-
1
-
-
84884671610
-
Hemicellulose biosynthesis
-
Pauly M, Gille S, Liu L, Mansoori N, de Souza A, Schultink A, Xiong G: Hemicellulose biosynthesis. Planta 2013, 238:627-642.
-
(2013)
Planta
, vol.238
, pp. 627-642
-
-
Pauly, M.1
Gille, S.2
Liu, L.3
Mansoori, N.4
de Souza, A.5
Schultink, A.6
Xiong, G.7
-
2
-
-
0020912407
-
Utilization of xylose by bacteria, yeasts, and fungi
-
Jeffries TW: Utilization of xylose by bacteria, yeasts, and fungi. Adv Biochem Eng Biotechnol 1983, 27:1-32.
-
(1983)
Adv Biochem Eng Biotechnol
, vol.27
, pp. 1-32
-
-
Jeffries, T.W.1
-
3
-
-
84859517708
-
Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells
-
Sakamoto T, Hasunuma T, Hori Y, Yamada R, Kondo A: Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. J Biotechnol 2012, 158:203-210.
-
(2012)
J Biotechnol
, vol.158
, pp. 203-210
-
-
Sakamoto, T.1
Hasunuma, T.2
Hori, Y.3
Yamada, R.4
Kondo, A.5
-
4
-
-
34548710320
-
Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae
-
van Zyl WH, Lynd LR, den Haan R, McBride JE: Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 2007, 108:205-235.
-
(2007)
Adv Biochem Eng Biotechnol
, vol.108
, pp. 205-235
-
-
van Zyl, W.H.1
Lynd, L.R.2
den Haan, R.3
McBride, J.E.4
-
5
-
-
34548789083
-
Metabolic engineering for pentose utilization in Saccharomyces cerevisiae
-
Hahn-Hägerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF: Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 2007, 108:147-177.
-
(2007)
Adv Biochem Eng Biotechnol
, vol.108
, pp. 147-177
-
-
Hahn-Hägerdal, B.1
Karhumaa, K.2
Jeppsson, M.3
Gorwa-Grauslund, M.F.4
-
6
-
-
67649757165
-
Yeast metabolic engineering for hemicellulosic ethanol production
-
van Vleet JH, Jeffries TW: Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 2009, 20:300-306.
-
(2009)
Curr Opin Biotechnol
, vol.20
, pp. 300-306
-
-
van Vleet, J.H.1
Jeffries, T.W.2
-
7
-
-
84867712304
-
Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering
-
Hasunuma T, Kondo A: Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol Adv 2012, 30:1207-1218.
-
(2012)
Biotechnol Adv
, vol.30
, pp. 1207-1218
-
-
Hasunuma, T.1
Kondo, A.2
-
8
-
-
78650995732
-
Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
-
Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A: Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb Cell Fact 2011, 10:2.
-
(2011)
Microb Cell Fact
, vol.10
, pp. 2
-
-
Hasunuma, T.1
Sanda, T.2
Yamada, R.3
Yoshimura, K.4
Ishii, J.5
Kondo, A.6
-
9
-
-
79954706261
-
Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae
-
Hasunuma T, Sung KM, Sanda T, Yoshimura K, Matsuda F, Kondo A: Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2011, 90:997-1004.
-
(2011)
Appl Microbiol Biotechnol
, vol.90
, pp. 997-1004
-
-
Hasunuma, T.1
Sung, K.M.2
Sanda, T.3
Yoshimura, K.4
Matsuda, F.5
Kondo, A.6
-
10
-
-
79960847197
-
Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acid
-
Sanda T, Hasunuma T, Matsuda F, Kondo A: Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acid. Bioresour Technol 2011, 102:7917-7924.
-
(2011)
Bioresour Technol
, vol.102
, pp. 7917-7924
-
-
Sanda, T.1
Hasunuma, T.2
Matsuda, F.3
Kondo, A.4
-
11
-
-
84878836519
-
Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway
-
Ishii J, Yoshimura K, Hasunuma T, Kondo A: Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway. Appl Microbiol Biotechnol 2013, 97:2597-2607.
-
(2013)
Appl Microbiol Biotechnol
, vol.97
, pp. 2597-2607
-
-
Ishii, J.1
Yoshimura, K.2
Hasunuma, T.3
Kondo, A.4
-
12
-
-
54049109254
-
Yeast selection for fuel ethanol production in Brazil
-
Basso LC, de Amorim HV, de Oliveila AJ, Lopes ML: Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 2008, 8:1155-1163.
