메뉴 건너뛰기




Volumn 7, Issue 11, 2015, Pages 14806-14826

Weighted-fusion-based representation classifiers for hyperspectral imagery

Author keywords

Gabor features; Hyperspectral image classification; Local binary patterns (LBP); Nearest regularized subspace (NRS)

Indexed keywords

BINARY IMAGES; BINS; IMAGE CLASSIFICATION; PIXELS; SPECTROSCOPY; SUPPORT VECTOR MACHINES; VECTORS;

EID: 84950149364     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs71114806     Document Type: Article
Times cited : (15)

References (50)
  • 1
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis
    • Landgrebe, D.A. Hyperspectral image data analysis. IEEE Signal Process. Mag. 2002, 19, 17-28.
    • (2002) IEEE Signal Process. Mag , vol.19 , pp. 17-28
    • Landgrebe, D.A.1
  • 2
    • 84896397647 scopus 로고    scopus 로고
    • Decision fusion in kernel-induced spaces for hyperspectral image classification
    • Li, W.; Prasad, S.; Fowler, J.E. Decision fusion in kernel-induced spaces for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3399-3411.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , pp. 3399-3411
    • Li, W.1    Prasad, S.2    Fowler, J.E.3
  • 4
    • 77952717202 scopus 로고    scopus 로고
    • Sparse representation for computer vision and pattern recognition
    • Wright, J.; Ma, Y.; Mairal, J.; Sapiro, G.; Huang, T.S.; Yan, S. Sparse representation for computer vision and pattern recognition. Proc. IEEE. 2010, 98, 1031-1044.
    • (2010) Proc. IEEE , vol.98 , pp. 1031-1044
    • Wright, J.1    Ma, Y.2    Mairal, J.3    Sapiro, G.4    Huang, T.S.5    Yan, S.6
  • 6
    • 83655167265 scopus 로고    scopus 로고
    • Joint Dynamic Sparse Representation for Multiview Face Recognition
    • Zhang, H.; Nasrabadi, N.; Zhang, Y.; Huang, T. Joint Dynamic Sparse Representation for Multiview Face Recognition. Pattern Recognit. 2012, 45, 1290-1298.
    • (2012) Pattern Recognit , vol.45 , pp. 1290-1298
    • Zhang, H.1    Nasrabadi, N.2    Zhang, Y.3    Huang, T.4
  • 7
    • 80053571096 scopus 로고    scopus 로고
    • Hyperspectral image classification using dictionary-based sparse representation
    • Chen, Y.; Nasrabadi, M.; Tran, T. Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3973-3985.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , pp. 3973-3985
    • Chen, Y.1    Nasrabadi, M.2    Tran, T.3
  • 10
    • 84897025270 scopus 로고    scopus 로고
    • Structured priors for sparse-representation-based hyperspectral image classification
    • Sun, X.; Qu, Q.; Nasrabadi, N.M.; Tran, T.D. Structured priors for sparse-representation-based hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1235-1239.
    • (2014) IEEE Geosci. Remote Sens. Lett , vol.11 , pp. 1235-1239
    • Sun, X.1    Qu, Q.2    Nasrabadi, N.M.3    Tran, T.D.4
  • 11
    • 77951546345 scopus 로고    scopus 로고
    • Joint-sparse recovery from multiple measurements
    • Berg, E.; Friedlander, M. Joint-sparse recovery from multiple measurements. IEEE Trans. Inf. Theor. 2010, 56, 2516-2527.
    • (2010) IEEE Trans. Inf. Theor , vol.56 , pp. 2516-2527
    • Berg, E.1    Friedlander, M.2
  • 13
  • 16
    • 84899785506 scopus 로고    scopus 로고
    • Gabor-filtering-based nearest regularized subspace for hyperspectral image classification
    • Li, W.; Du, Q. Gabor-filtering-based nearest regularized subspace for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 1012-1022.
    • (2014) IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens , vol.7 , pp. 1012-1022
    • Li, W.1    Du, Q.2
  • 17
    • 84906326351 scopus 로고    scopus 로고
    • Gabor feature-based collaborative representation for hyperspectral imagery classification
    • Jia, S.; Jia, L.; Li, Q. Gabor feature-based collaborative representation for hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 2015, 52, 1118-1129.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.52 , pp. 1118-1129
