-
1
-
-
80052298245
-
Human nephron number: Implications for health and disease
-
Bertram JF, Douglas-Denton RN, Diouf B et al. Human nephron number: Implications for health and disease. Pediatr Nephrol 2011; 26:1529–1533.
-
(2011)
Pediatr Nephrol
, vol.26
, pp. 1529-1533
-
-
Bertram, J.F.1
Douglas-Denton, R.N.2
Diouf, B.3
-
4
-
-
84859814741
-
The glomerular basement membrane
-
Miner JH. The glomerular basement membrane. Exp Cell Res 2012;318:973–978.
-
(2012)
Exp Cell Res
, vol.318
, pp. 973-978
-
-
Miner, J.H.1
-
5
-
-
84898869053
-
KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD
-
Inker LA, Astor BC, Fox CH et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis 2014;63: 713–735.
-
(2014)
Am J Kidney Dis
, vol.63
, pp. 713-735
-
-
Inker, L.A.1
Astor, B.C.2
Fox, C.H.3
-
6
-
-
4344652866
-
Projecting the United States ESRD population: Issues regarding treatment of patients with ESRD
-
Szczech LA, Lazar IL. Projecting the United States ESRD population: Issues regarding treatment of patients with ESRD. Kidney Int Suppl 2004;90:S3–S7.
-
(2004)
Kidney Int Suppl
, vol.90
, pp. S3-S7
-
-
Szczech, L.A.1
Lazar, I.L.2
-
7
-
-
84940915975
-
UK Renal Registry 17th annual report: Chapter 4—Demography of the UK paediatric renal replacement therapy population in 2013
-
Pruthi R, Hamilton AJ, O’Brien C et al. UK Renal Registry 17th annual report: Chapter 4—Demography of the UK paediatric renal replacement therapy population in 2013. Nephron 2015;129(suppl 1):87–98.
-
(2015)
Nephron
, vol.129
, pp. 87-98
-
-
Pruthi, R.1
Hamilton, A.J.2
O’Brien, C.3
-
8
-
-
79959336759
-
Repair of injured proximal tubule does not involve specialized progenitors
-
Humphreys BD, Czerniak S, DiRocco DP et al. Repair of injured proximal tubule does not involve specialized progenitors. Proc Natl Acad Sci USA 2011;108:9226–9231.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 9226-9231
-
-
Humphreys, B.D.1
Czerniak, S.2
Dirocco, D.P.3
-
9
-
-
84864365555
-
Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury
-
Angelotti ML, Ronconi E, Ballerini L et al. Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. STEM CELLS 2012;30:1714–1725.
-
(2012)
STEM CELLS
, vol.30
, pp. 1714-1725
-
-
Angelotti, M.L.1
Ronconi, E.2
Ballerini, L.3
-
10
-
-
59949101799
-
Parietal epithelial cells regenerate podocytes
-
Poulsom R, Little MH. Parietal epithelial cells regenerate podocytes. J Am Soc Nephrol 2009;20:231–233.
-
(2009)
J am Soc Nephrol
, vol.20
, pp. 231-233
-
-
Poulsom, R.1
Little, M.H.2
-
11
-
-
42549151568
-
Increase of proliferating renal progenitor cells in acute tubular necrosis underlying delayed graft function
-
Loverre A, Capobianco C, Ditonno P et al. Increase of proliferating renal progenitor cells in acute tubular necrosis underlying delayed graft function. Transplantation 2008;85: 1112–1119.
-
(2008)
Transplantation
, vol.85
, pp. 1112-1119
-
-
Loverre, A.1
Capobianco, C.2
Ditonno, P.3
-
12
-
-
84883641029
-
PKH(High) cells within clonal human nephrospheres provide a purified adult renal stem cell population
-
Bombelli S, Zipeto MA, Torsello B et al. PKH(high) cells within clonal human nephrospheres provide a purified adult renal stem cell population. Stem Cell Res (Amst) 2013;11: 1163–1177.
-
(2013)
Stem Cell Res (Amst)
, vol.11
, pp. 1163-1177
-
-
Bombelli, S.1
Zipeto, M.A.2
Torsello, B.3
-
13
-
-
3242775471
-
Progenitor cells in the kidney: Biology and therapeutic perspectives
-
Rookmaaker MB, Verhaar MC, van Zonneveld AJ et al. Progenitor cells in the kidney: Biology and therapeutic perspectives. Kidney Int 2004;66:518–522.
-
(2004)
Kidney Int
, vol.66
, pp. 518-522
-
-
Rookmaaker, M.B.1
Verhaar, M.C.2
Van Zonneveld, A.J.3
-
14
-
-
0015444863
-
The timing and sequence of events in the development of the human urinary system during the embryonic period proper
-
O’Rahilly R, Muecke EC. The timing and sequence of events in the development of the human urinary system during the embryonic period proper. Z Anat Entwicklungsgesch 1972; 138:99–109.
-
(1972)
Z Anat Entwicklungsgesch
, vol.138
, pp. 99-109
-
-
O’Rahilly, R.1
Muecke, E.C.2
-
15
-
-
67650444682
-
Cell and molecular biology of kidney development
-
Reidy KJ, Rosenblum ND. Cell and molecular biology of kidney development. Semin Nephrol 2009;29:321–337.
-
(2009)
Semin Nephrol
, vol.29
, pp. 321-337
-
-
Reidy, K.J.1
Rosenblum, N.D.2
-
16
-
-
84883538346
-
The genetics and epigenetics of kidney development
-
Patel SR, Dressler GR. The genetics and epigenetics of kidney development. Semin Nephrol 2013;33:314–326.
