메뉴 건너뛰기




Volumn 217, Issue , 2012, Pages 39-55

Fusion of supervised and unsupervised learning for improved classification of hyperspectral images

Author keywords

Fuzzy c means; Hyperspectral images; Markov Fisher Selector; Markov Random Field; Support vector machine; Voting rules

Indexed keywords

FUZZY C MEAN; HYPER-SPECTRAL IMAGES; MARKOV FISHER SELECTOR; MARKOV RANDOM FIELDS; VOTING RULES;

EID: 84865577207     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2012.06.031     Document Type: Article
Times cited : (80)

References (50)
  • 2
    • 78650860354 scopus 로고    scopus 로고
    • Hierarchical hybrid decision tree fusion of multiple hyperspectral data processing chains
    • K. L Bakos, and P. Gamba Hierarchical hybrid decision tree fusion of multiple hyperspectral data processing chains IEEE Trans. Geosci. Remote Sens. 49 2011 388 394
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , pp. 388-394
    • Bakos, K.L.1    Gamba, P.2
  • 3
    • 33750798496 scopus 로고    scopus 로고
    • Toward an optimal SVM classification system for hyperspectral remote sensing images
    • Y. Bazi, and F. Melgani Toward an optimal SVM classification system for hyperspectral remote sensing images IEEE Trans. Geosci. Remote Sens. 44 2006 3374 3385
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , pp. 3374-3385
    • Bazi, Y.1    Melgani, F.2
  • 4
    • 77449115217 scopus 로고    scopus 로고
    • A genetic expectation maximization method for unsupervised change detection in multitemporal SAR imagery
    • Y. Bazi, F. Melgani, L. Bruzzone, and G. Vernazza A genetic expectation maximization method for unsupervised change detection in multitemporal SAR imagery Int. J. Remote Sens. 30 2009 6591 6610
    • (2009) Int. J. Remote Sens. , vol.30 , pp. 6591-6610
    • Bazi, Y.1    Melgani, F.2    Bruzzone, L.3    Vernazza, G.4
  • 5
    • 0037560727 scopus 로고    scopus 로고
    • Multisource remote sensing data classification based on consensus and pruning
    • J.A. Benediktsson, and J.R. Sveinsson Multisource remote sensing data classification based on consensus and pruning IEEE Trans. Geosci. Remote Sens. 41 2003 932 936
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , pp. 932-936
    • Benediktsson, J.A.1    Sveinsson, J.R.2
  • 7
    • 77958020335 scopus 로고    scopus 로고
    • Improved of classification for hyperspectral images based on tensor modeling
    • S. Bourennane, C. Fossati, and A. Caill Improved of classification for hyperspectral images based on tensor modeling IEEE Geosci. Remote Sens. Lett. 7 2010 801 805
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , pp. 801-805
    • Bourennane, S.1    Fossati, C.2    Caill, A.3
  • 8
    • 12844286965 scopus 로고    scopus 로고
    • Robust multiple estimator systems for the analysis of biophysical parameters from remotely sensed data
    • L. Bruzzone, and F. Melgani Robust multiple estimator systems for the analysis of biophysical parameters from remotely sensed data IEEE Trans. Geosci. Remote Sens. 46 2005 159 174
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.46 , pp. 159-174
    • Bruzzone, L.1    Melgani, F.2
  • 10
    • 79955444979 scopus 로고    scopus 로고
    • The Fisher-Markov selector: Fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data
    • Q. Cheng, H. Zhou, and J. Cheng The Fisher-Markov selector: fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data IEEE Trans. Pattern Anal. Mach. Intell. 33 2011 1217 1233
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , pp. 1217-1233
    • Cheng, Q.1    Zhou, H.2    Cheng, J.3
  • 11
    • 20444440880 scopus 로고
    • Random field models in image analysis
    • R.C. Dubes, and A.K. Jain Random field models in image analysis J. Appl. Statist. 16 1989 131 163
    • (1989) J. Appl. Statist. , vol.16 , pp. 131-163
    • Dubes, R.C.1    Jain, A.K.2
  • 13
    • 79957643015 scopus 로고    scopus 로고
    • Robust hyperspectral classification using relevance vector machine
