메뉴 건너뛰기




Volumn 100, Issue 8, 2016, Pages 3477-3487

Cell surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate

Author keywords

Cell surface display; Consolidated bioprocessing (CBP); Fermentation; Hemicellulose; Membrane filtration; Xylitol; Yeast

Indexed keywords

BIOCONVERSION; CELL MEMBRANES; CELLS; CYTOLOGY; ENZYMES; FERMENTATION; FILTRATION; MEMBRANE TECHNOLOGY; MICROFILTRATION; PHASE SEPARATION; SUGAR SUBSTITUTES; XYLOSE; YEAST;

EID: 84948982992     PISSN: 01757598     EISSN: 14320614     Source Type: Journal    
DOI: 10.1007/s00253-015-7179-8     Document Type: Article
Times cited : (51)

References (37)
  • 1
    • 84908272295 scopus 로고    scopus 로고
    • Biotechnological production of xylitol from lignocellulosic wastes: a review
    • Albuquerque TL, De da Silva IJ, de Macedo GR, MVP R (2014) Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochem 49:1779–1789
    • (2014) Process Biochem , vol.49 , pp. 1779-1789
    • Albuquerque, T.L.1    De da Silva, I.J.2    de Macedo, G.R.3    MVP, R.4
  • 2
    • 0025787980 scopus 로고
    • Cloning and expression in Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase-encoding gene (XYL1) from the xylose-assimilating yeast Pichia stipitis
    • COI: 1:CAS:528:DyaK3sXps12qsg%3D%3D, PID: 1756986
    • Amore R, Kötter P, Küster C, Ciriacy M, Hollenberg CP (1991) Cloning and expression in Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase-encoding gene (XYL1) from the xylose-assimilating yeast Pichia stipitis. Gene 109(1):89–97
    • (1991) Gene , vol.109 , Issue.1 , pp. 89-97
    • Amore, R.1    Kötter, P.2    Küster, C.3    Ciriacy, M.4    Hollenberg, C.P.5
  • 3
    • 77949874216 scopus 로고    scopus 로고
    • Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review
    • COI: 1:CAS:528:DC%2BC3cXjvFynsbg%3D, PID: 20042329
    • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861
    • (2010) Bioresour Technol , vol.101 , pp. 4851-4861
    • Alvira, P.1    Tomás-Pejó, E.2    Ballesteros, M.3    Negro, M.J.4
  • 4
    • 84917738216 scopus 로고    scopus 로고
    • Proximity effect among cellulose-degrading enzymes displayed on the Saccharomyces cerevisiae cell surface
    • PID: 25304511
    • Bae J, Kuroda K, Ueda M (2015) Proximity effect among cellulose-degrading enzymes displayed on the Saccharomyces cerevisiae cell surface. Appl Environ Microbiol 81:59–66
    • (2015) Appl Environ Microbiol , vol.81 , pp. 59-66
    • Bae, J.1    Kuroda, K.2    Ueda, M.3
  • 5
    • 0026599048 scopus 로고
    • One-step transformation of yeast in stationary phase
    • COI: 1:CAS:528:DyaK38XhtVams74%3D, PID: 1735128
    • Chen DC, Yang BC, Kuo TT (1992) One-step transformation of yeast in stationary phase. Curr Genet 21(1):83–84
    • (1992) Curr Genet , vol.21 , Issue.1 , pp. 83-84
    • Chen, D.C.1    Yang, B.C.2    Kuo, T.T.3
  • 6
    • 78650576831 scopus 로고    scopus 로고
    • Microbial and bioconversion production of d-xylitol and its detection and application
    • COI: 1:CAS:528:DC%2BC3MXhsFWh, PID: 21179590
    • Chen X, Jiang Z-H, Chen S, Qin W (2010) Microbial and bioconversion production of d-xylitol and its detection and application. Int J Biol Sci 6:834–844
    • (2010) Int J Biol Sci , vol.6 , pp. 834-844
    • Chen, X.1    Jiang, Z.-H.2    Chen, S.3    Qin, W.4
  • 7
    • 79952710820 scopus 로고    scopus 로고
    • Conversion of rye straw into fuel and xylitol: a technical and economical assessment based on experimental data
    • COI: 1:CAS:528:DC%2BC3MXotV2rtLc%3D
    • Franceschin G, Sudiro M, Ingram T, Smirnova I, Brunner G, Bertucco A (2011) Conversion of rye straw into fuel and xylitol: a technical and economical assessment based on experimental data. Chem Eng Res Des 89:631–640
