
    • 84865142847 scopus 로고    scopus 로고
    • Microbial engineering for the production of advanced biofuels
    • 1:CAS:528:DC%2BC38Xht1WktL3F
    • Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD. Microbial engineering for the production of advanced biofuels. Nature. 2012;488:320-8.
    • (2012) Nature , vol.488 , pp. 320-328
    • Peralta-Yahya, P.P.1    Zhang, F.2    Del Cardayre, S.B.3    Keasling, J.D.4
  • 2
    • 84877315991 scopus 로고    scopus 로고
    • Heterologous production of pentane in the oleaginous yeast Yarrowia lipolytica
    • 1:CAS:528:DC%2BC3sXotlGis7k%3D
    • Blazeck J, Liu L, Knight R, Alper HS. Heterologous production of pentane in the oleaginous yeast Yarrowia lipolytica. J Biotechnol. 2013;165:184-94.
    • (2013) J Biotechnol , vol.165 , pp. 184-194
    • Blazeck, J.1    Liu, L.2    Knight, R.3    Alper, H.S.4
  • 3
    • 84876302224 scopus 로고    scopus 로고
    • Petrodiesel-like straight chain alkane and fatty alcohol production by the microalga Chlorella sorokiniana
    • 1:CAS:528:DC%2BC3sXmvV2gsL8%3D
    • Yang X, Dai X, Guo H, Geng S, Wang G. Petrodiesel-like straight chain alkane and fatty alcohol production by the microalga Chlorella sorokiniana. Bioresour Technol. 2013;136:126-30.
    • (2013) Bioresour Technol , vol.136 , pp. 126-130
    • Yang, X.1    Dai, X.2    Guo, H.3    Geng, S.4    Wang, G.5
  • 4
    • 84874253384 scopus 로고    scopus 로고
    • Fusing catalase to an alkane-producing enzyme maintains enzymatic activity by converting the inhibitory byproduct H2O2 to the cosubstrate O2
    • 1:CAS:528:DC%2BC3sXjvFeltbY%3D
    • 2 to the cosubstrate O2. Proc Natl Acad Sci USA. 2013;110:3191-6.
    • (2013) Proc Natl Acad Sci U S A , vol.110 , pp. 3191-3196
    • Andre, C.1    Kim, S.W.2    Yu, X.H.3    Shanklin, J.4
  • 6
    • 84871952399 scopus 로고    scopus 로고
    • Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities
    • 1:CAS:528:DC%2BC3sXnvVWnsA%3D%3D
    • Akhtar MK, Turner NJ, Jones PR. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc Natl Acad Sci USA. 2013;110:87-92.
    • (2013) Proc Natl Acad Sci U S A , vol.110 , pp. 87-92
    • Akhtar, M.K.1    Turner, N.J.2    Jones, P.R.3
  • 7
    • 84865319405 scopus 로고    scopus 로고
    • Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex
    • 1:CAS:528:DC%2BC38XhtlChsb3P
    • Bernard A, Domergue F, Pascal S, Jetter R, Renne C, Faure JD, Haslam RP, Napier JA, Lessire R, Joubes J. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell. 2012;24:3106-18.
    • (2012) Plant Cell , vol.24 , pp. 3106-3118
    • Bernard, A.1    Domergue, F.2    Pascal, S.3    Jetter, R.4    Renne, C.5    Faure, J.D.6    Haslam, R.P.7    Napier, J.A.8    Lessire, R.9    Joubes, J.10
  • 8
    • 84886948663 scopus 로고    scopus 로고
    • Microbial production of short-chain alkanes
    • 1:CAS:528:DC%2BC3sXhsFaksr%2FK
    • Choi YJ, Lee SY. Microbial production of short-chain alkanes. Nature. 2013;502:571-4.
    • (2013) Nature , vol.502 , pp. 571-574
    • Choi, Y.J.1    Lee, S.Y.2
  • 9
    • 84890115524 scopus 로고    scopus 로고
    • A predicted immunity protein confers resistance to pyocin S5 in a sensitive strain of Pseudomonas aeruginosa
    • 1:CAS:528:DC%2BC3sXhslGntrnK
    • Rasouliha BH, Ling H, Ho CL, Chang MW. A predicted immunity protein confers resistance to pyocin S5 in a sensitive strain of Pseudomonas aeruginosa. ChemBioChem. 2013;14:2444-6.