    • S. Fereidoun, A. Mianji, and Y. Zhang Robust hyperspectral classification using relevance vector machine IEEE Trans. Geosci. Remote Sens. 49 2011 2100 2112
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , pp. 2100-2112
    • Fereidoun, S.1    Mianji, A.2    Zhang, Y.3
  • 14
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy
    • G.M. Foody Thematic map comparison: evaluating the statistical significance of differences in classification accuracy Photogram. Eng. Remote Sens. 70 2004 627 633
    • (2004) Photogram. Eng. Remote Sens. , vol.70 , pp. 627-633
    • Foody, G.M.1
  • 15
    • 67349269946 scopus 로고    scopus 로고
    • A Multiobjective genetic SVM approach for classification problems with limited training samples
    • N. Ghoggali, F. Melgani, and Y. Bazi A Multiobjective genetic SVM approach for classification problems with limited training samples IEEE Trans. Geosci. Remote Sens. 47 2009 1707 1718
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , pp. 1707-1718
    • Ghoggali, N.1    Melgani, F.2    Bazi, Y.3
  • 16
    • 78649892044 scopus 로고    scopus 로고
    • Fuzzy clustering algorithms for unsupervised change detection in remote sensing images
    • A. Ghosh, N.S. Mishra, and S. Ghosh Fuzzy clustering algorithms for unsupervised change detection in remote sensing images Inform. Sci. 181 2011 699 715
    • (2011) Inform. Sci. , vol.181 , pp. 699-715
    • Ghosh, A.1    Mishra, N.S.2    Ghosh, S.3
  • 17
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • C.W. Hsu, and C.J. Lin A comparison of methods for multiclass support vector machines IEEE Trans. Neural Netw. 13 2002 415 425
    • (2002) IEEE Trans. Neural Netw. , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 18
    • 79959705257 scopus 로고    scopus 로고
    • Spatially adaptive classification of land cover with remote sensing data
    • G. Jun, and J. Ghosh Spatially adaptive classification of land cover with remote sensing data IEEE Trans. Geosci. Remote Sens. 49 2011 2662 2673
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , pp. 2662-2673
    • Jun, G.1    Ghosh, J.2
  • 19
    • 78049303525 scopus 로고    scopus 로고
    • Decision-level fusion of spectral reflectance and derivative information for robust hyperspectral land cover classification
    • H.R. Kalluri, S. Prasad, and L.M. Bruce Decision-level fusion of spectral reflectance and derivative information for robust hyperspectral land cover classification IEEE Trans. Geosci. Remote Sens. 48 2010 4047 4058
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , pp. 4047-4058
    • Kalluri, H.R.1    Prasad, S.2    Bruce, L.M.3
  • 20
    • 84865610958 scopus 로고    scopus 로고
    • Models to determine parameterized order weighted averaging operators using optimization criteria
    • X. Liu Models to determine parameterized order weighted averaging operators using optimization criteria Inform. Sci. 190 2012 27 55
    • (2012) Inform. Sci. , vol.190 , pp. 27-55
    • Liu, X.1
  • 21
    • 80052087931 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields
    • J. Li, J.M. Bioucas-Dias, and A. Plaza Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields IEEE Trans. Geosci. Remote Sens. 50 2012 809 823
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , pp. 809-823
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 22
    • 80052099081 scopus 로고    scopus 로고
    • A spatial contextual support vector machine for remotely sensed image classification
    • C. Li, B. Kuo, C. Lin, and C. Huang A spatial contextual support vector machine for remotely sensed image classification IEEE Trans. Geosci. Remote Sens. 50 2012 784 799
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , pp. 784-799
    • Li, C.1    Kuo, B.2    Lin, C.3    Huang, C.4
  • 23
    • 78049264379 scopus 로고    scopus 로고
    • Local manifold learning-based κ -nearest-neighbor for hyperspectral image classification
    • L. Ma, M.M. Crawford, and J. Tian Local manifold learning-based κ -nearest-neighbor for hyperspectral image classification IEEE Trans. Geosci. Remote Sens. 48 2010 4099 4109