    • (2011) Chem Eng Res Des , vol.89 , pp. 631-640
    • Franceschin, G.1    Sudiro, M.2    Ingram, T.3    Smirnova, I.4    Brunner, G.5    Bertucco, A.6
  • 8
    • 84867712304 scopus 로고    scopus 로고
    • Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering
    • COI: 1:CAS:528:DC%2BC38XhsFKns7rL, PID: 22085593
    • Hasunuma T, Kondo A (2012) Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol Adv 30:1207–1218
    • (2012) Biotechnol Adv , vol.30 , pp. 1207-1218
    • Hasunuma, T.1    Kondo, A.2
  • 9
    • 84964313919 scopus 로고    scopus 로고
    • Development of a GIN11/FRT-based multiple-gene integration technique affording inhibitor-tolerant, hemicellulolytic, xylose-utilizing abilities to industrial Saccharomyces cerevisiae strains for ethanol production from undetoxified lignocellulosic hemicelluloses
    • Hasunuma T, Hori Y, Sakamoto T, Ochiai M, Hatanaka H, Kondo A (2014) Development of a GIN11/FRT-based multiple-gene integration technique affording inhibitor-tolerant, hemicellulolytic, xylose-utilizing abilities to industrial Saccharomyces cerevisiae strains for ethanol production from undetoxified lignocellulosic hemicelluloses. Microb Cell Factories 13:145. doi:10.1186/s12934-014-0145-9
    • (2014) Microb Cell Factories , vol.13 , pp. 145
    • Hasunuma, T.1    Hori, Y.2    Sakamoto, T.3    Ochiai, M.4    Hatanaka, H.5    Kondo, A.6
  • 10
    • 84934958749 scopus 로고    scopus 로고
    • Rational design and evolutional fine tuning of Saccharomyces cerevisiae for biomass breakdown
    • COI: 1:CAS:528:DC%2BC2MXhsVKku7fF, PID: 26113493
    • Hasunuma T, Ishii J, Kondo A (2015) Rational design and evolutional fine tuning of Saccharomyces cerevisiae for biomass breakdown. Curr Opin Chem Biol 29:1–9. doi:10.1016/j.cbpa.2015.06.004
    • (2015) Curr Opin Chem Biol , vol.29 , pp. 1-9
    • Hasunuma, T.1    Ishii, J.2    Kondo, A.3
  • 11
    • 84862809320 scopus 로고    scopus 로고
    • Recent advances in membrane technologies for biorefining and bioenergy production
    • COI: 1:CAS:528:DC%2BC38XnslejtLw%3D, PID: 22306168
    • He Y, Bagley DM, Leung KT, Liss SN, Liao BQ (2012) Recent advances in membrane technologies for biorefining and bioenergy production. Biotechnol Adv 30:817–858
    • (2012) Biotechnol Adv , vol.30 , pp. 817-858
    • He, Y.1    Bagley, D.M.2    Leung, K.T.3    Liss, S.N.4    Liao, B.Q.5
  • 12
    • 84892376781 scopus 로고    scopus 로고
    • Efficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter
    • Inokuma K, Hasunuma T, Kondo A (2014) Efficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter. Biotechnol. For Biofuels. 7:8
    • (2014) Biotechnol. For Biofuels. , vol.7 , pp. 8
    • Inokuma, K.1    Hasunuma, T.2    Kondo, A.3
  • 13
    • 4644280289 scopus 로고    scopus 로고
    • Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells
    • COI: 1:CAS:528:DC%2BD2cXnslWjsr0%3D, PID: 15345427
    • Katahira S, Fujita Y, Mizuike A, Fukuda H, Kondo A (2004) Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol 70(9):5407–5414
    • (2004) Appl Environ Microbiol , vol.70 , Issue.9 , pp. 5407-5414
    • Katahira, S.1    Fujita, Y.2    Mizuike, A.3    Fukuda, H.4    Kondo, A.5
  • 14
    • 84881101974 scopus 로고    scopus 로고
    • Cocktail δ-integration of xylose assimilation genes for efficient ethanol production from xylose in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC3sXnt1alsL0%3D, PID: 23651809
