메뉴 건너뛰기




Volumn 13, Issue SUPPL1, 2013, Pages

Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL INTELLIGENCE; AUTOMATED PATTERN RECOGNITION; CLINICAL PATHWAY; CLUSTER ANALYSIS; COMPARATIVE STUDY; ELECTRONIC MEDICAL RECORD; HOSPITAL DISCHARGE; HUMAN; NATURAL LANGUAGE PROCESSING; PROBABILITY; REPRODUCIBILITY; SEMANTICS; STATISTICS; UNITED STATES;

EID: 84875945878     PISSN: None     EISSN: 14726947     Source Type: Journal    
DOI: 10.1186/1472-6947-13-S1-S1     Document Type: Article
Times cited : (112)

References (36)
  • 1
    • 0028403632 scopus 로고
    • A general natural-language text processor for clinical radiology
    • 10.1136/jamia.1994.95236146 7719797
    • A general natural-language text processor for clinical radiology. Friedman C, Alderson PO, Austin JH, Cimino JJ, Johnson SB, J Am Med Inform Assoc 1994 1 161 174 10.1136/jamia.1994.95236146 7719797
    • (1994) J Am Med Inform Assoc , vol.1 , pp. 161-174
    • Friedman, C.1    Alderson, P.O.2    Austin, J.H.3    Cimino, J.J.4    Johnson, S.B.5
  • 2
    • 50649122567 scopus 로고    scopus 로고
    • Extracting information from textual documents in the electronic health record: A review of recent research
    • 18660887
    • Extracting information from textual documents in the electronic health record: a review of recent research. Meystre SM, Savova GK, Kipper-Schuler KC, Hurdle JF, Yearb Med Inform 2008 128 144 18660887
    • (2008) Yearb Med Inform , pp. 128-144
    • Meystre, S.M.1    Savova, G.K.2    Kipper-Schuler, K.C.3    Hurdle, J.F.4
  • 5
    • 77955287813 scopus 로고    scopus 로고
    • An overview of MetaMap: Historical perspective and recent advances
    • 20442139
    • An overview of MetaMap: historical perspective and recent advances. Aronson AR, Lang FM, J Am Med Inform Assoc 2010 17 229 236 20442139
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 229-236
    • Aronson, A.R.1    Lang, F.M.2
  • 6
    • 70349455468 scopus 로고    scopus 로고
    • Development and evaluation of a clinical note section header terminology
    • 18999303
    • Development and evaluation of a clinical note section header terminology. Denny JC, Miller RA, Johnson KB, Spickard A, AMIA Annu Symp Proc 2008 156 160 18999303
    • (2008) AMIA Annu Symp Proc , pp. 156-160
    • Denny, J.C.1    Miller, R.A.2    Johnson, K.B.3    Spickard, A.4
  • 7
    • 78149490620 scopus 로고    scopus 로고
    • Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): Architecture, component evaluation and applications
    • 10.1136/jamia.2009.001560 20819853
    • Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications. Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, Chute CG, J Am Med Inform Assoc 2010 17 507 513 10.1136/jamia.2009.001560 20819853
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 507-513
    • Savova, G.K.1    Masanz, J.J.2    Ogren, P.V.3    Zheng, J.4    Sohn, S.5    Kipper-Schuler, K.C.6    Chute, C.G.7
  • 8
    • 33748046130 scopus 로고    scopus 로고
    • Extracting principal diagnosis, co-morbidity and smoking status for asthma research: Evaluation of a natural language processing system
    • 10.1186/1472-6947-6-30 16872495
    • Extracting principal diagnosis, co-morbidity and smoking status for asthma research: evaluation of a natural language processing system. Zeng QT, Goryachev S, Weiss S, Sordo M, Murphy SN, Lazarus R, BMC Med Inform Decis Mak 2006 6 30 10.1186/1472-6947-6-30 16872495
    • (2006) BMC Med Inform Decis Mak , vol.6 , pp. 30
    • Zeng, Q.T.1    Goryachev, S.2    Weiss, S.3    Sordo, M.4    Murphy, S.N.5    Lazarus, R.6
  • 9
    • 78149480799 scopus 로고    scopus 로고
    • Extracting medication information from clinical text
    • 10.1136/jamia.2010.003947 20819854
    • Extracting medication information from clinical text. Uzuner O, Solti I, Cadag E, J Am Med Inform Assoc 2010 17 514 518 10.1136/jamia.2010.003947 20819854
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 514-518
    • Uzuner, O.1    Solti, I.2    Cadag, E.3
  • 10
    • 80053292637 scopus 로고    scopus 로고
    • 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text
    • 10.1136/amiajnl-2011-000203 21685143
