메뉴 건너뛰기




Volumn 22, Issue 12, 2015, Pages 1057-1074

UNIPred: Unbalance-aware network integration and prediction of protein functions

Author keywords

Hopfield networks; Protein function prediction; Unbalance aware network integration

Indexed keywords

PROTEOME;

EID: 84948740134     PISSN: 10665277     EISSN: None     Source Type: Journal    
DOI: 10.1089/cmb.2014.0110     Document Type: Article
Times cited : (16)

References (57)
  • 1
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium
    • Ashburner, M., Ball, C.A., Blake, J.A., et al. 2000. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25-29.
    • (2000) Nat. Genet. , vol.25 , pp. 25-29
    • Ashburner, M.1    Ball, C.A.2    Blake, J.A.3
  • 2
  • 3
    • 34547969350 scopus 로고    scopus 로고
    • Label propagation and quadratic criterion, 193-216
    • In Chapelle, O., Scholkopf, B., and Zien, A., eds. MIT Press, New York
    • Bengio, Y., Delalleau, O., and Roux, N.L. 2006. Label propagation and quadratic criterion, 193-216. In Chapelle, O., Scholkopf, B., and Zien, A., eds. Semi-Supervised Learning. MIT Press, New York.
    • (2006) Semi-Supervised Learning
    • Bengio, Y.1    Delalleau, O.2    Roux, N.L.3
  • 4
    • 80052409679 scopus 로고    scopus 로고
    • COSNet: A cost sensitive neural network for semi-supervised learning in graphs, 219-234
    • In Gunopulos D., Hofmann, T., Malerba, D., and Vazirgiannis M., eds European Conference, ECML PKDD 2011, Athens, Greece, September 5-9, 2011. Proceedings, Part I. Springer, Berlin
    • Bertoni, A., Frasca, M., and Valentini, G. 2011. COSNet: A cost sensitive neural network for semi-supervised learning in graphs, 219-234. In Gunopulos, D., Hofmann, T., Malerba, D., and Vazirgiannis, M., eds. Machine Learning and Knowledge Discovery in Databases. European Conference, ECML PKDD 2011, Athens, Greece, September 5-9, 2011. Proceedings, Part I. Springer, Berlin.
    • (2011) Machine Learning and Knowledge Discovery in Databases
    • Bertoni, A.1    Frasca, M.2    Valentini, G.3
  • 5
    • 79952857163 scopus 로고    scopus 로고
    • Hierarchical cost-sensitive algorithms for genome-wide gene function prediction
    • Cesa-Bianchi, N., and Valentini, G. 2010. Hierarchical cost-sensitive algorithms for genome-wide gene function prediction. J. Mach. Learn. Res. 8, 14-29.
    • (2010) J. Mach. Learn. Res , vol.8 , pp. 14-29
    • Cesa-Bianchi, N.1    Valentini, G.2
  • 6
    • 84865223440 scopus 로고    scopus 로고
    • Synergy of multi-label hierarchical ensembles, data fusion, and cost-sensitive methods for gene functional inference
    • Cesa-Bianchi, N., Re, M., and Valentini, G. 2012. Synergy of multi-label hierarchical ensembles, data fusion, and cost-sensitive methods for gene functional inference. Mach. Learn. 88, 209-241.
    • (2012) Mach. Learn , vol.88 , pp. 209-241
    • Cesa-Bianchi, N.1    Re, M.2    Valentini, G.3
  • 7
    • 13444283846 scopus 로고    scopus 로고
    • Global protein function annotation through mining genomescale data in yeast saccharo-myces cerevisiae
    • Chen, Y., and Xu, D. 2004. Global protein function annotation through mining genomescale data in yeast saccharo-myces cerevisiae. Nucleic Acids Res. 32, 6414-6424.
    • (2004) Nucleic Acids Res , vol.32 , pp. 6414-6424
    • Chen, Y.1    Xu, D.2
  • 8
    • 36949038721 scopus 로고    scopus 로고
    • An efficient strategy for extensive integration of diverse biological data for protein function prediction
    • Chua, H.N., Sung, W.-K., and Wong, L. 2007. An efficient strategy for extensive integration of diverse biological data for protein function prediction. Bioinformatics. 23, 3364-3373.
    • (2007) Bioinformatics , vol.23 , pp. 3364-3373
    • Chua, H.N.1    Sung, W.-K.2    Wong, L.3
  • 9
    • 84878083062 scopus 로고    scopus 로고
    • Protein function prediction by massive integration of evolutionary analyses and multiple data sources
    • Cozzetto, D., Buchan, D.W.A., Bryson, K., et al. 2013. Protein function prediction by massive integration of evolutionary analyses and multiple data sources. BMC Bioinform. 14, S1.