-
(2013)
Semin Nephrol
, vol.33
, pp. 314-326
-
-
Patel, S.R.1
Dressler, G.R.2
-
17
-
-
77952946956
-
Patterning a complex organ: Branching morphogenesis and nephron segmentation in kidney development
-
Costantini F, Kopan R. Patterning a complex organ: Branching morphogenesis and nephron segmentation in kidney development. Dev Cell 2010;18:698–712.
-
(2010)
Dev Cell
, vol.18
, pp. 698-712
-
-
Costantini, F.K.R.1
-
18
-
-
84884299771
-
Direct transcriptional reprogramming of adult cells to embryonic nephron progenitors
-
Hendry CE, Vanslambrouck JM, Ineson J et al. Direct transcriptional reprogramming of adult cells to embryonic nephron progenitors. J Am Soc Nephrol 2013;24:1424–1434.
-
(2013)
J am Soc Nephrol
, vol.24
, pp. 1424-1434
-
-
Hendry, C.E.1
Vanslambrouck, J.M.2
Ineson, J.3
-
19
-
-
46049114472
-
Hoxd11 specifies a program of metanephric kidney development within the intermediate mesoderm of the mouse embryo
-
Mugford JW, Sipilä P, Kobayashi A et al. Hoxd11 specifies a program of metanephric kidney development within the intermediate mesoderm of the mouse embryo. Dev Biol 2008; 319:396–405.
-
(2008)
Dev Biol
, vol.319
, pp. 396-405
-
-
Mugford, J.W.1
Sipilä, P.2
Kobayashi, A.3
-
20
-
-
22944463010
-
Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system
-
Carroll TJ, Park JS, Hayashi S et al. Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell 2005;9:283–292.
-
(2005)
Dev Cell
, vol.9
, pp. 283-292
-
-
Carroll, T.J.1
Park, J.S.2
Hayashi, S.3
-
21
-
-
84921530247
-
The earliest metanephric arteriolar progenitors and their role in kidney vascular development
-
Sequeira-Lopez ML, Lin EE, Li M et al. The earliest metanephric arteriolar progenitors and their role in kidney vascular development. Am J Physiol Regul Integr Comp Physiol 2015;308: R138–R149.
-
(2015)
Am J Physiol Regul Integr Comp Physiol
, vol.308
, pp. R138-R149
-
-
Sequeira-Lopez, M.L.1
Lin, E.E.2
Li, M.3
-
22
-
-
38149090050
-
How do mesangial and endothelial cells form the glomerular tuft?
-
Vaughan MR, Quaggin SE. How do mesangial and endothelial cells form the glomerular tuft? J Am Soc Nephrol 2008;19:24–33.
-
(2008)
J am Soc Nephrol
, vol.19
, pp. 24-33
-
-
Vaughan, M.R.1
Quaggin, S.E.2
-
23
-
-
34250374471
-
Role of the VEGF—A signaling pathway in the glomerulus: Evidence for crosstalk between components of the glomerular filtration barrier
-
Eremina V, Baelde HJ, Quaggin SE. Role of the VEGF—A signaling pathway in the glomerulus: evidence for crosstalk between components of the glomerular filtration barrier. Nephron Physiol 2007;106: p32–37.
-
(2007)
Nephron Physiol
, vol.6
, pp. 32-37
-
-
Eremina, V.1
Baelde, H.J.2
Quaggin, S.E.3
-
24
-
-
33749524558
-
C-Kit delineates a distinct domain of progenitors in the developing kidney
-
Schmidt-Ott KM, Chen X, Paragas N et al. c-Kit delineates a distinct domain of progenitors in the developing kidney. Dev Biol 2006;299: 238–249.
-
(2006)
Dev Biol
, vol.299
, pp. 238-249
-
-
Schmidt-Ott, K.M.1
Chen, X.2
Paragas, N.3
-
25
-
-
0002968993
-
A molecular and genetic analysis of renal glomerular capillary development
-
Loughna S, Hardman P, Landels E et al. A molecular and genetic analysis of renal glomerular capillary development. Angiogenesis 1997; 1:84–101.
-
(1997)
Angiogenesis
, vol.1
, pp. 84-101
-
-
Loughna, S.1
Hardman, P.2
Landels, E.3
-
26
-
-
84896288676
-
Osr1 acts downstream of and interacts synergistically with Six2 to maintain nephron progenitor cells during kidney organogenesis
-
Xu J, Liu H, Park JS et al. Osr1 acts downstream of and interacts synergistically with Six2 to maintain nephron progenitor cells during kidney organogenesis. Development 2014;141: 1442–1452.
-
(2014)
Development
, vol.141
, pp. 1442-1452
-
-
Xu, J.1
Liu, H.2
Park, J.S.3
-
27
-
-
0345593711
-
Cloning and expression analysis of a mouse gene related to Drosophila odd-skipped
-
So PL, Danielian PS. Cloning and expression analysis of a mouse gene related to Drosophila odd-skipped. Mech Dev 1999;84: 157–160.
-
(1999)
Mech Dev
, vol.84
, pp. 157-160
-
-
So, P.L.1
Danielian, P.S.2
-
28
-
-
0034886923
-
Osr2, a new mouse gene related to Drosophila oddskipped, exhibits dynamic expression patterns during craniofacial, limb, and kidney development
-
Lan Y, Kingsley PD, Cho ES et al. Osr2, a new mouse gene related to Drosophila oddskipped, exhibits dynamic expression patterns during craniofacial, limb, and kidney development. Mech Dev 2001;107:175–179.