    • (2013) ChemBioChem , vol.14 , pp. 2444-2446
    • Rasouliha, B.H.1    Ling, H.2    Ho, C.L.3    Chang, M.W.4
  • 10
    • 84874818199 scopus 로고    scopus 로고
    • Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC3sXktlyjtrw%3D
    • Chen B, Ling H, Chang MW. Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae. Biotechnol Biofuels. 2013;6:21.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 21
    • Chen, B.1    Ling, H.2    Chang, M.W.3
  • 12
    • 84882604844 scopus 로고    scopus 로고
    • Microbial engineering strategies to improve cell viability for biochemical production
    • 1:CAS:528:DC%2BC3sXjslahsbs%3D
    • Lo TM, Teo WS, Ling H, Chen B, Kang A, Chang MW. Microbial engineering strategies to improve cell viability for biochemical production. Biotechnol Adv. 2013;31:903-14.
    • (2013) Biotechnol Adv , vol.31 , pp. 903-914
    • Lo, T.M.1    Teo, W.S.2    Ling, H.3    Chen, B.4    Kang, A.5    Chang, M.W.6
  • 14
    • 84905757148 scopus 로고    scopus 로고
    • Microbial tolerance engineering toward biochemical production: From lignocellulose to products
    • Ling H, Teo W, Chen B, Leong SS, Chang MW. Microbial tolerance engineering toward biochemical production: from lignocellulose to products. Curr Opin Biotechnol. 2014;29C:99-106.
    • (2014) Curr Opin Biotechnol , vol.29 , pp. 99-106
    • Ling, H.1    Teo, W.2    Chen, B.3    Leong, S.S.4    Chang, M.W.5
  • 15
    • 84872054626 scopus 로고    scopus 로고
    • Systems-level characterization and engineering of oxidative stress tolerance in Escherichia coli under anaerobic conditions
    • 1:CAS:528:DC%2BC3sXhsFSntg%3D%3D
    • Kang A, Tan MH, Ling H, Chang MW. Systems-level characterization and engineering of oxidative stress tolerance in Escherichia coli under anaerobic conditions. Mol BioSyst. 2013;9:285-95.
    • (2013) Mol BioSyst , vol.9 , pp. 285-295
    • Kang, A.1    Tan, M.H.2    Ling, H.3    Chang, M.W.4
  • 16
    • 84929211319 scopus 로고    scopus 로고
    • Enhanced glycosyl hydrolase production in Aspergillus nidulans using transcription factor engineering approaches
    • Tamayo-Ramos J, Orejas M. Enhanced glycosyl hydrolase production in Aspergillus nidulans using transcription factor engineering approaches. Biotechnol Biofuels. 2014;7:103.
    • (2014) Biotechnol Biofuels , vol.7 , pp. 103
    • Tamayo-Ramos, J.1    Orejas, M.2
  • 17
    • 33845442201 scopus 로고    scopus 로고
    • Engineering yeast transcription machinery for improved ethanol tolerance and production
    • 1:CAS:528:DC%2BD28Xht1OntL%2FP
    • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science. 2006;314:1565-8.
    • (2006) Science , vol.314 , pp. 1565-1568
    • Alper, H.1    Moxley, J.2    Nevoigt, E.3    Fink, G.R.4    Stephanopoulos, G.5
  • 18
    • 44349180347 scopus 로고    scopus 로고
    • YLR099C (ICT1) encodes a soluble Acyl-CoA-dependent lysophosphatidic acid acyltransferase responsible for enhanced phospholipid synthesis on organic solvent stress in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD1cXkt1aksbo%3D
    • Ghosh AK, Ramakrishnan G, Rajasekharan R. YLR099C (ICT1) encodes a soluble Acyl-CoA-dependent lysophosphatidic acid acyltransferase responsible for enhanced phospholipid synthesis on organic solvent stress in Saccharomyces cerevisiae. J Biol Chem. 2008;283:9768-75.
    • (2008) J Biol Chem , vol.283 , pp. 9768-9775
    • Ghosh, A.K.1    Ramakrishnan, G.2    Rajasekharan, R.3
  • 19
    • 33847083318 scopus 로고    scopus 로고
    • Global transcription machinery engineering: A new approach for improving cellular phenotype
    • 1:CAS:528:DC%2BD2sXlvFSisr0%3D
    • Alper H, Stephanopoulos G. Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng. 2007;9:258-67.