    • Kato H, Matsuda F, Yamada R, Nagata K, Shirai T, Hasunuma T, Kondo A (2013) Cocktail δ-integration of xylose assimilation genes for efficient ethanol production from xylose in Saccharomyces cerevisiae. J Biosci Bioeng 116(3):333–336. doi:10.1016/j.jbiosc.2013.03.020
    • (2013) J Biosci Bioeng , vol.116 , Issue.3 , pp. 333-336
    • Kato, H.1    Matsuda, F.2    Yamada, R.3    Nagata, K.4    Shirai, T.5    Hasunuma, T.6    Kondo, A.7
  • 15
    • 84862231336 scopus 로고    scopus 로고
    • High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC38XmtlWhsrg%3D, PID: 22521925
    • Kim SR, Ha SJ, Kong II, Jin YS (2012) High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Metab Eng 14(4):336–343. doi:10.1016/j.ymben.2012.04.001
    • (2012) Metab Eng , vol.14 , Issue.4 , pp. 336-343
    • Kim, S.R.1    Ha, S.J.2    Kong, I.I.3    Jin, Y.S.4
  • 16
    • 25844505728 scopus 로고    scopus 로고
    • Consolidated bioprocessing of cellulosic biomass: an update
    • COI: 1:CAS:528:DC%2BD2MXhtVKjsLnE, PID: 16154338
    • Lynd LR, van Zyl WH, Mc Bride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583
    • (2005) Curr Opin Biotechnol , vol.16 , pp. 577-583
    • Lynd, L.R.1    van Zyl, W.H.2    Mc Bride, J.E.3    Laser, M.4
  • 17
    • 84860426824 scopus 로고    scopus 로고
    • Modeling of the separation of inhibitory components from pretreated rice straw hydrolysate by nanofiltration membranes
    • COI: 1:CAS:528:DC%2BC38Xms1agur8%3D, PID: 22494575
    • Maiti SK, Thuyavan YL, Singh S, Oberoi HS, Agarwal GP (2012) Modeling of the separation of inhibitory components from pretreated rice straw hydrolysate by nanofiltration membranes. Bioresour Technol 114:419–427
    • (2012) Bioresour Technol , vol.114 , pp. 419-427
    • Maiti, S.K.1    Thuyavan, Y.L.2    Singh, S.3    Oberoi, H.S.4    Agarwal, G.P.5
  • 18
    • 84876315666 scopus 로고    scopus 로고
    • Cell recycle batch fermentation of high-solid lignocellulose using a recombinant cellulase-displaying yeast strain for high yield ethanol production in consolidated bioprocessing
    • COI: 1:CAS:528:DC%2BC3sXmt1Wisrk%3D, PID: 22954707
    • Matano Y, Hasunuma T, Kondo A (2013) Cell recycle batch fermentation of high-solid lignocellulose using a recombinant cellulase-displaying yeast strain for high yield ethanol production in consolidated bioprocessing. Bioresour Technol 135:403–409
    • (2013) Bioresour Technol , vol.135 , pp. 403-409
    • Matano, Y.1    Hasunuma, T.2    Kondo, A.3
  • 19
    • 79954572229 scopus 로고    scopus 로고
    • Comparative study on different strategies involved for xylitol purification from culture media fermented by Candida tropicalis
    • COI: 1:CAS:528:DC%2BC3MXkvVWjsbk%3D
    • Misra S, Gupta P, Raghuwanshi S, Dutt K, Saxena RK (2011) Comparative study on different strategies involved for xylitol purification from culture media fermented by Candida tropicalis. Sep Purif Technol 78:266–273
    • (2011) Sep Purif Technol , vol.78 , pp. 266-273
    • Misra, S.1    Gupta, P.2    Raghuwanshi, S.3    Dutt, K.4    Saxena, R.K.5
  • 20
    • 34047222219 scopus 로고    scopus 로고
    • Prediction of Japanese green tea ranking by gas chromatography/mass spectrometry-based hydrophilic metabolite fingerprinting
    • COI: 1:CAS:528:DC%2BD28Xhtlaru7nL, PID: 17227047
    • Pongsuwan W, Fukusaki E, Bamba T, Yonetani T, Yamahara T, Kobayashi A (2007) Prediction of Japanese green tea ranking by gas chromatography/mass spectrometry-based hydrophilic metabolite fingerprinting. J Agric Food Chem 55(2):231–236. doi:10.1021/jf062330u
    • (2007) J Agric Food Chem , vol.55 , Issue.2 , pp. 231-236
    • Pongsuwan, W.1    Fukusaki, E.2    Bamba, T.3    Yonetani, T.4    Yamahara, T.5    Kobayashi, A.6