-
(2001)
Mech Dev
, vol.107
, pp. 175-179
-
-
Lan, Y.1
Kingsley, P.D.2
Cho, E.S.3
-
29
-
-
55749097944
-
Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney
-
Mugford JW, Sipilä P, McMahon JA et al. Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev Biol 2008; 324:88–98.
-
(2008)
Dev Biol
, vol.324
, pp. 88-98
-
-
Mugford, J.W.1
Sipilä, P.2
McMahon, J.A.3
-
30
-
-
80052304052
-
Patterning and early cell lineage decisions in the developing kidney: The role of Pax genes
-
Dressler GR. Patterning and early cell lineage decisions in the developing kidney: The role of Pax genes. Pediatr Nephrol 2011; 26:1387–1394.
-
(2011)
Pediatr Nephrol
, vol.26
, pp. 1387-1394
-
-
Dressler, G.R.1
-
31
-
-
33751161268
-
The cellular basis of kidney development
-
Dressler GR. The cellular basis of kidney development. Annu Rev Cell Dev Biol 2006;22: 509–529.
-
(2006)
Annu Rev Cell Dev Biol
, vol.22
, pp. 509-529
-
-
Dressler, G.R.1
-
32
-
-
0029665965
-
The PAX2 transcription factor is expressed in cystic and hyperproliferative dysplastic epithelia in human kidney malformations
-
Winyard PJ, Risdon RA, Sams VR et al. The PAX2 transcription factor is expressed in cystic and hyperproliferative dysplastic epithelia in human kidney malformations. J Clin Invest 1996;98:451–459.
-
(1996)
J Clin Invest
, vol.98
, pp. 451-459
-
-
Winyard, P.J.1
Risdon, R.A.2
Sams, V.R.3
-
33
-
-
77953481111
-
WT1and kidney progenitor cells. Organogenesis 2010;6:61–70. 34 Humphreys BD, Valerius MT, KobayashiA et al. Intrinsic epithelial cells repair the kidney after injury
-
Kreidberg JA. WT1and kidney progenitor cells. Organogenesis 2010;6:61–70. 34 Humphreys BD, Valerius MT, KobayashiA et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2008;2:284–291.
-
(2008)
Cell Stem Cell
, vol.2
, pp. 284-291
-
-
Kreidberg, J.A.1
-
34
-
-
48149095359
-
Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development
-
Kobayashi A, Valerius MT, Mugford JW et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 2008;3:169–181.
-
(2008)
Cell Stem Cell
, vol.3
, pp. 169-181
-
-
Kobayashi, A.1
Valerius, M.T.2
Mugford, J.W.3
-
35
-
-
37349080652
-
Fate mapping using Cited1-CreERT2 mice demonstrates that the cap mesenchyme contains self-renewing progenitor cells and gives rise exclusively to nephronic epithelia
-
Boyle S, Misfeldt A, Chandler KJ et al. Fate mapping using Cited1-CreERT2 mice demonstrates that the cap mesenchyme contains self-renewing progenitor cells and gives rise exclusively to nephronic epithelia. Dev Biol 2008; 313:234–245.
-
(2008)
Dev Biol
, vol.313
, pp. 234-245
-
-
Boyle, S.1
Misfeldt, A.2
Chandler, K.J.3
-
36
-
-
33750455113
-
Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney
-
Self M, Lagutin OV, Bowling B et al. Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J 2006;25:5214–5228.
-
(2006)
EMBO J
, vol.25
, pp. 5214-5228
-
-
Self, M.1
Lagutin, O.V.2
Bowling, B.3
-
37
-
-
34547236713
-
Cited1 and Cited2 are differentially expressed in the developing kidney but are not required for nephrogenesis
-
Boyle S, Shioda T, Perantoni AO et al. Cited1 and Cited2 are differentially expressed in the developing kidney but are not required for nephrogenesis. Dev Dyn 2007;236: 2321–2330.
-
(2007)
Dev Dyn
, vol.236
, pp. 2321-2330
-
-
Boyle, S.1
Shioda, T.2
Perantoni, A.O.3
-
38
-
-
77952160197
-
Compartmentalized organization: A common and required feature of stem cell niches?
-
Greco V, Guo S. Compartmentalized organization: A common and required feature of stem cell niches? Development 2010;137: 1586–1594.
-
(2010)
Development
, vol.137
, pp. 1586-1594
-
-
Greco, V.1
Guo, S.2
-
39
-
-
69049110785
-
Highresolution gene expression analysis of the developing mouse kidney defines novel cellular compartments within the nephron progenitor population
-
Mugford JW, Yu J, Kobayashi A et al. Highresolution gene expression analysis of the developing mouse kidney defines novel cellular compartments within the nephron progenitor population. Dev Biol 2009;333:312–323.
-
(2009)
Dev Biol
, vol.333
, pp. 312-323
-
-
Mugford, J.W.1
Yu, J.2
Kobayashi, A.3
-
40
-
-
84875246927
-
Role for compartmentalization in nephron progenitor differentiation
-
Brown AC, Muthukrishnan SD, Guay JA et al. Role for compartmentalization in nephron progenitor differentiation. Proc Natl Acad Sci USA 2013;110:4640–4645.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 4640-4645
-
-
Brown, A.C.1
Muthukrishnan, S.D.2
Guay, J.A.3
-
41
-
-
80755184859
-
FGF/EGF signaling regulates the renewal of early nephron progenitors during embryonic development
-
Brown AC, Adams D, de Caestecker M et al. FGF/EGF signaling regulates the renewal of early nephron progenitors during embryonic development. Development 2011;138: 5099–5112.