    • (2007) Metab Eng , vol.9 , pp. 258-267
    • Alper, H.1    Stephanopoulos, G.2
  • 20
    • 84858016558 scopus 로고    scopus 로고
    • Identification and reconstitution of genetic regulatory networks for improved microbial tolerance to isooctane
    • 1:CAS:528:DC%2BC38XjtlKqtb4%3D
    • Kang A, Chang MW. Identification and reconstitution of genetic regulatory networks for improved microbial tolerance to isooctane. Mol BioSyst. 2012;8:1350-8.
    • (2012) Mol BioSyst , vol.8 , pp. 1350-1358
    • Kang, A.1    Chang, M.W.2
  • 21
    • 46949110766 scopus 로고    scopus 로고
    • Discovery of a modified transcription factor endowing yeasts with organic-solvent tolerance and reconstruction of an organic-solvent-tolerant Saccharomyces cerevisiae strain
    • 1:CAS:528:DC%2BD1cXot1OmtLc%3D
    • Matsui K, Teranishi S, Kamon S, Kuroda K, Ueda M. Discovery of a modified transcription factor endowing yeasts with organic-solvent tolerance and reconstruction of an organic-solvent-tolerant Saccharomyces cerevisiae strain. Appl Environ Microbiol. 2008;74:4222-5.
    • (2008) Appl Environ Microbiol , vol.74 , pp. 4222-4225
    • Matsui, K.1    Teranishi, S.2    Kamon, S.3    Kuroda, K.4    Ueda, M.5
  • 22
    • 0036886570 scopus 로고    scopus 로고
    • The yeast zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo- and heterodimers in vivo
    • 1:CAS:528:DC%2BD38XpsFGisbk%3D
    • Mamnun YM, Pandjaitan R, Mahe Y, Delahodde A, Kuchler K. The yeast zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo- and heterodimers in vivo. Mol Microbiol. 2002;46:1429-40.
    • (2002) Mol Microbiol , vol.46 , pp. 1429-1440
    • Mamnun, Y.M.1    Pandjaitan, R.2    Mahe, Y.3    Delahodde, A.4    Kuchler, K.5
  • 23
    • 0030664378 scopus 로고    scopus 로고
    • Clustered amino acid substitutions in the yeast transcription regulator Pdr3p increase pleiotropic drug resistance and identify a new central regulatory domain
    • 1:CAS:528:DyaK1cXhslyquw%3D%3D
    • Nourani A, Papajova D, Delahodde A, Jacq C, Subik J. Clustered amino acid substitutions in the yeast transcription regulator Pdr3p increase pleiotropic drug resistance and identify a new central regulatory domain. Mol Gen Genet. 1997;256:397-405.
    • (1997) Mol Gen Genet , vol.256 , pp. 397-405
    • Nourani, A.1    Papajova, D.2    Delahodde, A.3    Jacq, C.4    Subik, J.5
  • 24
    • 0030671457 scopus 로고    scopus 로고
    • Molecular and phenotypic characterization of yeast PDR1 mutants that show hyperactive transcription of various ABC multidrug transporter genes
    • 1:CAS:528:DyaK1cXhsl2juw%3D%3D
    • Carvajal E, van den Hazel HB, Cybularz-Kolaczkowska A, Balzi E, Goffeau A. Molecular and phenotypic characterization of yeast PDR1 mutants that show hyperactive transcription of various ABC multidrug transporter genes. Mol Gen Genet. 1997;256:406-15.
    • (1997) Mol Gen Genet , vol.256 , pp. 406-415
    • Carvajal, E.1    Van Den Hazel, H.B.2    Cybularz-Kolaczkowska, A.3    Balzi, E.4    Goffeau, A.5
  • 25
    • 0036210667 scopus 로고    scopus 로고
    • Different missense mutations in PDR1 and PDR3 genes from clotrimazole-resistant sake yeast are responsible for pleiotropic drug resistance and improved fermentative activity
    • 1:CAS:528:DC%2BD38XivVyksbg%3D
    • Mizoguchi H, Yamauchi T, Watanabe M, Yamanaka H, Nishimura A, Hanamoto H. Different missense mutations in PDR1 and PDR3 genes from clotrimazole-resistant sake yeast are responsible for pleiotropic drug resistance and improved fermentative activity. J Biosci Bioeng. 2002;93:221-7.
    • (2002) J Biosci Bioeng , vol.93 , pp. 221-227
    • Mizoguchi, H.1    Yamauchi, T.2    Watanabe, M.3    Yamanaka, H.4    Nishimura, A.5    Hanamoto, H.6
  • 26
    • 70549086797 scopus 로고    scopus 로고
    • Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae
    • Teste MA, Duquenne M, Francois JM, Parrou JL. Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Mol Biol. 2009;10:99.