-
(2008)
FEMS Yeast Res
, vol.8
, pp. 1155-1163
-
-
Basso, L.C.1
de Amorim, H.V.2
de Oliveila, A.J.3
Lopes, M.L.4
-
14
-
-
0030999051
-
Screening and identification of yest sequences cause growth inhibition when overexpressed
-
Akada R, Yamamoto J, Yamashita I: Screening and identification of yest sequences cause growth inhibition when overexpressed. Mol Gen Genet 1997, 254:267-274.
-
(1997)
Mol Gen Genet
, vol.254
, pp. 267-274
-
-
Akada, R.1
Yamamoto, J.2
Yamashita, I.3
-
15
-
-
0033558377
-
A 2-μm DNA-based marker recycling system for multiple gene disruption in the yeast Saccharomyces cerevisiae
-
Storici F, Coglievina M, Bruschi CV: A 2-μm DNA-based marker recycling system for multiple gene disruption in the yeast Saccharomyces cerevisiae. Yeast 1999, 15:271-283.
-
(1999)
Yeast
, vol.15
, pp. 271-283
-
-
Storici, F.1
Coglievina, M.2
Bruschi, C.V.3
-
16
-
-
84870369602
-
Gene expression cross-profiling in genetically advanced industrial Saccharomyces cerevisiae strains during high-temperature ethanol production from xylose
-
Ismail KSK, Sakamoto T, Hatanaka H, Hasunuma T, Kondo A: Gene expression cross-profiling in genetically advanced industrial Saccharomyces cerevisiae strains during high-temperature ethanol production from xylose. J Biotechnol 2013, 163:50-60.
-
(2013)
J Biotechnol
, vol.163
, pp. 50-60
-
-
Ismail, K.S.K.1
Sakamoto, T.2
Hatanaka, H.3
Hasunuma, T.4
Kondo, A.5
-
17
-
-
3042725561
-
Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF
-
Cantarella M, Cantarella L, Gallifuoco A, Spera A, Alfani F: Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF. Process Biochem 2004, 39:1533-1542.
-
(2004)
Process Biochem
, vol.39
, pp. 1533-1542
-
-
Cantarella, M.1
Cantarella, L.2
Gallifuoco, A.3
Spera, A.4
Alfani, F.5
-
18
-
-
78549265184
-
Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol production
-
Zhang J, Zhu Z, Wang X, Wang N, Wang W, Bao J: Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol production. Biotechnol Biofuels 2010, 3:26.
-
(2010)
Biotechnol Biofuels
, vol.3
, pp. 26
-
-
Zhang, J.1
Zhu, Z.2
Wang, X.3
Wang, N.4
Wang, W.5
Bao, J.6
-
20
-
-
84867315946
-
Improvement in ethanol production from xylose by mating recombinant xylosefermenting Saccharomyces cerevisiae
-
Kato H, Suyama H, Yamada R, Hasunuma T, Kondo A: Improvement in ethanol production from xylose by mating recombinant xylosefermenting Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2012, 94:1585-1592.
-
(2012)
Appl Microbiol Biotechnol
, vol.94
, pp. 1585-1592
-
-
Kato, H.1
Suyama, H.2
Yamada, R.3
Hasunuma, T.4
Kondo, A.5
-
21
-
-
3042799359
-
Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae
-
Sonderegger M, Jeppsson M, Larsson C, Gorwa-Grauslund MF, Boles E, Olsson L, Spencer-Martins I, Hahn-Hägerdal B, Sauer U: Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae. Biotechnol Bioeng 2004, 87:90-98.
-
(2004)
Biotechnol Bioeng
, vol.87
, pp. 90-98
-
-
Sonderegger, M.1
Jeppsson, M.2
Larsson, C.3
Gorwa-Grauslund, M.F.4
Boles, E.5
Olsson, L.6
Spencer-Martins, I.7
Hahn-Hägerdal, B.8
Sauer, U.9
-
22
-
-
59449088019
-
Efficient generation of recessive traits in diploid sake yeast by targeted gene disruption and loss of heterozygosity
-
Kotaka A, Sahara H, Kondo A, Ueda M, Hata Y: Efficient generation of recessive traits in diploid sake yeast by targeted gene disruption and loss of heterozygosity. Appl Microbiol Biotechnol 2009, 82:387-395.
-
(2009)
Appl Microbiol Biotechnol
, vol.82
, pp. 387-395
-
-
Kotaka, A.1
Sahara, H.2
Kondo, A.3
Ueda, M.4
Hata, Y.5
-
23
-
-
38949132602
-
How biotech can transform biofuels
-
Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE: How biotech can transform biofuels. Nat Biotechnol 2008, 26:169-172.