-
(2011)
Development
, vol.138
, pp. 5099-5112
-
-
Brown, A.C.1
Adams, D.2
De Caestecker, M.3
-
42
-
-
53049088426
-
WNT/betacatenin signaling in nephron progenitors and their epithelial progeny
-
Schmidt-Ott KM, Barasch J. WNT/betacatenin signaling in nephron progenitors and their epithelial progeny. Kidney Int 2008;74: 1004–1008.
-
(2008)
Kidney Int
, vol.74
, pp. 1004-1008
-
-
Schmidt-Ott, K.M.1
Barasch, J.2
-
43
-
-
0029075612
-
Basic fibroblast growth factor can mediate the early inductive events in renal development
-
Perantoni AO, Dove LF, Karavanova I. Basic fibroblast growth factor can mediate the early inductive events in renal development. Proc Natl Acad Sci USA 1995;92:4696–4700.
-
(1995)
Proc Natl Acad Sci USA
, vol.92
, pp. 4696-4700
-
-
Perantoni, A.O.1
Dove, L.F.2
Karavanova, I.3
-
45
-
-
35349007958
-
The FGF families in humans, mice, and zebrafish: Their evolutional processes and roles in development, metabolism, and disease
-
Itoh N. The FGF families in humans, mice, and zebrafish: Their evolutional processes and roles in development, metabolism, and disease. Biol Pharm Bull 2007;30:1819–1825.
-
(2007)
Biol Pharm Bull
, vol.30
, pp. 1819-1825
-
-
Itoh, N.1
-
46
-
-
33644990455
-
Role of fibroblast growth factor receptors 1 and 2 in the metanephric mesenchyme
-
Poladia DP, Kish K, Kutay B et al. Role of fibroblast growth factor receptors 1 and 2 in the metanephric mesenchyme. Dev Biol 2006; 291:325–339.
-
(2006)
Dev Biol
, vol.291
, pp. 325-339
-
-
Poladia, D.P.1
Kish, K.2
Kutay, B.3
-
47
-
-
78650365497
-
Fgfr1 and the IIIc isoform of Fgfr2 play critical roles in the metanephric mesenchyme mediating early inductive events in kidney development
-
Sims-Lucas S, Cusack B, Baust J et al. Fgfr1 and the IIIc isoform of Fgfr2 play critical roles in the metanephric mesenchyme mediating early inductive events in kidney development. Dev Dyn 2011;240:240–249.
-
(2011)
Dev Dyn
, vol.240
, pp. 240-249
-
-
Sims-Lucas, S.1
Cusack, B.2
Baust, J.3
-
48
-
-
0025976838
-
Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor
-
Yayon A, Klagsbrun M, Esko JD et al. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 1991;64: 841–848.
-
(1991)
Cell
, vol.64
, pp. 841-848
-
-
Yayon, A.1
Klagsbrun, M.2
Esko, J.D.3
-
49
-
-
0033564201
-
Interaction between FGF and BMP signaling pathways regulates development of metanephric mesenchyme
-
Dudley AT, Godin RE, Robertson EJ. Interaction between FGF and BMP signaling pathways regulates development of metanephric mesenchyme. Genes Dev 1999;13:1601–1613.
-
(1999)
Genes Dev
, vol.13
, pp. 1601-1613
-
-
Dudley, A.T.1
Godin, R.E.2
Robertson, E.J.3
-
50
-
-
0030694584
-
Ureteric bud cells secrete multiple factors, including bFGF, which rescue renal progenitors from apoptosis
-
Barasch J, Qiao J, McWilliams G et al. Ureteric bud cells secrete multiple factors, including bFGF, which rescue renal progenitors from apoptosis. Am J Physiol 1997;273:F757–F767.
-
(1997)
Am J Physiol
, vol.273
, pp. F757-F767
-
-
Barasch, J.1
Qiao, J.2
McWilliams, G.3
-
51
-
-
0032510806
-
Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2
-
Ortega S, Ittmann M, Tsang SH et al. Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proc Natl Acad Sci USA 1998;95:5672–5677.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, pp. 5672-5677
-
-
Ortega, S.1
Ittmann, M.2
Tsang, S.H.3
-
52
-
-
0032479976
-
Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice
-
Dono R, Texido G, Dussel R et al. Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice. EMBO J 1998;17:4213–4225.
-
(1998)
EMBO J
, vol.17
, pp. 4213-4225
-
-
Dono, R.1
Texido, G.2
Dussel, R.3
-
53
-
-
84862146459
-
FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man
-
Barak H, Huh SH, Chen S et al. FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man. Dev Cell 2012;22: 1191–1207.
-
(2012)
Dev Cell
, vol.22
, pp. 1191-1207
-
-
Barak, H.1
Huh, S.H.2
Chen, S.3
-
54
-
-
26244458398
-
FGF8 is required for cell survival at distinct stages of nephrogenesis and for regulation of gene expression in nascent nephrons
-
Grieshammer U, Cebrián C, Ilagan R et al. FGF8 is required for cell survival at distinct stages of nephrogenesis and for regulation of gene expression in nascent nephrons. Development 2005;132:3847–3857.