    • Jia, S.1    Jia, L.2    Li, Q.3
  • 18
    • 84878133525 scopus 로고    scopus 로고
    • Feature extraction of hyperspectral image cubes using three dimensional gray level co-occurrence
    • Tsai, F.; Tsai, J.S. Feature extraction of hyperspectral image cubes using three dimensional gray level co-occurrence. IEEE Trans. Geosci. Remote Sens. 2013, 5, 3504-3514.
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.5 , pp. 3504-3514
    • Tsai, F.1    Tsai, J.S.2
  • 19
    • 84925296587 scopus 로고    scopus 로고
    • Local binary patterns and extreme learning machine for hyperspectral image classification
    • Li, W.; Chen, C.; Su, H.; Du, Q. Local binary patterns and extreme learning machine for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3681-3693.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , pp. 3681-3693
    • Li, W.1    Chen, C.2    Su, H.3    Du, Q.4
  • 20
    • 84899923596 scopus 로고    scopus 로고
    • Spectral-Spatial Classification of Hyperspectral Images Using Wavelets and Extended Morphological Profiles
    • Quesada-Barriuso, P.; Arguello, F.; Heras, D.B. Spectral-Spatial Classification of Hyperspectral Images Using Wavelets and Extended Morphological Profiles. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 1177-1185.
    • (2014) Sel. Top. Appl. Earth Observ. Remote Sens , vol.7 , pp. 1177-1185
    • Quesada-Barriuso, P.1    Arguello, F.2    Heras, D.B.3
  • 21
    • 84905903346 scopus 로고    scopus 로고
    • Automatic Framework for Spectral-Spatial Classification Based on Supervised Feature Extraction and Morphological Attribute Profiles
    • Ghamisi, P.; Benediktsson, J.A.; Gavallaro, G.; Plaza, A. Automatic Framework for Spectral-Spatial Classification Based on Supervised Feature Extraction and Morphological Attribute Profiles. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 2147-2160.
    • (2014) Sel. Top. Appl. Earth Observ. Remote Sens , vol.7 , pp. 2147-2160
    • Ghamisi, P.1    Benediktsson, J.A.2    Gavallaro, G.3    Plaza, A.4
  • 22
    • 84896059238 scopus 로고    scopus 로고
    • Spectral-Spatial Pixel Characterization Using Gabor Filters for Hyperspectral Image Classification
    • Rajadell, O.; Garcia-Sevilla, P.; Pla, F. Spectral-Spatial Pixel Characterization Using Gabor Filters for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2013, 10, 860-864.
    • (2013) IEEE Geosci. Remote Sens. Lett , vol.10 , pp. 860-864
    • Rajadell, O.1    Garcia-Sevilla, P.2    Pla, F.3
  • 23
    • 80052087210 scopus 로고    scopus 로고
    • On combining multiple features for hyperspectral remote sensing image classification, IEEE Trans
    • Zhang, L.; Zhang, L.; Tao, D.; Huang, X. On combining multiple features for hyperspectral remote sensing image classification, IEEE Trans. Geosci. Remote Sens. 2012, 50, 879-893.
    • (2012) Geosci. Remote Sens , vol.50 , pp. 879-893
    • Zhang, L.1    Zhang, L.2    Tao, D.3    Huang, X.4
  • 24
    • 85027946971 scopus 로고    scopus 로고
    • Hyperspectral image classification using weighted joint collaborative representation
    • Xiong, M.; Ran, Q.; Li, W.; Zou, J.; Du, Q. Hyperspectral image classification using weighted joint collaborative representation. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1209-1213.
    • (2015) IEEE Geosci. Remote Sens. Lett , vol.12 , pp. 1209-1213
    • Xiong, M.1    Ran, Q.2    Li, W.3    Zou, J.4    Du, Q.5
  • 26
    • 84905922440 scopus 로고    scopus 로고
    • Joint within-class collaborative representation for hyperspectral image classification
    • Li, W.; Du, Q. Joint within-class collaborative representation for hyperspectral image classification. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 2200-2208.
    • (2014) Sel. Top. Appl. Earth Observ. Remote Sens , vol.7 , pp. 2200-2208
    • Li, W.1    Du, Q.2
