메뉴 건너뛰기




Volumn 13, Issue 1, 2014, Pages

Development of a GIN11/FRT-based multiple-gene integration technique affording inhibitor-tolerant, hemicellulolytic, xylose-utilizing abilities to industrial Saccharomyces cerevisiae strains for ethanol production from undetoxified lignocellulosic hemicelluloses

Author keywords

Bioethanol; Cell surface display; Inhibitor tolerance; Lignocellulose; Maker recycling; Saccharomyces cerevisiae

Indexed keywords

5 HYDROXYMETHYLFURFURAL; ACETIC ACID; ALCOHOL; FORMIC ACID; FURFURAL; GALACTOSE; GLUCOSE; HEMICELLULOSE; LIGNOCELLULOSE; TRANSCRIPTION FACTOR TAL1; VANILLIN; XYLOSE; FUNGAL PROTEIN; LIGNIN; POLYSACCHARIDE;

EID: 84964313919     PISSN: None     EISSN: 14752859     Source Type: Journal    
DOI: 10.1186/s12934-014-0145-9     Document Type: Article
Times cited : (27)

References (32)
  • 2
    • 0020912407 scopus 로고
    • Utilization of xylose by bacteria, yeasts, and fungi
    • Jeffries TW: Utilization of xylose by bacteria, yeasts, and fungi. Adv Biochem Eng Biotechnol 1983, 27:1-32.
    • (1983) Adv Biochem Eng Biotechnol , vol.27 , pp. 1-32
    • Jeffries, T.W.1
  • 3
    • 84859517708 scopus 로고    scopus 로고
    • Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells
    • Sakamoto T, Hasunuma T, Hori Y, Yamada R, Kondo A: Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. J Biotechnol 2012, 158:203-210.
    • (2012) J Biotechnol , vol.158 , pp. 203-210
    • Sakamoto, T.1    Hasunuma, T.2    Hori, Y.3    Yamada, R.4    Kondo, A.5
  • 4
    • 34548710320 scopus 로고    scopus 로고
    • Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae
    • van Zyl WH, Lynd LR, den Haan R, McBride JE: Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 2007, 108:205-235.
    • (2007) Adv Biochem Eng Biotechnol , vol.108 , pp. 205-235
    • van Zyl, W.H.1    Lynd, L.R.2    den Haan, R.3    McBride, J.E.4
  • 6
    • 67649757165 scopus 로고    scopus 로고
    • Yeast metabolic engineering for hemicellulosic ethanol production
    • van Vleet JH, Jeffries TW: Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 2009, 20:300-306.
    • (2009) Curr Opin Biotechnol , vol.20 , pp. 300-306
    • van Vleet, J.H.1    Jeffries, T.W.2
  • 7
    • 84867712304 scopus 로고    scopus 로고
    • Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering
    • Hasunuma T, Kondo A: Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol Adv 2012, 30:1207-1218.
    • (2012) Biotechnol Adv , vol.30 , pp. 1207-1218
    • Hasunuma, T.1    Kondo, A.2
  • 8
    • 78650995732 scopus 로고    scopus 로고
    • Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
    • Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A: Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb Cell Fact 2011, 10:2.
    • (2011) Microb Cell Fact , vol.10 , pp. 2
    • Hasunuma, T.1    Sanda, T.2    Yamada, R.3    Yoshimura, K.4    Ishii, J.5    Kondo, A.6
  • 9
    • 79954706261 scopus 로고    scopus 로고
    • Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae
    • Hasunuma T, Sung KM, Sanda T, Yoshimura K, Matsuda F, Kondo A: Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2011, 90:997-1004.
    • (2011) Appl Microbiol Biotechnol , vol.90 , pp. 997-1004
    • Hasunuma, T.1    Sung, K.M.2    Sanda, T.3    Yoshimura, K.4    Matsuda, F.5    Kondo, A.6
  • 10
    • 79960847197 scopus 로고    scopus 로고
    • Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acid
    • Sanda T, Hasunuma T, Matsuda F, Kondo A: Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acid. Bioresour Technol 2011, 102:7917-7924.
    • (2011) Bioresour Technol , vol.102 , pp. 7917-7924
    • Sanda, T.1    Hasunuma, T.2    Matsuda, F.3    Kondo, A.4
  • 11
    • 84878836519 scopus 로고    scopus 로고
    • Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway
    • Ishii J, Yoshimura K, Hasunuma T, Kondo A: Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway. Appl Microbiol Biotechnol 2013, 97:2597-2607.
    • (2013) Appl Microbiol Biotechnol , vol.97 , pp. 2597-2607
    • Ishii, J.1    Yoshimura, K.2    Hasunuma, T.3    Kondo, A.4
  • 14
    • 0030999051 scopus 로고    scopus 로고
    • Screening and identification of yest sequences cause growth inhibition when overexpressed
    • Akada R, Yamamoto J, Yamashita I: Screening and identification of yest sequences cause growth inhibition when overexpressed. Mol Gen Genet 1997, 254:267-274.
    • (1997) Mol Gen Genet , vol.254 , pp. 267-274
    • Akada, R.1    Yamamoto, J.2    Yamashita, I.3
  • 15
    • 0033558377 scopus 로고    scopus 로고
    • A 2-μm DNA-based marker recycling system for multiple gene disruption in the yeast Saccharomyces cerevisiae
    • Storici F, Coglievina M, Bruschi CV: A 2-μm DNA-based marker recycling system for multiple gene disruption in the yeast Saccharomyces cerevisiae. Yeast 1999, 15:271-283.
    • (1999) Yeast , vol.15 , pp. 271-283
    • Storici, F.1    Coglievina, M.2    Bruschi, C.V.3
  • 16
    • 84870369602 scopus 로고    scopus 로고
    • Gene expression cross-profiling in genetically advanced industrial Saccharomyces cerevisiae strains during high-temperature ethanol production from xylose
    • Ismail KSK, Sakamoto T, Hatanaka H, Hasunuma T, Kondo A: Gene expression cross-profiling in genetically advanced industrial Saccharomyces cerevisiae strains during high-temperature ethanol production from xylose. J Biotechnol 2013, 163:50-60.
    • (2013) J Biotechnol , vol.163 , pp. 50-60
    • Ismail, K.S.K.1    Sakamoto, T.2    Hatanaka, H.3    Hasunuma, T.4    Kondo, A.5
  • 17
    • 3042725561 scopus 로고    scopus 로고
    • Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF
    • Cantarella M, Cantarella L, Gallifuoco A, Spera A, Alfani F: Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF. Process Biochem 2004, 39:1533-1542.
    • (2004) Process Biochem , vol.39 , pp. 1533-1542
    • Cantarella, M.1    Cantarella, L.2    Gallifuoco, A.3    Spera, A.4    Alfani, F.5
  • 18
    • 78549265184 scopus 로고    scopus 로고
    • Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol production
    • Zhang J, Zhu Z, Wang X, Wang N, Wang W, Bao J: Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol production. Biotechnol Biofuels 2010, 3:26.
    • (2010) Biotechnol Biofuels , vol.3 , pp. 26
    • Zhang, J.1    Zhu, Z.2    Wang, X.3    Wang, N.4    Wang, W.5    Bao, J.6
  • 20
    • 84867315946 scopus 로고    scopus 로고
    • Improvement in ethanol production from xylose by mating recombinant xylosefermenting Saccharomyces cerevisiae
    • Kato H, Suyama H, Yamada R, Hasunuma T, Kondo A: Improvement in ethanol production from xylose by mating recombinant xylosefermenting Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2012, 94:1585-1592.
    • (2012) Appl Microbiol Biotechnol , vol.94 , pp. 1585-1592
    • Kato, H.1    Suyama, H.2    Yamada, R.3    Hasunuma, T.4    Kondo, A.5
  • 22
    • 59449088019 scopus 로고    scopus 로고
    • Efficient generation of recessive traits in diploid sake yeast by targeted gene disruption and loss of heterozygosity
    • Kotaka A, Sahara H, Kondo A, Ueda M, Hata Y: Efficient generation of recessive traits in diploid sake yeast by targeted gene disruption and loss of heterozygosity. Appl Microbiol Biotechnol 2009, 82:387-395.
    • (2009) Appl Microbiol Biotechnol , vol.82 , pp. 387-395
    • Kotaka, A.1    Sahara, H.2    Kondo, A.3    Ueda, M.4    Hata, Y.5
  • 24
    • 68249098859 scopus 로고    scopus 로고
    • Development of strains of the thermotolerant yeast Hansenula polymorpha capable of alcoholic fermentation of starch and xylan