  • 21
    • 84655167291 scopus 로고    scopus 로고
    • Application of ultrafiltration and nanofiltration for recycling cellulase and concentrating glucose from enzymatic hydrolysate of steam exploded wheat straw
    • COI: 1:CAS:528:DC%2BC3MXhs1OlsLnL, PID: 22104100
    • Qi B, Luo J, Chen G, Chen X, Wan Y (2012) Application of ultrafiltration and nanofiltration for recycling cellulase and concentrating glucose from enzymatic hydrolysate of steam exploded wheat straw. Bioresour Technol 104:466–472
    • (2012) Bioresour Technol , vol.104 , pp. 466-472
    • Qi, B.1    Luo, J.2    Chen, G.3    Chen, X.4    Wan, Y.5
  • 22
    • 84937817664 scopus 로고    scopus 로고
    • Enzymatic production of bioxylitol from sawdust hydrolysate: screening of process parameters
    • COI: 1:CAS:528:DC%2BC2MXntFWis7g%3D, PID: 25904039
    • Rafiqul IS, Sakinah AM, Zularisam AW (2015) Enzymatic production of bioxylitol from sawdust hydrolysate: screening of process parameters. Appl Biochem Biotechnol 176(4):1071–1083. doi:10.1007/s12010-015-1630-2
    • (2015) Appl Biochem Biotechnol , vol.176 , Issue.4 , pp. 1071-1083
    • Rafiqul, I.S.1    Sakinah, A.M.2    Zularisam, A.W.3
  • 24
    • 33746549070 scopus 로고    scopus 로고
    • Enhanced xylitol production by precultivation of Candida guilliermondii cells in sugarcane bagasse hemicellulosic hydrolysate
    • COI: 1:CAS:528:DC%2BD28XlvVWjsrk%3D, PID: 16775788
    • Rodrigues RC, Sene L, Matos GS, Roberto IC, Pessoa Jr A, Felipe MG (2006) Enhanced xylitol production by precultivation of Candida guilliermondii cells in sugarcane bagasse hemicellulosic hydrolysate. Curr Microbiol 53(1):53–59
    • (2006) Curr Microbiol , vol.53 , Issue.1 , pp. 53-59
    • Rodrigues, R.C.1    Sene, L.2    Matos, G.S.3    Roberto, I.C.4    Pessoa, A.5    Felipe, M.G.6
  • 25
    • 84859517708 scopus 로고    scopus 로고
    • Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells
    • COI: 1:CAS:528:DC%2BC38XlsFCqtbY%3D, PID: 21741417
    • Sakamoto T, Hasunuma T, Hori Y, Yamada R, Kondo A (2012) Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. J Biotechnol 158(4):203–210
    • (2012) J Biotechnol , vol.158 , Issue.4 , pp. 203-210
    • Sakamoto, T.1    Hasunuma, T.2    Hori, Y.3    Yamada, R.4    Kondo, A.5
  • 26
    • 84904860502 scopus 로고    scopus 로고
    • Optimized membrane process to increase hemicellulosic ethanol production from pretreated rice straw by recombinant xylose-fermenting Saccharomyces cerevisiae
    • Sasaki K, Tsuge Y, Sasaki D, Hasunuma T, Sakamoto T, Sakihama Y, Ogino C, Kondo A (2014) Optimized membrane process to increase hemicellulosic ethanol production from pretreated rice straw by recombinant xylose-fermenting Saccharomyces cerevisiae. Bioresour Technol 169C:380–386
    • (2014) Bioresour Technol , vol.169C , pp. 380-386
    • Sasaki, K.1    Tsuge, Y.2    Sasaki, D.3    Hasunuma, T.4    Sakamoto, T.5    Sakihama, Y.6    Ogino, C.7    Kondo, A.8
  • 27
    • 84924678475 scopus 로고    scopus 로고
    • Mechanical milling and membrane separation for increased ethanol production during simultaneous saccharification and co-fermentation of rice straw by xylose-fermenting Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC2MXktVCisbY%3D, PID: 25776893
    • Sasaki K, Tsuge Y, Sasaki D, Teramura H, Inokuma K, Hasunuma T, Ogino C, Kondo A (2015a) Mechanical milling and membrane separation for increased ethanol production during simultaneous saccharification and co-fermentation of rice straw by xylose-fermenting Saccharomyces cerevisiae. Bioresour Technol 185:263–268
    • (2015) Bioresour Technol , vol.185 , pp. 263-268