-
(2005)
Development
, vol.132
, pp. 3847-3857
-
-
Grieshammer, U.1
Cebrián, C.2
Ilagan, R.3
-
55
-
-
26244433712
-
Inactivation of FGF8 in early mesoderm reveals an essential role in kidney development
-
Perantoni AO, Timofeeva O, Naillat F et al. Inactivation of FGF8 in early mesoderm reveals an essential role in kidney development. Development 2005;132:3859–3871.
-
(2005)
Development
, vol.132
, pp. 3859-3871
-
-
Perantoni, A.O.1
Timofeeva, O.2
Naillat, F.3
-
56
-
-
80052289843
-
Role of fibroblast growth factor receptor signaling in kidney development
-
Bates CM. Role of fibroblast growth factor receptor signaling in kidney development. Pediatr Nephrol 2011;26:1373–1379.
-
(2011)
Pediatr Nephrol
, vol.26
, pp. 1373-1379
-
-
Bates, C.M.1
-
57
-
-
0038682002
-
Mechanisms of TGFbeta signaling from cell membrane to the nucleus
-
Shi Y, Massagué J. Mechanisms of TGFbeta signaling from cell membrane to the nucleus. Cell 2003;113:685–700.
-
(2003)
Cell
, vol.113
, pp. 685-700
-
-
Shi, Y.1
Massagué, J.2
-
58
-
-
0028832707
-
A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye
-
Dudley AT, Lyons KM, Robertson EJ. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 1995;9:2795–2807.
-
(1995)
Genes Dev
, vol.9
, pp. 2795-2807
-
-
Dudley, A.T.1
Lyons, K.M.2
Robertson, E.J.3
-
59
-
-
70350179631
-
BMP7 promotes proliferation of nephron progenitor cells via a JNK-dependent mechanism
-
Blank U, Brown A, Adams DC et al. BMP7 promotes proliferation of nephron progenitor cells via a JNK-dependent mechanism. Development 2009;136:3557–3566.
-
(2009)
Development
, vol.136
, pp. 3557-3566
-
-
Blank, U.1
Brown, A.2
Adams, D.C.3
-
60
-
-
0642343231
-
Ureteric bud controls multiple steps in the conversion of mesenchyme to epithelia
-
Mori K, Yang J, Barasch J. Ureteric bud controls multiple steps in the conversion of mesenchyme to epithelia. Semin Cell Dev Biol 2003;14:209–216.
-
(2003)
Semin Cell Dev Biol
, vol.14
, pp. 209-216
-
-
Mori, K.1
Yang, J.2
Barasch, J.3
-
61
-
-
84896694895
-
Coordination of kidney organogenesis by Wnt signaling
-
Halt K, Vainio S. Coordination of kidney organogenesis by Wnt signaling. Pediatr Nephrol 2014;29:737–744.
-
(2014)
Pediatr Nephrol
, vol.29
, pp. 737-744
-
-
Halt, K.1
Vainio, S.2
-
62
-
-
0032708307
-
Mesenchymal to epithelial conversion in rat metanephros is induced by LIF
-
Barasch J, Yang J, Ware CB et al. Mesenchymal to epithelial conversion in rat metanephros is induced by LIF. Cell 1999;99:377–386.
-
(1999)
Cell
, vol.99
, pp. 377-386
-
-
Barasch, J.1
Yang, J.2
Ware, C.B.3
-
63
-
-
0035028136
-
TGFbeta 2, LIF and FGF2 cooperate to induce nephrogenesis
-
Plisov SY, Yoshino K, Dove LF et al.TGFbeta 2, LIF and FGF2 cooperate to induce nephrogenesis. Development 2001;128:1045–1057.
-
(2001)
Development
, vol.128
, pp. 1045-1057
-
-
Plisov, S.Y.1
Yoshino, K.2
Dove, L.F.3
-
64
-
-
0028589430
-
Induction of kidney epithelial morphogenesis by cells expressing Wnt-1
-
Herzlinger D, Qiao J, Cohen D et al. Induction of kidney epithelial morphogenesis by cells expressing Wnt-1. Dev Biol 1994;166:815–818.
-
(1994)
Dev Biol
, vol.166
, pp. 815-818
-
-
Herzlinger, D.1
Qiao, J.2
Cohen, D.3
-
65
-
-
0028588919
-
Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4
-
Stark K, Vainio S, Vassileva G et al. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 1994;372:679–683.
-
(1994)
Nature
, vol.372
, pp. 679-683
-
-
Stark, K.1
Vainio, S.2
Vassileva, G.3
-
66
-
-
38749129178
-
SERKAL syndrome: An autosomalrecessive disorder caused by a loss-of-function mutation in WNT4
-
Mandel H, Shemer R, Borochowitz ZU et al. SERKAL syndrome: An autosomalrecessive disorder caused by a loss-of-function mutation in WNT4. Am J Hum Genet 2008;82: 39–47.
-
(2008)
Am J Hum Genet
, vol.82
, pp. 39-47
-
-
Mandel, H.1
Shemer, R.2
Borochowitz, Z.U.3
-
67
-
-
4143139955
-
A WNT4 mutation associated with Müllerianduct regression and virilization in a 46,XXwoman
-
Biason-Lauber A, Konrad D, Navratil F et al. A WNT4 mutation associated with Müllerianduct regression and virilization in a 46,XXwoman. N Engl J Med 2004;351:792–798.