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , pp. 4099-4109
    • Ma, L.1    Crawford, M.M.2    Tian, J.3
  • 24
    • 77958106713 scopus 로고    scopus 로고
    • Simultaneous feature selection and classification using kernel-penalized support vector machines
    • S. Maldonado, R. Weber, and J. Basak Simultaneous feature selection and classification using kernel-penalized support vector machines Inform. Sci. 181 2011 115 128
    • (2011) Inform. Sci. , vol.181 , pp. 115-128
    • Maldonado, S.1    Weber, R.2    Basak, J.3
  • 25
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machine
    • F. Melgani, and L. Bruzzone Classification of hyperspectral remote sensing images with support vector machine IEEE Trans. Geosc. Remote Sens. 42 2004 1778 1790
    • (2004) IEEE Trans. Geosc. Remote Sens. , vol.42 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 26
    • 33750600320 scopus 로고    scopus 로고
    • Markovian fusion approach to robust unsupervised change detection in remotely sensed imagery
    • F. Melgani, and Y. Bazi Markovian fusion approach to robust unsupervised change detection in remotely sensed imagery IEEE Geosci. Remote Sens. Lett. 3 2006 457 461
    • (2006) IEEE Geosci. Remote Sens. Lett. , vol.3 , pp. 457-461
    • Melgani, F.1    Bazi, Y.2
  • 27
    • 0344014352 scopus 로고    scopus 로고
    • A Markov random field approach to spatio-temporal contextual image classification
    • F. Melgani, and S.B. Serpico A Markov random field approach to spatio-temporal contextual image classification IEEE Trans. Geosci. Remote Sens. 41 2003 2478 2487
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , pp. 2478-2487
    • Melgani, F.1    Serpico, S.B.2
  • 28
  • 29
    • 79955521136 scopus 로고    scopus 로고
    • Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis
    • M.D. Mura, A. Villa, J.A. Benediktsson, J. Chanussot, and L. Bruzzone Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis IEEE Geosci. Remote Sens. Lett. 8 2011 542 546
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , pp. 542-546
    • Mura, M.D.1    Villa, A.2    Benediktsson, J.A.3    Chanussot, J.4    Bruzzone, L.5
  • 30
    • 79952041232 scopus 로고    scopus 로고
    • Unsupervised classification of SAR images using Markov random fields and G I 0 models
    • M. Picco, and G. Palacio Unsupervised classification of SAR images using Markov random fields and G I 0 models IEEE Geosci. Remote Sens. Lett. 8 2011 350 353
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , pp. 350-353
    • Picco, M.1    Palacio, G.2
  • 31
    • 0003243224 scopus 로고    scopus 로고
    • Probabilities for support vector machines
    • J. Platt Probabilities for support vector machines A. Smola, P. Bartlett, B. Schölkopf, D. Schuurmans, Avances in Large Margin Classifiers 2000 MIT Press Cambridge, MA 61 74
    • (2000) Avances in Large Margin Classifiers , pp. 61-74
    • Platt, J.1
  • 32
    • 53349127642 scopus 로고    scopus 로고
    • Decision fusion with confidence based weight assignment for hyperspectral target recognition
    • S. Prasad, and L.M. Bruce Decision fusion with confidence based weight assignment for hyperspectral target recognition IEEE Trans. Geosci. Remote Sens. 46 2008 1448 1456
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , pp. 1448-1456
    • Prasad, S.1    Bruce, L.M.2
  • 33
    • 79952185736 scopus 로고    scopus 로고
    • A latex matrix method for hyperspectral image unmixing
    • G.X. Ritter, and G. Urcid a latex matrix method for hyperspectral image unmixing Inform. Sci. 181 2011 1787 1803
    • (2011) Inform. Sci. , vol.181 , pp. 1787-1803
    • Ritter, G.X.1    Urcid, G.2
  • 34
    • 33845678010 scopus 로고    scopus 로고
    • Weight parameter optimization by the Ho-Kasyap algorithm in MRF models for supervised image classification
    • S.B. Serpico, and G. Moser Weight parameter optimization by the Ho-Kasyap algorithm in MRF models for supervised image classification IEEE Trans. Geosci. Remote Sens. 44 2006 3695 3705
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , pp. 3695-3705