-
(2008)
Nat Biotechnol
, vol.26
, pp. 169-172
-
-
Lynd, L.R.1
Laser, M.S.2
Bransby, D.3
Dale, B.E.4
Davison, B.5
Hamilton, R.6
Himmel, M.7
Keller, M.8
McMillan, J.D.9
Sheehan, J.10
Wyman, C.E.11
-
24
-
-
68249098859
-
Development of strains of the thermotolerant yeast Hansenula polymorpha capable of alcoholic fermentation of starch and xylan
-
Voronovsky AY, Rohulya OV, Abbas CA, Sibirny AA: Development of strains of the thermotolerant yeast Hansenula polymorpha capable of alcoholic fermentation of starch and xylan. Metab Eng 2009, 11:234-242.
-
(2009)
Metab Eng
, vol.11
, pp. 234-242
-
-
Voronovsky, A.Y.1
Rohulya, O.V.2
Abbas, C.A.3
Sibirny, A.A.4
-
25
-
-
2342638898
-
Synergistic saccharification, and direct fermentation to ethanol of amorphous cellulose by use of engineered yeast strain codisplaying three types of cellulolytic enzyme
-
Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A: Synergistic saccharification, and direct fermentation to ethanol of amorphous cellulose by use of engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 2004, 70:1207-1212.
-
(2004)
Appl Environ Microbiol
, vol.70
, pp. 1207-1212
-
-
Fujita, Y.1
Ito, J.2
Ueda, M.3
Fukuda, H.4
Kondo, A.5
-
26
-
-
84857234067
-
Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass
-
Matano Y, Hasunuma T, Kondo A: Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Bioresour Technol 2012, 108:128-133.
-
(2012)
Bioresour Technol
, vol.108
, pp. 128-133
-
-
Matano, Y.1
Hasunuma, T.2
Kondo, A.3
-
27
-
-
0022504637
-
Genealogy of principal strains of the yeast genetic stock center
-
Mortimer RK, Johnston JR: Genealogy of principal strains of the yeast genetic stock center. Genetics 1986, 113:35-43.
-
(1986)
Genetics
, vol.113
, pp. 35-43
-
-
Mortimer, R.K.1
Johnston, J.R.2
-
28
-
-
0345118979
-
Further development of the cassette-based pYC plasmid system by incorporation of the dominant hph, nat and AUR1-C gene markers and the lacZ reporter system
-
Hansen J, Felding T, Johannesen PF, Piskur J, Christensen CL, Olesen K: Further development of the cassette-based pYC plasmid system by incorporation of the dominant hph, nat and AUR1-C gene markers and the lacZ reporter system. FEMS Yeast Res 2003, 4:323-327.
-
(2003)
FEMS Yeast Res
, vol.4
, pp. 323-327
-
-
Hansen, J.1
Felding, T.2
Johannesen, P.F.3
Piskur, J.4
Christensen, C.L.5
Olesen, K.6
-
29
-
-
0000845013
-
Nucleotide sequence of the ampicillin resistance gene of Escherichia coli plasmid pBR322
-
Sutcliffe JG: Nucleotide sequence of the ampicillin resistance gene of Escherichia coli plasmid pBR322. Proc Natl Acad Sci U S A 1978, 75:3737-3741.
-
(1978)
Proc Natl Acad Sci U S A
, vol.75
, pp. 3737-3741
-
-
Sutcliffe, J.G.1
-
30
-
-
0018449422
-
High-frequency transformation of yeast: Autonomous replication of hybrid DNA molecules
-
Struhl K, Stinchcomb DT, Scherer S, Davis RW: High-frequency transformation of yeast: Autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci U S A 1979, 76:1035-1039.
-
(1979)
Proc Natl Acad Sci U S A
, vol.76
, pp. 1035-1039
-
-
Struhl, K.1
Stinchcomb, D.T.2
Scherer, S.3
Davis, R.W.4
-
31
-
-
0035862452
-
The basal turnover of yeast branchedchain amino acid permease Bap2p requires its C-terminal tail
-
Omura F, Kodama Y, Ashikari T: The basal turnover of yeast branchedchain amino acid permease Bap2p requires its C-terminal tail. FEMS Microbiol Lett 2001, 194:207-214.
-
(2001)
FEMS Microbiol Lett
, vol.194
, pp. 207-214
-
-
Omura, F.1
Kodama, Y.2
Ashikari, T.3
-
32
-
-
84858748257
-
Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural
-
Fujitomi K, Sanda T, Hasunuma T, Kondo A: Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural. Bioresour Technol 2012, 111:161-166.
-
(2012)
Bioresour Technol
, vol.111
, pp. 161-166
-
-
Fujitomi, K.1
Sanda, T.2
Hasunuma, T.3
Kondo, A.4
|