    • Voronovsky AY, Rohulya OV, Abbas CA, Sibirny AA: Development of strains of the thermotolerant yeast Hansenula polymorpha capable of alcoholic fermentation of starch and xylan. Metab Eng 2009, 11:234-242.
    • (2009) Metab Eng , vol.11 , pp. 234-242
    • Voronovsky, A.Y.1    Rohulya, O.V.2    Abbas, C.A.3    Sibirny, A.A.4
  • 25
    • 2342638898 scopus 로고    scopus 로고
    • Synergistic saccharification, and direct fermentation to ethanol of amorphous cellulose by use of engineered yeast strain codisplaying three types of cellulolytic enzyme
    • Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A: Synergistic saccharification, and direct fermentation to ethanol of amorphous cellulose by use of engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 2004, 70:1207-1212.
    • (2004) Appl Environ Microbiol , vol.70 , pp. 1207-1212
    • Fujita, Y.1    Ito, J.2    Ueda, M.3    Fukuda, H.4    Kondo, A.5
  • 26
    • 84857234067 scopus 로고    scopus 로고
    • Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass
    • Matano Y, Hasunuma T, Kondo A: Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Bioresour Technol 2012, 108:128-133.
    • (2012) Bioresour Technol , vol.108 , pp. 128-133
    • Matano, Y.1    Hasunuma, T.2    Kondo, A.3
  • 27
    • 0022504637 scopus 로고
    • Genealogy of principal strains of the yeast genetic stock center
    • Mortimer RK, Johnston JR: Genealogy of principal strains of the yeast genetic stock center. Genetics 1986, 113:35-43.
    • (1986) Genetics , vol.113 , pp. 35-43
    • Mortimer, R.K.1    Johnston, J.R.2
  • 28
    • 0345118979 scopus 로고    scopus 로고
    • Further development of the cassette-based pYC plasmid system by incorporation of the dominant hph, nat and AUR1-C gene markers and the lacZ reporter system
    • Hansen J, Felding T, Johannesen PF, Piskur J, Christensen CL, Olesen K: Further development of the cassette-based pYC plasmid system by incorporation of the dominant hph, nat and AUR1-C gene markers and the lacZ reporter system. FEMS Yeast Res 2003, 4:323-327.
    • (2003) FEMS Yeast Res , vol.4 , pp. 323-327
    • Hansen, J.1    Felding, T.2    Johannesen, P.F.3    Piskur, J.4    Christensen, C.L.5    Olesen, K.6
  • 29
    • 0000845013 scopus 로고
    • Nucleotide sequence of the ampicillin resistance gene of Escherichia coli plasmid pBR322
    • Sutcliffe JG: Nucleotide sequence of the ampicillin resistance gene of Escherichia coli plasmid pBR322. Proc Natl Acad Sci U S A 1978, 75:3737-3741.
    • (1978) Proc Natl Acad Sci U S A , vol.75 , pp. 3737-3741
    • Sutcliffe, J.G.1
  • 30
    • 0018449422 scopus 로고
    • High-frequency transformation of yeast: Autonomous replication of hybrid DNA molecules
    • Struhl K, Stinchcomb DT, Scherer S, Davis RW: High-frequency transformation of yeast: Autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci U S A 1979, 76:1035-1039.
    • (1979) Proc Natl Acad Sci U S A , vol.76 , pp. 1035-1039
    • Struhl, K.1    Stinchcomb, D.T.2    Scherer, S.3    Davis, R.W.4
  • 31
    • 0035862452 scopus 로고    scopus 로고
    • The basal turnover of yeast branchedchain amino acid permease Bap2p requires its C-terminal tail
    • Omura F, Kodama Y, Ashikari T: The basal turnover of yeast branchedchain amino acid permease Bap2p requires its C-terminal tail. FEMS Microbiol Lett 2001, 194:207-214.
    • (2001) FEMS Microbiol Lett , vol.194 , pp. 207-214
    • Omura, F.1    Kodama, Y.2    Ashikari, T.3
  • 32
    • 84858748257 scopus 로고    scopus 로고
    • Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural
    • Fujitomi K, Sanda T, Hasunuma T, Kondo A: Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural. Bioresour Technol 2012, 111:161-166.
    • (2012) Bioresour Technol , vol.111 , pp. 161-166
    • Fujitomi, K.1    Sanda, T.2    Hasunuma, T.3    Kondo, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.