  • 28
    • 85027936970 scopus 로고    scopus 로고
    • Hyperspectral image classification by spatial-spectral derivative-aided kernel joint sparse representation
    • Wang, J.; Jiao, L.; Liu, H.; Yang, S.; Liu, F. Hyperspectral image classification by spatial-spectral derivative-aided kernel joint sparse representation. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 2485-2500.
    • (2015) IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens , vol.8 , pp. 2485-2500
    • Wang, J.1    Jiao, L.2    Liu, H.3    Yang, S.4    Liu, F.5
  • 29
    • 84903278535 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image classification via multiscale adaptive sparse representation
    • Fang, L.; Li, S.; Kang, X.; Benediktsson, J.A. Spectral-spatial hyperspectral image classification via multiscale adaptive sparse representation. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7738-7749.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , pp. 7738-7749
    • Fang, L.1    Li, S.2    Kang, X.3    Benediktsson, J.A.4
  • 30
    • 77953871614 scopus 로고    scopus 로고
    • Sensitivity of support vector machines to random feature selection in classification of hyperspectral data
    • Waske, B.; Linden, S.; Benediktsson, J.A.; Rabe, A.; Hostert, P. Sensitivity of support vector machines to random feature selection in classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2880-2889.
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , pp. 2880-2889
    • Waske, B.1    Linden, S.2    Benediktsson, J.A.3    Rabe, A.4    Hostert, P.5
  • 31
    • 84861373812 scopus 로고    scopus 로고
    • Adaptive affinity propagation with spectral angle mapper for semi-supervised hyperspectral band selection
    • Su, H.; Sheng, Y.; Du, P.; Liu, K. Adaptive affinity propagation with spectral angle mapper for semi-supervised hyperspectral band selection. Appl. Opt. 2012, 51, 2656-2663.
    • (2012) Appl. Opt , vol.51 , pp. 2656-2663
    • Su, H.1    Sheng, Y.2    Du, P.3    Liu, K.4
  • 32
    • 84865577207 scopus 로고    scopus 로고
    • Fusion of supervised and unsupervised learning for improved classification of hyperspectral images
    • Alajlan, N.; Bazi, Y.; Melgani, F.; Yager, R.R. Fusion of supervised and unsupervised learning for improved classification of hyperspectral images. Inf. Sci. 2012, 217, 39-55.
    • (2012) Inf. Sci , vol.217 , pp. 39-55
    • Alajlan, N.1    Bazi, Y.2    Melgani, F.3    Yager, R.R.4
  • 33
    • 77957977279 scopus 로고    scopus 로고
    • Decision fusion on supervised and unsupervised classifiers for hyperspectral imagery
    • Yang, H.; Du, Q.; Ma, B. Decision fusion on supervised and unsupervised classifiers for hyperspectral imagery. IEEE Geosci. Remote Sens. Lett. 2010, 7, 875-879.
    • (2010) IEEE Geosci. Remote Sens. Lett , vol.7 , pp. 875-879
    • Yang, H.1    Du, Q.2    Ma, B.3
  • 34
    • 84924093890 scopus 로고    scopus 로고
    • Decision fusion for dual-window based hyperspectral anomaly detection
    • Li, W.; Du, Q. Decision fusion for dual-window based hyperspectral anomaly detection. J. Appl. Remote Sens. 2015, 9, doi:10.1117/1.JRS.9.097297.
    • (2015) J. Appl. Remote Sens , vol.9
    • Li, W.1    Du, Q.2
  • 35
    • 84896978507 scopus 로고    scopus 로고
    • Wavelet-based nearest-regularized subspace for noise-robust hyperspectral image classification
    • Li, W.; Liu, K.; Su, H. Wavelet-based nearest-regularized subspace for noise-robust hyperspectral image classification. J. Appl. Remote Sens. 2014, 8, 083665.
    • (2014) J. Appl. Remote Sens , vol.8
    • Li, W.1    Liu, K.2    Su, H.3
  • 36
    • 84924118487 scopus 로고    scopus 로고
    • Dynamic classifier selection using spectral-spatial information for hyperspectral image classification