    • 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. Uzuner O, South BR, Shen S, DuVall SL, J Am Med Inform Assoc 2011 18 552 556 10.1136/amiajnl-2011-000203 21685143
    • (2011) J Am Med Inform Assoc , vol.18 , pp. 552-556
    • Uzuner, O.1    South, B.R.2    Shen, S.3    Duvall, S.L.4
  • 11
    • 78149492053 scopus 로고    scopus 로고
    • Integrating existing natural language processing tools for medication extraction from discharge summaries
    • 10.1136/jamia.2010.003855 20819857
    • Integrating existing natural language processing tools for medication extraction from discharge summaries. Doan S, Bastarache L, Klimkowski S, Denny JC, Xu H, J Am Med Inform Assoc 2010 17 528 531 10.1136/jamia.2010.003855 20819857
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 528-531
    • Doan, S.1    Bastarache, L.2    Klimkowski, S.3    Denny, J.C.4    Xu, H.5
  • 12
    • 78149480800 scopus 로고    scopus 로고
    • Medication information extraction with linguistic pattern matching and semantic rules
    • 10.1136/jamia.2010.003657 20819858
    • Medication information extraction with linguistic pattern matching and semantic rules. Spasic I, Sarafraz F, Keane JA, Nenadic G, J Am Med Inform Assoc 2010 17 532 535 10.1136/jamia.2010.003657 20819858
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 532-535
    • Spasic, I.1    Sarafraz, F.2    Keane, J.A.3    Nenadic, G.4
  • 13
    • 78149487508 scopus 로고    scopus 로고
    • High accuracy information extraction of medication information from clinical notes: 2009 i2b2 medication extraction challenge
    • 10.1136/jamia.2010.003939 20819856
    • High accuracy information extraction of medication information from clinical notes: 2009 i2b2 medication extraction challenge. Patrick J, Li M, J Am Med Inform Assoc 2010 17 524 527 10.1136/jamia.2010.003939 20819856
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 524-527
    • Patrick, J.1    Li, M.2
  • 14
    • 78149482677 scopus 로고    scopus 로고
    • Lancet: A high precision medication event extraction system for clinical text
    • 10.1136/jamia.2010.004077 20819865
    • Lancet: a high precision medication event extraction system for clinical text. Li Z, Liu F, Antieau L, Cao Y, Yu H, J Am Med Inform Assoc 2010 17 563 567 10.1136/jamia.2010.004077 20819865
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 563-567
    • Li, Z.1    Liu, F.2    Antieau, L.3    Cao, Y.4    Yu, H.5
  • 15
    • 78149476739 scopus 로고    scopus 로고
    • Textractor: A hybrid system for medications and reason for their prescription extraction from clinical text documents
    • 10.1136/jamia.2010.004028 20819864
    • Textractor: a hybrid system for medications and reason for their prescription extraction from clinical text documents. Meystre SM, Thibault J, Shen S, Hurdle JF, South BR, J Am Med Inform Assoc 2010 17 559 562 10.1136/jamia.2010.004028 20819864
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 559-562
    • Meystre, S.M.1    Thibault, J.2    Shen, S.3    Hurdle, J.F.4    South, B.R.5
  • 16
    • 80053241946 scopus 로고    scopus 로고
    • Machine-learned solutions for three stages of clinical information extraction: The state of the art at i2b2 2010
    • 10.1136/amiajnl-2011-000150 21565856
    • Machine-learned solutions for three stages of clinical information extraction: the state of the art at i2b2 2010. de Bruijn B, Cherry C, Kiritchenko S, Martin J, Zhu X, J Am Med Inform Assoc 2011 18 557 562 10.1136/amiajnl-2011-000150 21565856
    • (2011) J Am Med Inform Assoc , vol.18 , pp. 557-562
    • De Bruijn, B.1    Cherry, C.2    Kiritchenko, S.3    Martin, J.4    Zhu, X.5
  • 17
    • 80053271549 scopus 로고    scopus 로고
    • A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries
    • 10.1136/amiajnl-2011-000163 21508414
    • A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. Jiang M, Chen Y, Liu M, Rosenbloom ST, Mani S, Denny JC, Xu H, J Am Med Inform Assoc 2011 18 601 606 10.1136/amiajnl-2011-000163 21508414
    • (2011) J Am Med Inform Assoc , vol.18 , pp. 601-606
    • Jiang, M.1    Chen, Y.2    Liu, M.3    Rosenbloom, S.T.4    Mani, S.5    Denny, J.C.6    Xu, H.7