    • (2013) BMC Bioinform , vol.14 , pp. S1
    • Cozzetto, D.1    Buchan, D.W.A.2    Bryson, K.3
  • 10
    • 84929277565 scopus 로고    scopus 로고
    • Automated gene function prediction through gene multifunctionality in biological networks
    • Frasca, M. 2015. Automated gene function prediction through gene multifunctionality in biological networks. Neurocomputing. 162, 48-56.
    • (2015) Neurocomputing , vol.162 , pp. 48-56
    • Frasca, M.1
  • 11
    • 84893617064 scopus 로고    scopus 로고
    • A neural network based algorithm for gene expression prediction from chromatin structure, 1-8
    • IEEE, New York
    • Frasca, M., and Pavesi, G. 2013. A neural network based algorithm for gene expression prediction from chromatin structure, 1-8. In IJCNN. IEEE, New York.
    • (2013) IJCNN
    • Frasca, M.1    Pavesi, G.2
  • 12
    • 84932097860 scopus 로고    scopus 로고
    • Learning node labels with multi-category hopfield networks
    • Frasca, M., Bassis, S., and Valentini, G. 2015. Learning node labels with multi-category hopfield networks. Neural Comput. Appl. DOI: 10.1007/s00521-015-1965-1
    • (2015) Neural Comput. Appl.
    • Frasca, M.1    Bassis, S.2    Valentini, G.3
  • 13
    • 84875251066 scopus 로고    scopus 로고
    • A neural network algorithm for semisupervised node label learning from unbalanced data
    • Frasca, M., Bertoni, A., Re, M., et al. 2013a. A neural network algorithm for semisupervised node label learning from unbalanced data. Neural Netw. 43, 84-98.
    • (2013) Neural Netw , vol.43 , pp. 84-98
    • Frasca, M.1    Bertoni, A.2    Re, M.3
  • 14
    • 84879318540 scopus 로고    scopus 로고
    • A neural procedure for gene function prediction, 179-188
    • of Smart Innovation, Systems and Technologies. Springer, Berlin
    • Frasca, M., Bertoni, A., and Sion, A. 2013b. A neural procedure for gene function prediction, 179-188. In Neural Nets and Surroundings, Volume 19 of Smart Innovation, Systems and Technologies. Springer, Berlin.
    • (2013) Neural Nets and Surroundings , vol.19
    • Frasca, M.1    Bertoni, A.2    Sion, A.3
  • 15
    • 84876478272 scopus 로고    scopus 로고
    • Characterizing the state of the art in the computational assignment of gene function: Lessons from the first critical assessment of functional annotation (CAFA)
    • Gillis, J., and Pavlidis, P. 2013. Characterizing the state of the art in the computational assignment of gene function: Lessons from the first critical assessment of functional annotation (CAFA). BMC Bioinform. 14, S15.
    • (2013) BMC Bioinform , vol.14 , pp. S15
    • Gillis, J.1    Pavlidis, P.2
  • 16
    • 47549108100 scopus 로고    scopus 로고
    • Predicting gene function in a hierarchical context with an ensemble of classifiers
    • Guan, Y., Myers, C.L., and Hess, D.C. 2008. Predicting gene function in a hierarchical context with an ensemble of classifiers. Genome Biol. 9, 1.
    • (2008) Genome Biol , vol.9 , pp. 1
    • Guan, Y.1    Myers, C.L.2    Hess, D.C.3
  • 17
    • 59849089151 scopus 로고    scopus 로고
    • Pfp: Automated prediction of gene ontology functional annotations with confidence scores using protein sequence data
    • Hawkins, T., Chitale, M., Luban, S., et al. 2009. Pfp: Automated prediction of gene ontology functional annotations with confidence scores using protein sequence data. Proteins. 74, 566-582.
    • (2009) Proteins , vol.74 , pp. 566-582
    • Hawkins, T.1    Chitale, M.2    Luban, S.3
  • 20
    • 60749104295 scopus 로고    scopus 로고
    • Sequence-based feature prediction and annotation of proteins
    • Juncker, A.S., Jensen, L.J., Pierleoni, A., et al. 2009. Sequence-based feature prediction and annotation of proteins. Genome Biol. 10, 206.