    • Su, H.; Yong, B.; Du, P.; Liu, H.; Chen, C.; Liu, K. Dynamic classifier selection using spectral-spatial information for hyperspectral image classification. J. Appl. Remote Sens. 2014, 8, 085095.
    • (2014) J. Appl. Remote Sens , vol.8
    • Su, H.1    Yong, B.2    Du, P.3    Liu, H.4    Chen, C.5    Liu, K.6
  • 37
    • 84904214211 scopus 로고    scopus 로고
    • Classification and boosting with multiple collaborative representations
    • Chi, Y.; Porikli, F. Classification and boosting with multiple collaborative representations. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 1519-1531.
    • (2014) IEEE Trans. Pattern Anal. Mach. Intell , vol.36 , pp. 1519-1531
    • Chi, Y.1    Porikli, F.2
  • 38
    • 0022098435 scopus 로고
    • Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters
    • Daugman, J.G. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Optim. Soc. Am. 1985, 2, 1160-1169.
    • (1985) J. Optim. Soc. Am , vol.2 , pp. 1160-1169
    • Daugman, J.G.1
  • 39
    • 0036647193 scopus 로고    scopus 로고
    • Multi resolution gray scale and rotation invariant texture classification with local binary pattern
    • Ojala, T.; Pietikainen, M.; Maenpaa, T.T. Multi resolution gray scale and rotation invariant texture classification with local binary pattern. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971-987.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell , vol.24 , pp. 971-987
    • Ojala, T.1    Pietikainen, M.2    Maenpaa, T.T.3
  • 40
    • 33947167478 scopus 로고    scopus 로고
    • Face description with local binary patterns: Application to face recognition
    • Ahonen, T.; Hadid, A.; Pietikainen, M. Face description with local binary patterns: Application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 2037-2041.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell , vol.28 , pp. 2037-2041
    • Ahonen, T.1    Hadid, A.2    Pietikainen, M.3
  • 41
    • 84884220791 scopus 로고    scopus 로고
    • Noise-resistant local binary pattern with an embedded error-correction mechanism
    • Ren, J.; Jiang, X.; Yuan, J. Noise-resistant local binary pattern with an embedded error-correction mechanism. IEEE Trans. Image Process. 2013, 22, 4049-4060.
    • (2013) IEEE Trans. Image Process , vol.22 , pp. 4049-4060
    • Ren, J.1    Jiang, X.2    Yuan, J.3
  • 42
    • 84950121686 scopus 로고    scopus 로고
    • (accessed on 17 June 2015)
    • The l1_ls Package. Available online: https://stanford.edu/~boyd/l1_ls/(accessed on 17 June 2015).
  • 43
    • 55649124564 scopus 로고    scopus 로고
    • Similarity-based unsupervised band selection for hyperspectral image analysis
    • Du, Q.; Yang, H. Similarity-based unsupervised band selection for hyperspectral image analysis. IEEE Geosci. Remote Sens. Lett. 2008, 5, 564-568.
    • (2008) IEEE Geosci. Remote Sens. Lett , vol.5 , pp. 564-568
    • Du, Q.1    Yang, H.2
  • 44
    • 80052333825 scopus 로고    scopus 로고
    • Unsupervised hyperspectral band selection using graphics processing units
    • Yang, H.; Du, Q.; Chen, G. Unsupervised hyperspectral band selection using graphics processing units. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2011, 4, 660-668.
    • (2011) IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens , vol.4 , pp. 660-668
    • Yang, H.1    Du, Q.2    Chen, G.3
  • 45
    • 84950132089 scopus 로고    scopus 로고
    • (accessed on 17 June 2015)
    • Hyprespectral Remote Sensing Scenes. Available online: http://www.ehu.eus/ccwintco/index.php?title=Hyprespectral_Remote_Sensing_Scenes (accessed on 17 June 2015).
  • 47
    • 84912029121 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine
    • Chen, C.; Li, W.; Su, H.; Liu, K. Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine. Remote Sens. 2014, 6, 5795-5814.
    • (2014) Remote Sens , vol.6 , pp. 5795-5814
    • Chen, C.1    Li, W.2    Su, H.3    Liu, K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.