  • 18
    • 80053268343 scopus 로고    scopus 로고
    • Using machine learning for concept extraction on clinical documents from multiple data sources
    • 10.1136/amiajnl-2011-000155 21709161
    • Using machine learning for concept extraction on clinical documents from multiple data sources. Torii M, Wagholikar K, Liu H, J Am Med Inform Assoc 2011 18 580 587 10.1136/amiajnl-2011-000155 21709161
    • (2011) J Am Med Inform Assoc , vol.18 , pp. 580-587
    • Torii, M.1    Wagholikar, K.2    Liu, H.3
  • 19
    • 84867640802 scopus 로고    scopus 로고
    • Conditional random fields and support vector machines for disorder named entity recognition in clinical texts
    • Columbus, Ohio: Association for Computational Linguistics 94-95
    • Conditional random fields and support vector machines for disorder named entity recognition in clinical texts. Li D, Kipper-Schuler K, Savova G, Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing Columbus, Ohio: Association for Computational Linguistics 2008 94 95 pp. 94-95
    • (2008) Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing , pp. 94-95
    • Li, D.1    Kipper-Schuler, K.2    Savova, G.3
  • 23
    • 24944537843 scopus 로고    scopus 로고
    • Large Margin Methods for Structured and Interdependent Output Variables
    • Large Margin Methods for Structured and Interdependent Output Variables. Tsochantaridis I, Joachims T, Hofmann T, Altun Y, J Mach Learn Res 2005 6 1453 1484
    • (2005) J Mach Learn Res , vol.6 , pp. 1453-1484
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 25
    • 85117730830 scopus 로고    scopus 로고
    • Name Tagging with Word Clusters and Discriminative Training
    • 337-342
    • Name Tagging with Word Clusters and Discriminative Training. Miller SaG, Jethran, Zamanian, Alex, HLT-NAACL 2004 337 342 pp. 337-342
    • (2004) HLT-NAACL , pp. 337-342
    • Miller, S.1    Jethran2    Zamanian3    Alex4
  • 27
    • 84856376731 scopus 로고    scopus 로고
    • Enhancing clinical concept extraction with distributional semantics
    • 10.1016/j.jbi.2011.10.007 22085698
    • Enhancing clinical concept extraction with distributional semantics. Jonnalagadda S, Cohen T, Wu S, Gonzalez G, Journal of Biomedical Informatics 2012 45 129 140 10.1016/j.jbi.2011.10.007 22085698
    • (2012) Journal of Biomedical Informatics , vol.45 , pp. 129-140
    • Jonnalagadda, S.1    Cohen, T.2    Wu, S.3    Gonzalez, G.4
  • 29
    • 69549111057 scopus 로고    scopus 로고
    • Cutting-plane training of structural SVMs
    • 10.1007/s10994-009-5108-8
    • Cutting-plane training of structural SVMs. Joachims T, Finley T, Yu C-NJ, Mach Learn 2009 77 27 59 10.1007/s10994-009-5108-8
    • (2009) Mach Learn , vol.77 , pp. 27-59
    • Joachims, T.1    Finley, T.2    Yu, C.-N.3
  • 30
    • 73949154960 scopus 로고    scopus 로고
    • Biological entity recognition with conditional random fields
    • 18999272
    • Biological entity recognition with conditional random fields. He Y, Kayaalp M, AMIA Annu Symp Proc 2008 293 297 18999272
    • (2008) AMIA Annu Symp Proc , pp. 293-297
    • He, Y.1    Kayaalp, M.2
  • 31
    • 20744451122 scopus 로고    scopus 로고
    • POSBIOTM-NER: A trainable biomedical named-entity recognition system
    • 10.1093/bioinformatics/bti414 15814561
    • POSBIOTM-NER: a trainable biomedical named-entity recognition system. Song Y, Kim E, Lee GG, Yi BK, Bioinformatics 2005 21 2794 2796 10.1093/bioinformatics/bti414 15814561
    • (2005) Bioinformatics , vol.21 , pp. 2794-2796
    • Song, Y.1    Kim, E.2    Lee, G.G.3    Yi, B.K.4
  • 35
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • Individual comparisons by ranking methods. Wilcoxon F, Biometrics Bulletin 1945 1 4
    • (1945) Biometrics Bulletin , vol.1 , pp. 4
    • Wilcoxon, F.1
  • 36
    • 85162328823 scopus 로고    scopus 로고
    • Multi-View Learning of Word Embeddings via CCA
    • Multi-View Learning of Word Embeddings via CCA. Dhillon PS, Foster D, Ungar L, NIPS'11 2011 199 207
    • (2011) NIPS'11 , pp. 199-207
    • Dhillon, P.S.1    Foster, D.2    Ungar, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.