-
(2004)
N Engl J Med
, vol.351
, pp. 792-798
-
-
Biason-Lauber, A.1
Konrad, D.2
Navratil, F.3
-
68
-
-
79955155333
-
Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development
-
Karner CM, Das A, Ma Z et al. Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development.Development 2011;138:1247–1257.
-
(2011)
.Development
, vol.138
, pp. 1247-1257
-
-
Karner, C.M.1
Das, A.2
Ma, Z.3
-
69
-
-
84866013368
-
Six2 and Wnt regulate self-renewal and commitment of nephron progenitors through shared gene regulatory networks
-
Park JS, Ma W, O’Brien LL et al. Six2 and Wnt regulate self-renewal and commitment of nephron progenitors through shared gene regulatory networks. Dev Cell 2012;23:637–651.
-
(2012)
Dev Cell
, vol.23
, pp. 637-651
-
-
Park, J.S.1
Ma, W.2
O’Brien, L.L.3
-
70
-
-
34447527647
-
Wnt/beta-catenin signaling regulates nephron induction during mouse kidney development
-
Park JS, Valerius MT, McMahon AP. Wnt/beta-catenin signaling regulates nephron induction during mouse kidney development. Development 2007;134:2533–2539.
-
(2007)
Development
, vol.134
, pp. 2533-2539
-
-
Park, J.S.1
Valerius, M.T.2
McMahon, A.P.3
-
71
-
-
0030480423
-
Conditioned medium from a rat ureteric bud cell line in combination with bFGF induces complete differentiation of isolated metanephric mesenchyme
-
Karavanova ID, Dove LF, Resau JH et al. Conditioned medium from a rat ureteric bud cell line in combination with bFGF induces complete differentiation of isolated metanephric mesenchyme.Development 1996;122:4159–4167.
-
(1996)
Development
, vol.122
, pp. 4159-4167
-
-
Karavanova, I.D.1
Dove, L.F.2
Resau, J.H.3
-
72
-
-
0037371640
-
OFD1, the gene mutated in oral-facial-digital syndrome type 1, is expressed in the metanephros and in human embryonic renal mesenchymal cells
-
Romio L, Wright V, Price K et al. OFD1, the gene mutated in oral-facial-digital syndrome type 1, is expressed in the metanephros and in human embryonic renal mesenchymal cells. J Am Soc Nephrol 2003;14:680–689.
-
(2003)
J am Soc Nephrol
, vol.14
, pp. 680-689
-
-
Romio, L.1
Wright, V.2
Price, K.3
-
73
-
-
33947712789
-
Microarray interrogation of human metanephric mesenchymal cells highlights potentially important molecules in vivo
-
Price KL, Long DA, Jina N et al. Microarray interrogation of human metanephric mesenchymal cells highlights potentially important molecules in vivo. Physiol Genomics 2007;28: 193–202.
-
(2007)
Physiol Genomics
, vol.28
, pp. 193-202
-
-
Price, K.L.1
Long, D.A.2
Jina, N.3
-
74
-
-
0346875916
-
GSK-3-selective inhibitors derived from Tyrian purple indirubins
-
Meijer L, Skaltsounis AL, Magiatis P et al. GSK-3-selective inhibitors derived from Tyrian purple indirubins. Chem Biol 2003;10:1255–1266.
-
(2003)
Chem Biol
, vol.10
, pp. 1255-1266
-
-
Meijer, L.1
Skaltsounis, A.L.2
Magiatis, P.3
-
75
-
-
14044279905
-
Foxd1-dependent signals control cellularity in the renal capsule, a structure required for normal renal development
-
Levinson RS, Batourina E, Choi C et al. Foxd1-dependent signals control cellularity in the renal capsule, a structure required for normal renal development. Development 2005; 132:529–539.
-
(2005)
Development
, vol.132
, pp. 529-539
-
-
Levinson, R.S.1
Batourina, E.2
Choi, C.3
-
76
-
-
0029741093
-
Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of winged helix transcription factor BF-2
-
Hatini V, Huh SO, Herzlinger D et al. Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of winged helix transcription factor BF-2. Genes Dev 1996;10:1467–1478.
-
(1996)
Genes Dev
, vol.10
, pp. 1467-1478
-
-
Hatini, V.1
Huh, S.O.2
Herzlinger, D.3
-
77
-
-
84875973770
-
Yap- and Cdc42-dependent nephrogenesis and morphogenesis during mouse kidney development
-
Reginensi A, Scott RP, Gregorieff A et al. Yap- and Cdc42-dependent nephrogenesis and morphogenesis during mouse kidney development. PLoS Genet 2013;9:e1003380.
-
(2013)
Plos Genet
, vol.9
-
-
Reginensi, A.1
Scott, R.P.2
Gregorieff, A.3
-
78
-
-
84883741356
-
Stromal-epithelial crosstalk regulates kidney progenitor cell differentiation
-
Das A, Tanigawa S, Karner CM et al. Stromal-epithelial crosstalk regulates kidney progenitor cell differentiation. Nat Cell Biol 2013;15:1035–1044.
-
(2013)
Nat Cell Biol
, vol.15
, pp. 1035-1044
-
-
Das, A.1
Tanigawa, S.2
Karner, C.M.3
-
79
-
-
84886665688
-
Reactivation of NCAM1 defines a subpopulation of human adult kidney epithelial cells with clonogenic and stem/progenitor properties
-
Buzhor E, Omer D, Harari-Steinberg O et al. Reactivation of NCAM1 defines a subpopulation of human adult kidney epithelial cells with clonogenic and stem/progenitor properties. Am J Pathol 2013;183:1621–1633.