    • (2009) Genome Biol , vol.10 , pp. 206
    • Juncker, A.S.1    Jensen, L.J.2    Pierleoni, A.3
  • 21
    • 47549098627 scopus 로고    scopus 로고
    • Inferring mouse gene functions from genomic-scale data using a combined functional network/classification strategy
    • Kim, W., Krumpelman, C., and Marcotte, E. 2008. Inferring mouse gene functions from genomic-scale data using a combined functional network/classification strategy. Genome Biol. 9, S5.
    • (2008) Genome Biol , vol.9 , pp. S5
    • Kim, W.1    Krumpelman, C.2    Marcotte, E.3
  • 22
    • 77949748403 scopus 로고    scopus 로고
    • Bayesian Markov random field analysis for protein function prediction based on network data
    • Kourmpetis, Y.A.I., van Dijk, A.D.J., Bink, M.C.A.M., et al. 2010. Bayesian Markov random field analysis for protein function prediction based on network data. PLoS ONE. 5, e9293.
    • (2010) PLoS ONE , vol.5 , pp. e9293
    • Kourmpetis, Y.A.I.1    Van Dijk, A.D.J.2    Bink, M.C.A.M.3
  • 23
    • 84879477284 scopus 로고    scopus 로고
    • MS-kNN: Protein function prediction by integrating multiple data sources
    • Lan, L., Djuric, N., Guo, Y., et al. 2013. MS-kNN: Protein function prediction by integrating multiple data sources. BMC Bioinform. 14, S8.
    • (2013) BMC Bioinform , vol.14 , pp. S8
    • Lan, L.1    Djuric, N.2    Guo, Y.3
  • 24
    • 8844263749 scopus 로고    scopus 로고
    • A statistical framework for genomic data fusion
    • Lanckriet, G.R.G., De Bie, T., Cristianini, N., et al. 2004. A statistical framework for genomic data fusion. Bioin-formatics. 20, 2626-2635.
    • (2004) Bioin-formatics , vol.20 , pp. 2626-2635
    • Lanckriet, G.R.G.1    De Bie, T.2    Cristianini, N.3
  • 25
    • 33645901213 scopus 로고    scopus 로고
    • Diffusion kernel-based logistic regression models for protein function prediction
    • Lee, H., Tu, Z., Deng, M., et al. 2006. Diffusion kernel-based logistic regression models for protein function prediction. OMICS. 10, 40-55.
    • (2006) OMICS , vol.10 , pp. 40-55
    • Lee, H.1    Tu, Z.2    Deng, M.3
  • 26
    • 77949543086 scopus 로고    scopus 로고
    • Cost-sensitive learning and the class imbalanced problem
    • In Sammut C., ed Springer, New York
    • Ling, C.X., and Sheng, V.S. 2007. Cost-sensitive learning and the class imbalanced problem. In Sammut, C., ed. Encyclopedia of Machine Learning. Springer, New York.
    • (2007) Encyclopedia of Machine Learning
    • Ling, C.X.1    Sheng, V.S.2
  • 27
    • 42149090997 scopus 로고    scopus 로고
    • High-precision high-coverage functional inference from integrated data sources
    • Linghu, B., Snitkin, E.S., Holloway, D.T., et al. 2008. High-precision high-coverage functional inference from integrated data sources. BMC Bioinform. 9, 119.
    • (2008) BMC Bioinform , vol.9 , pp. 119
    • Linghu, B.1    Snitkin, E.S.2    Holloway, D.T.3
  • 28
    • 77951948203 scopus 로고    scopus 로고
    • Gene function prediction from synthetic leathality networks via ranking on demand
    • Lippert, G., et al. 2010. Gene function prediction from synthetic leathality networks via ranking on demand. Bioin-formatics. 26, 912-918.
    • (2010) Bioin-formatics , vol.26 , pp. 912-918
    • Lippert, G.1
  • 29
    • 0033523854 scopus 로고    scopus 로고
    • A combined algorithm for genome-wide prediction of protein function
    • Marcotte, E.M., Pellegrini, M., Thompson, M.J., et al. 1999. A combined algorithm for genome-wide prediction of protein function. Nature. 402, 83-86.
    • (1999) Nature , vol.402 , pp. 83-86
    • Marcotte, E.M.1    Pellegrini, M.2    Thompson, M.J.3
  • 30
    • 13244268370 scopus 로고    scopus 로고
    • Gotcha: A new method for prediction of protein function assessed by the annotation of seven genomes
    • Martin, D., Berriman, M., and Barton, G. 2004. Gotcha: A new method for prediction of protein function assessed by the annotation of seven genomes. BMC Bioinform. 5, 178.