    • (2009) BMC Mol Biol , vol.10 , pp. 99
    • Teste, M.A.1    Duquenne, M.2    Francois, J.M.3    Parrou, J.L.4
  • 27
    • 0037129827 scopus 로고    scopus 로고
    • Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes
    • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:RESEARCH0034.
    • (2002) Genome Biol , vol.3
    • Vandesompele, J.1    De Preter, K.2    Pattyn, F.3    Poppe, B.4    Van Roy, N.5    Paepe, A.6    Speleman, F.7
  • 28
    • 31844436264 scopus 로고    scopus 로고
    • Yeast ABC transporters - A tale of sex, stress, drugs and aging
    • 1:CAS:528:DC%2BD28XhtFejtbo%3D
    • Jungwirth H, Kuchler K. Yeast ABC transporters - a tale of sex, stress, drugs and aging. FEBS Lett. 2006;580:1131-8.
    • (2006) FEBS Lett , vol.580 , pp. 1131-1138
    • Jungwirth, H.1    Kuchler, K.2
  • 29
    • 84864689078 scopus 로고    scopus 로고
    • Insertion of transposon in the vicinity of SSK2 confers enhanced tolerance to furfural in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC38XotlSltL0%3D
    • Kim HS, Kim NR, Kim W, Choi W. Insertion of transposon in the vicinity of SSK2 confers enhanced tolerance to furfural in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2012;95:531-40.
    • (2012) Appl Microbiol Biotechnol , vol.95 , pp. 531-540
    • Kim, H.S.1    Kim, N.R.2    Kim, W.3    Choi, W.4
  • 30
    • 0029048826 scopus 로고
    • Mechanisms of membrane toxicity of hydrocarbons
    • 1:CAS:528:DyaK2MXms1SntLw%3D
    • Sikkema J, de Bont JA, Poolman B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev. 1995;59:201-22.
    • (1995) Microbiol Rev , vol.59 , pp. 201-222
    • Sikkema, J.1    De Bont, J.A.2    Poolman, B.3
  • 31
    • 0037088811 scopus 로고    scopus 로고
    • A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast
    • 1:STN:280:DC%2BD387lt1GnsQ%3D%3D
    • Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 2002;30:e23.
    • (2002) Nucleic Acids Res , vol.30 , pp. e23
    • Gueldener, U.1    Heinisch, J.2    Koehler, G.J.3    Voss, D.4    Hegemann, J.H.5
  • 32
    • 59649108349 scopus 로고    scopus 로고
    • DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways
    • Shao Z, Zhao H, Zhao H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res. 2009;37:e16.
    • (2009) Nucleic Acids Res , vol.37 , pp. e16
    • Shao, Z.1    Zhao, H.2    Zhao, H.3
  • 33
    • 0038534422 scopus 로고    scopus 로고
    • Isolation and characterization of a novel oxygenase that catalyzes the first step of n-alkane oxidation in Acinetobacter sp. Strain M-1
    • 1:CAS:528:DyaK28XjvFegsL0%3D
    • Maeng JH, Sakai Y, Tani Y, Kato N. Isolation and characterization of a novel oxygenase that catalyzes the first step of n-alkane oxidation in Acinetobacter sp. strain M-1. J Bacteriol. 1996;178:3695-700.
    • (1996) J Bacteriol , vol.178 , pp. 3695-3700
    • Maeng, J.H.1    Sakai, Y.2    Tani, Y.3    Kato, N.4
  • 34
    • 0037031860 scopus 로고    scopus 로고
    • Transcriptional profiling identifies two members of the ATP-binding cassette transporter superfamily required for sterol uptake in yeast
    • 1:CAS:528:DC%2BD38Xnt1Sms7w%3D
    • Wilcox LJ, Balderes DA, Wharton B, Tinkelenberg AH, Rao G, Sturley SL. Transcriptional profiling identifies two members of the ATP-binding cassette transporter superfamily required for sterol uptake in yeast. J Biol Chem. 2002;277:32466-72.
    • (2002) J Biol Chem , vol.277 , pp. 32466-32472
    • Wilcox, L.J.1    Balderes, D.A.2    Wharton, B.3    Tinkelenberg, A.H.4    Rao, G.5    Sturley, S.L.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.