-
(2013)
Am J Pathol
, vol.183
, pp. 1621-1633
-
-
Buzhor, E.1
Omer, D.2
Harari-Steinberg, O.3
-
80
-
-
13244251415
-
Isolation of renal progenitor cells from adult human kidney
-
Bussolati B, Bruno S, Grange C et al. Isolation of renal progenitor cells from adult human kidney. Am J Pathol 2005;166:545–555.
-
(2005)
Am J Pathol
, vol.166
, pp. 545-555
-
-
Bussolati, B.1
Bruno, S.2
Grange, C.3
-
81
-
-
33748051419
-
Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys
-
Sagrinati C, Netti GS, Mazzinghi B et al. Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys. J Am Soc Nephrol 2006;17:2443–2456.
-
(2006)
J am Soc Nephrol
, vol.17
, pp. 2443-2456
-
-
Sagrinati, C.1
Netti, G.S.2
Mazzinghi, B.3
-
82
-
-
79951849286
-
Isolation and characterization of progenitorlike cells from human renal proximal tubules
-
Lindgren D, Bostr¨om AK, Nilsson K et al. Isolation and characterization of progenitorlike cells from human renal proximal tubules. Am J Pathol 2011;178:828–837.
-
(2011)
Am J Pathol
, vol.178
, pp. 828-837
-
-
Lindgren, D.1
-
83
-
-
83455198200
-
Hypoxia modulates the undifferentiatedphenotype of human renal inner medullary CD133+ progenitors through Oct4/miR-145 balance
-
Bussolati B, Moggio A, Collino F et al. Hypoxia modulates the undifferentiatedphenotype of human renal inner medullary CD133+ progenitors through Oct4/miR-145 balance. Am J Physiol Renal Physiol 2012;302:F116–F128.
-
(2012)
Am J Physiol Renal Physiol
, vol.302
, pp. F116-F128
-
-
Bussolati, B.1
Moggio, A.2
Collino, F.3
-
84
-
-
33750702156
-
Isolation and characterization of kidney-derived stem cells
-
Gupta S, Verfaillie C, Chmielewski D et al. Isolation and characterization of kidney-derived stem cells. J Am Soc Nephrol 2006;17:3028–3040.
-
(2006)
J am Soc Nephrol
, vol.17
, pp. 3028-3040
-
-
Gupta, S.1
Verfaillie, C.2
Chmielewski, D.3
-
85
-
-
84875037125
-
Proximal tubular cells contain a phenotypically distinct, scattered cell population involved in tubular regeneration
-
Smeets B, Boor P, Dijkman H et al. Proximal tubular cells contain a phenotypically distinct, scattered cell population involved in tubular regeneration. J Pathol 2013;229: 645–659.
-
(2013)
J Pathol
, vol.229
, pp. 645-659
-
-
Smeets, B.1
Boor, P.2
Dijkman, H.3
-
86
-
-
84893369728
-
Differentiated kidney epithelial cells repair injured proximal tubule
-
Kusaba T, Lalli M, Kramann R et al. Differentiated kidney epithelial cells repair injured proximal tubule. Proc Natl Acad Sci USA 2014; 111:1527–1532.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 1527-1532
-
-
Kusaba, T.1
Lalli, M.2
Kramann, R.3
-
87
-
-
0032491416
-
Embryonic stem cell lines derived from human blastocysts
-
Thomson JA, Itskovitz-Eldor J, Shapiro SS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145–1147.
-
(1998)
Science
, vol.282
, pp. 1145-1147
-
-
Thomson, J.A.1
Itskovitz-Eldor, J.2
Shapiro, S.S.3
-
88
-
-
36248966518
-
Induction of pluripotent stem cells from adult human fibroblasts by defined factors
-
Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131:861–872.
-
(2007)
Cell
, vol.131
, pp. 861-872
-
-
Takahashi, K.1
Tanabe, K.2
Ohnuki, M.3
-
89
-
-
41349090105
-
Generation of human induced pluripotent stem cells from dermal fibroblasts
-
Lowry WE, Richter L, Yachechko R et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci USA 2008;105:2883–2888.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 2883-2888
-
-
Lowry, W.E.1
Richter, L.2
Yachechko, R.3
-
90
-
-
33644849158
-
Nephrogenic factors promote differentiation of mouse embryonic stem cells into renal epithelia
-
Kim D, Dressler GR. Nephrogenic factors promote differentiation of mouse embryonic stem cells into renal epithelia. JAmSoc Nephrol 2005;16:3527–3534.
-
(2005)
Jamsoc Nephrol
, vol.16
, pp. 3527-3534
-
-
Kim, D.1
Dressler, G.R.2
-
91
-
-
0036232858
-
In vitro induction of the pronephric duct in Xenopus explants
-
Osafune K, Nishinakamura R, Komazaki S et al. In vitro induction of the pronephric duct in Xenopus explants. Dev Growth Differ 2002;44: 161–167.
-
(2002)
Dev Growth Differ
, vol.44
, pp. 161-167
-
-
Osafune, K.1
Nishinakamura, R.2
Komazaki, S.3
-
92
-
-
34249867136
-
Mouse embryonic stem cell-derived embryoid bodies generate progenitors that integrate long term into renal proximal tubules in vivo
-
Vigneau C, Polgar K, Striker G et al. Mouse embryonic stem cell-derived embryoid bodies generate progenitors that integrate long term into renal proximal tubules in vivo. J Am Soc Nephrol 2007;18:1709–1720.