    • (2004) BMC Bioinform , vol.5 , pp. 178
    • Martin, D.1    Berriman, M.2    Barton, G.3
  • 31
    • 0033664385 scopus 로고    scopus 로고
    • Protein networks built by association
    • Mayer, M.L., and Hieter, P. 2000. Protein networks built by association. Nat. Biotechnol. 18, 1242-1243.
    • (2000) Nat. Biotechnol , vol.18 , pp. 1242-1243
    • Mayer, M.L.1    Hieter, P.2
  • 32
    • 84928393479 scopus 로고    scopus 로고
    • Think globally and solve locally: Secondary memory-based network learning for automated multi-species function prediction
    • Mesiti, M., Re, M., and Valentini, G. 2014. Think globally and solve locally: Secondary memory-based network learning for automated multi-species function prediction. GigaScience. 3, 5.
    • (2014) GigaScience , vol.3 , pp. 5
    • Mesiti, M.1    Re, M.2    Valentini, G.3
  • 34
    • 77954309042 scopus 로고    scopus 로고
    • Fast integration of heterogeneous data sources for predicting gene function with limited annotation
    • Mostafavi, S., and Morris, Q. 2010. Fast integration of heterogeneous data sources for predicting gene function with limited annotation. Bioinformatics. 26, 1759-1765.
    • (2010) Bioinformatics , vol.26 , pp. 1759-1765
    • Mostafavi, S.1    Morris, Q.2
  • 35
    • 47549107689 scopus 로고    scopus 로고
    • GeneMANIA: A real-time multiple association network integration algorithm for predicting gene function
    • Mostafavi, S., Ray, D., Farley, D.W., et al. 2008. GeneMANIA: A real-time multiple association network integration algorithm for predicting gene function. Genome Biol. 9, S4.
    • (2008) Genome Biol , vol.9 , pp. S4
    • Mostafavi, S.1    Ray, D.2    Farley, D.W.3
  • 37
    • 34548749776 scopus 로고    scopus 로고
    • Context-sensitive data integration and prediction of biological networks
    • Myers, C.L., and Troyanskaya, O.G. 2007. Context-sensitive data integration and prediction of biological networks. Bioinformatics. 23, 2322-2330.
    • (2007) Bioinformatics , vol.23 , pp. 2322-2330
    • Myers, C.L.1    Troyanskaya, O.G.2
  • 38
    • 47549088657 scopus 로고    scopus 로고
    • Consistent probabilistic outputs for protein function prediction
    • Obozinski, G., Lanckriet, G., Grant, C., et al. 2008. Consistent probabilistic outputs for protein function prediction. Genome Biol. 9, S6.
    • (2008) Genome Biol , vol.9 , pp. S6
    • Obozinski, G.1    Lanckriet, G.2    Grant, C.3
  • 39
    • 67650898284 scopus 로고    scopus 로고
    • Incorporating functional inter-relationships into protein function prediction algorithms
    • Pandey, G., Myers, C., and Kumar, V. 2009. Incorporating functional inter-relationships into protein function prediction algorithms. BMC Bioinform. 10, 1-142.
    • (2009) BMC Bioinform. , Issue.10 , pp. 1-142
    • Pandey, G.1    Myers, C.2    Kumar, V.3
  • 40
    • 0036100116 scopus 로고    scopus 로고
    • Learning gene functional classifications from multiple data types
    • Pavlidis, P., Cai, J., Weston, J., et al. 2002. Learning gene functional classifications from multiple data types. J. Comput. Biol. 9, 401-411.
    • (2002) J. Comput. Biol , vol.9 , pp. 401-411
    • Pavlidis, P.1    Cai, J.2    Weston, J.3
  • 41
    • 47549116997 scopus 로고    scopus 로고
    • A critical assessment of Mus musculus gene function prediction using integrated genomic evidence
    • Pena-Castillo, L., Tasan, M., Myers, C., et al. 2008. A critical assessment of Mus musculus gene function prediction using integrated genomic evidence. Genome Biol. 9, S1.
    • (2008) Genome Biol , vol.9 , pp. S1
    • Pena-Castillo, L.1    Tasan, M.2    Myers, C.3
  • 42
    • 42149163727 scopus 로고    scopus 로고
    • A mixture of feature experts approach for protein-protein interaction prediction
    • Qi, Y., Seetharaman, J.K., and Joseph, Z.B. 2007. A mixture of feature experts approach for protein-protein interaction prediction. BMC Bioinform. 8, S6.