    • Sasaki, K.1    Tsuge, Y.2    Sasaki, D.3    Teramura, H.4    Inokuma, K.5    Hasunuma, T.6    Ogino, C.7    Kondo, A.8
  • 29
    • 0024669291 scopus 로고
    • A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DyaL1MXktVais70%3D, PID: 2659436
    • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27
    • (1989) Genetics , vol.122 , pp. 19-27
    • Sikorski, R.S.1    Hieter, P.2
  • 30
    • 84885611140 scopus 로고    scopus 로고
    • Metabolic engineering strategies for improving xylitol production from hemicellulosic sugars
    • COI: 1:CAS:528:DC%2BC3sXhtFKksr7J, PID: 23881318
    • Su B, Wu M, Lin J, Yang L (2013) Metabolic engineering strategies for improving xylitol production from hemicellulosic sugars. Biotechnol Lett 35(11):1781–1789. doi:10.1007/s10529-s013-1279-2
    • (2013) Biotechnol Lett , vol.35 , Issue.11 , pp. 1781-1789
    • Su, B.1    Wu, M.2    Lin, J.3    Yang, L.4
  • 31
    • 84947612804 scopus 로고    scopus 로고
    • Cell surface engineering of industrial microorganisms for biorefining applications
    • PID: 26070720
    • Tanaka T, Kondo A (2015) Cell surface engineering of industrial microorganisms for biorefining applications. Biotechnol Adv. doi:10.1016/j.biotechadv.2015.06.002
    • (2015) Biotechnol Adv
    • Tanaka, T.1    Kondo, A.2
  • 32
    • 77949874091 scopus 로고    scopus 로고
    • Separation of furans and carboxylic acids from sugars in dilute acid rice straw hydrolyzates by nanofiltration
    • COI: 1:CAS:528:DC%2BC3cXjvFyntr4%3D, PID: 20022241
    • Weng YH, Wei HJ, Tsai TY, Lin TH, Wei TY, Guo GL, Huang CP (2010) Separation of furans and carboxylic acids from sugars in dilute acid rice straw hydrolyzates by nanofiltration. Bioresour Technol 101:4889–4894
    • (2010) Bioresour Technol , vol.101 , pp. 4889-4894
    • Weng, Y.H.1    Wei, H.J.2    Tsai, T.Y.3    Lin, T.H.4    Wei, T.Y.5    Guo, G.L.6    Huang, C.P.7
  • 34
    • 77957034698 scopus 로고
    • Methods for measuring cellulase activities
    • COI: 1:CAS:528:DyaL1cXmtVOisrk%3D
    • Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112
    • (1988) Methods Enzymol , vol.160 , pp. 87-112
    • Wood, T.M.1    Bhat, K.M.2
  • 35
    • 77953675236 scopus 로고    scopus 로고
    • Cocktail delta-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains
    • PID: 20465850
    • Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Cocktail delta-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb. Cell- Fact 9:32
    • (2010) Microb. Cell- Fact , vol.9 , pp. 32
    • Yamada, R.1    Taniguchi, N.2    Tanaka, T.3    Ogino, C.4    Fukuda, H.5    Kondo, A.6
  • 36
    • 84882708069 scopus 로고    scopus 로고
    • Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated Bioprocessing
    • COI: 1:CAS:528:DC%2BC3sXktlKnu7Y%3D, PID: 23473971
    • Yamada R, Hasunuma T, Kondo A (2013) Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated Bioprocessing. Biotechnol Adv 31(6):754–763. doi:10.1016/j.biotechadv.2013.02.007
    • (2013) Biotechnol Adv , vol.31 , Issue.6 , pp. 754-763
    • Yamada, R.1    Hasunuma, T.2    Kondo, A.3
  • 37
    • 84855219060 scopus 로고    scopus 로고
    • Xylitol production from d-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18
    • COI: 1:CAS:528:DC%2BC38XivVKgtA%3D%3D, PID: 22196071
    • Zhang J, Geng A, Yao C, Lu Y, Li Q (2012) Xylitol production from d-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18. Bioresour Technol 105:134–141
    • (2012) Bioresour Technol , vol.105 , pp. 134-141
    • Zhang, J.1    Geng, A.2    Yao, C.3    Lu, Y.4    Li, Q.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.