-
(2007)
J am Soc Nephrol
, vol.18
, pp. 1709-1720
-
-
Vigneau, C.1
Polgar, K.2
Striker, G.3
-
93
-
-
34249087679
-
In vitro differentiation of murine embryonic stem cells toward a renal lineage
-
Bruce SJ, Rea RW, Steptoe AL et al. In vitro differentiation of murine embryonic stem cells toward a renal lineage. Differentiation 2007;75:337–349.
-
(2007)
Differentiation
, vol.75
, pp. 337-349
-
-
Bruce, S.J.1
Rea, R.W.2
Steptoe, A.L.3
-
94
-
-
84867027380
-
The directed differentiation of human iPS cells into kidney podocytes
-
Song B, Smink AM, Jones CV et al. The directed differentiation of human iPS cells into kidney podocytes. PLoS One 2012;7:e46453.
-
(2012)
Plos One
, vol.7
-
-
Song, B.1
Smink, A.M.2
Jones, C.V.3
-
95
-
-
84929129197
-
Nephron reconstitution from pluripotent stem cells
-
Taguchi A, Nishinakamura R. Nephron reconstitution from pluripotent stem cells. Kidney Int 2015;87:894–900.
-
(2015)
Kidney Int
, vol.87
, pp. 894-900
-
-
Taguchi, A.1
Nishinakamura, R.2
-
96
-
-
84891298711
-
Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney
-
Takasato M, Er PX, Becroft M et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol 2014; 16:118–126.
-
(2014)
Nat Cell Biol
, vol.16
, pp. 118-126
-
-
Takasato, M.1
Er, P.X.2
Becroft, M.3
-
97
-
-
77955449906
-
Epigenetic memory in induced pluripotent stem cells
-
Kim K, Doi A, Wen B et al. Epigenetic memory in induced pluripotent stem cells. Nature 2010;467:285–290.
-
(2010)
Nature
, vol.467
, pp. 285-290
-
-
Kim, K.1
Doi, A.2
Wen, B.3
-
98
-
-
84863799070
-
Generation of induced pluripotent stem cells from human renal proximal tubular cells with only two transcription factors, OCT4 and SOX2
-
Montserrat N, Ramírez-Bajo MJ, Xia Y et al. Generation of induced pluripotent stem cells from human renal proximal tubular cells with only two transcription factors, OCT4 and SOX2. J Biol Chem 2012;287:24131–24138.
-
(2012)
J Biol Chem
, vol.287
, pp. 24131-24138
-
-
Montserrat, N.1
Ramírez-Bajo, M.J.2
Xia, Y.3
-
99
-
-
84870604270
-
Generation of human induced pluripotent stem cells from urine samples
-
Zhou T, Benda C, Dunzinger S et al. Generation of human induced pluripotent stem cells from urine samples. Nat Protoc 2012;7: 2080–2089.
-
(2012)
Nat Protoc
, vol.7
, pp. 2080-2089
-
-
Zhou, T.1
Benda, C.2
Dunzinger, S.3
-
100
-
-
84870762163
-
An improved method of renal tissue engineering, by combining renal dissociation and reaggregation with a low-volume culture technique, results in development of engineered kidneys complete with loops of Henle. Nephron
-
Chang CH, Davies JA. An improved method of renal tissue engineering, by combining renal dissociation and reaggregation with a low-volume culture technique, results in development of engineered kidneys complete with loops of Henle. Nephron, Exp Nephrol 2012; 121:e79–e85.
-
(2012)
Exp Nephrol
, vol.121
, pp. e79-e85
-
-
Chang, C.H.1
-
101
-
-
84868622745
-
In vivo maturation of functional renal organoids formed from embryonic cell suspensions
-
Xinaris C, Benedetti V, Rizzo P et al. In vivo maturation of functional renal organoids formed from embryonic cell suspensions. J Am Soc Nephrol 2012;23:1857–1868.
-
(2012)
J am Soc Nephrol
, vol.23
, pp. 1857-1868
-
-
Xinaris, C.1
Benedetti, V.2
Rizzo, P.3
-
102
-
-
33744468295
-
Transient gene expression by nonintegrating lentiviral vectors
-
Nightingale SJ, Hollis RP, Pepper KA et al. Transient gene expression by nonintegrating lentiviral vectors. Mol Ther 2006;13: 1121–1132.
-
(2006)
Mol Ther
, vol.13
, pp. 1121-1132
-
-
Nightingale, S.J.1
Hollis, R.P.2
Pepper, K.A.3
-
103
-
-
55849115999
-
Induced pluripotent stem cells generated without viral integration
-
Stadtfeld M, Nagaya M, Utikal J et al. Induced pluripotent stem cells generated without viral integration. Science 2008;322: 945–949.
-
(2008)
Science
, vol.322
, pp. 945-949
-
-
Stadtfeld, M.1
Nagaya, M.2
Utikal, J.3
-
104
-
-
84877624830
-
Regeneration and experimental orthotopic transplantation of a bioengineered kidney
-
Song JJ, Guyette JP, Gilpin SE et al. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med 2013;19:646–651.
-
(2013)
Nat Med
, vol.19
, pp. 646-651
-
-
Song, J.J.1
Guyette, J.P.2
Gilpin, S.E.3
|