    • Serpico, S.B.1    Moser, G.2
  • 35
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • M. Stone Cross-validatory choice and assessment of statistical predictions J. Roy. Stat. Soc. B 36 1974 111 147
    • (1974) J. Roy. Stat. Soc. B , vol.36 , pp. 111-147
    • Stone, M.1
  • 36
    • 67949115614 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques
    • Y. Tarabalka, J.A. Benediktsson, and J. Chanussot Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques IEEE Trans. Geosci. Remote Sens. 47 2009 2973 2987
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3
  • 37
    • 77956694762 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers
    • Y. Tarabalka, J. Chanussot, and J.A. Benediktsson Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers IEEE Trans. Syst. Man Cyber. Part B: Cyber. 40 2010 1267 1279
    • (2010) IEEE Trans. Syst. Man Cyber. Part B: Cyber. , vol.40 , pp. 1267-1279
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 41
    • 77953871614 scopus 로고    scopus 로고
    • Sensitivity of support vector machines to random feature selection in classification of hyperspectral data
    • B. Waske, S. Linden, J.A. Benediktsson, A. Rabe, and P. Hostert Sensitivity of support vector machines to random feature selection in classification of hyperspectral data IEEE Trans. Geosci. Remote Sens. 48 2010 2880 2889
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , pp. 2880-2889
    • Waske, B.1    Linden, S.2    Benediktsson, J.A.3    Rabe, A.4    Hostert, P.5
  • 43
    • 76849088955 scopus 로고    scopus 로고
    • Power geometric operators and their use in group decision making
    • Z. Xu, and R.R. Yager Power geometric operators and their use in group decision making IEEE Trans. Fuzzy Syst. 18 2010 94 105
    • (2010) IEEE Trans. Fuzzy Syst. , vol.18 , pp. 94-105
    • Xu, Z.1    Yager, R.R.2
  • 44
    • 79955769802 scopus 로고    scopus 로고
    • On the fusion of imprecise uncertainty measures using belief structures
    • R.R. Yager On the fusion of imprecise uncertainty measures using belief structures Inform. Sci. 181 2011 3199 3209
    • (2011) Inform. Sci. , vol.181 , pp. 3199-3209
    • Yager, R.R.1
  • 46
    • 0023855863 scopus 로고
    • On ordered weighted averaging aggregation operators in multi-criteria decision making
    • R.R. Yager On ordered weighted averaging aggregation operators in multi-criteria decision making IEEE Trans. Syst. Man Cyber. 18 1988 183 190
    • (1988) IEEE Trans. Syst. Man Cyber. , vol.18 , pp. 183-190
    • Yager, R.R.1
  • 47
    • 3543051720 scopus 로고    scopus 로고
    • Generalized OWA aggregation operators
    • R.R. Yager Generalized OWA aggregation operators Fuzzy Optim. Decis. Making 3 2004 93 107
    • (2004) Fuzzy Optim. Decis. Making , vol.3 , pp. 93-107
    • Yager, R.R.1
  • 48
    • 70349768048 scopus 로고    scopus 로고
    • On generalized Bonferroni mean operators for multicriteria aggregation
    • R.R. Yager On generalized Bonferroni mean operators for multicriteria aggregation Int. J. Appro. Reason. 50 2009 1279 1286
    • (2009) Int. J. Appro. Reason. , vol.50 , pp. 1279-1286
    • Yager, R.R.1
  • 49
    • 80052087210 scopus 로고    scopus 로고
    • On combining multiple features for hyperspectral remote sensing image classification
    • L. Zhang, L. Zhang, D. Tao, and X. Huang On combining multiple features for hyperspectral remote sensing image classification IEEE Trans. Geosci. Remote Sens. 50 2012 879 893
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , pp. 879-893
    • Zhang, L.1    Zhang, L.2    Tao, D.3    Huang, X.4
  • 50
    • 79151483750 scopus 로고    scopus 로고
    • Modeling and classifying hyperspectral imagery by CRFs with sparse higher order potentials
    • P. Zhong, and R. Wang Modeling and classifying hyperspectral imagery by CRFs with sparse higher order potentials IEEE Trans. Geosci. Remote Sens. 49 2011 688 705
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , pp. 688-705
    • Zhong, P.1    Wang, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.