    • (2007) BMC Bioinform , vol.8 , pp. S6
    • Qi, Y.1    Seetharaman, J.K.2    Joseph, Z.B.3
  • 43
    • 84874663959 scopus 로고    scopus 로고
    • A large-scale evaluation of computational protein function prediction
    • Radivojac, P., Clark, W.T., Oron, T.R., et al. 2013. A large-scale evaluation of computational protein function prediction. Nat. Methods. 10, 221-227.
    • (2013) Nat. Methods , vol.10 , pp. 221-227
    • Radivojac, P.1    Clark, W.T.2    Oron, T.R.3
  • 44
    • 84875276463 scopus 로고    scopus 로고
    • A fast ranking algorithm for predicting gene functions in biomolecular networks
    • Re, M., Mesiti, M., and Valentini, G. 2012. A fast ranking algorithm for predicting gene functions in biomolecular networks. IEEE ACM Trans. Comput. Biol. Bioinform. 9, 1812-1818.
    • (2012) IEEE ACM Trans. Comput. Biol. Bioinform , vol.9 , pp. 1812-1818
    • Re, M.1    Mesiti, M.2    Valentini, G.3
  • 45
    • 84937418622 scopus 로고    scopus 로고
    • A hierarchical ensemble method for DAG-structured taxonomies
    • of Lecture Notes in Computer Science. Springer, New York
    • Robinson, P., Frasca, M., Kohler, S., et al. 2015. A hierarchical ensemble method for DAG-structured taxonomies, 15-36. In Multiple Classifier Systems-MCS 2015, Volume 9132 of Lecture Notes in Computer Science. Springer, New York.
    • (2015) Multiple Classifier Systems-MCS 2015 , vol.9132 , pp. 15-36
    • Robinson, P.1    Frasca, M.2    Kohler, S.3
  • 46
    • 85044707001 scopus 로고    scopus 로고
    • Network-based prediction of protein function
    • Sharan, R., Ulitsky, I., and Shamir, R. 2007. Network-based prediction of protein function. Mol. Sys. Biol. 8, 88.
    • (2007) Mol. Sys. Biol , vol.8 , pp. 88
    • Sharan, R.1    Ulitsky, I.2    Shamir, R.3
  • 47
    • 77951518446 scopus 로고    scopus 로고
    • Hierarchical classification of Gene Ontology terms using the GOstruct method
    • Sokolov, A., and Ben-Hur, A. 2010. Hierarchical classification of Gene Ontology terms using the GOstruct method. J. Bioinform. Comput. Biol. 8, 357-376.
    • (2010) J. Bioinform. Comput. Biol , vol.8 , pp. 357-376
    • Sokolov, A.1    Ben-Hur, A.2
  • 48
    • 84879298648 scopus 로고    scopus 로고
    • Combining heterogeneous data sources for accurate functional annotation of proteins
    • Sokolov, A., Funk, C., Graim, K., et al. 2013. Combining heterogeneous data sources for accurate functional annotation of proteins. BMC Bioinform. 14, S10.
    • (2013) BMC Bioinform , vol.14 , pp. S10
    • Sokolov, A.1    Funk, C.2    Graim, K.3
  • 49
    • 47549104748 scopus 로고    scopus 로고
    • Combining guilt-by-association and guiltby- profiling to predict saccha-romyces cerevisiae gene function
    • Tian, W., Zhang, L., Tasan, M., et al. 2008. Combining guilt-by-association and guiltby- profiling to predict saccha-romyces cerevisiae gene function. Genome Biol. 9, S7.
    • (2008) Genome Biol , vol.9 , pp. S7
    • Tian, W.1    Zhang, L.2    Tasan, M.3
  • 50
    • 27544435126 scopus 로고    scopus 로고
    • Fast protein classification with multiple networks
    • Tsuda, K., Shin, H., and Scholkopf, B. 2005. Fast protein classification with multiple networks. Bioinformatics. 21, 59-65.
    • (2005) Bioinformatics , vol.21 , pp. 59-65
    • Tsuda, K.1    Shin, H.2    Scholkopf, B.3
  • 51
    • 84926348418 scopus 로고    scopus 로고
    • Hierarchical ensemble methods for protein function prediction
    • Valentini, G. 2014. Hierarchical ensemble methods for protein function prediction. ISRN Bioinform. 2014, 1-34.
    • (2014) ISRN Bioinform , vol.2014 , pp. 1-34
    • Valentini, G.1
  • 52
    • 84902547630 scopus 로고    scopus 로고
    • An extensive analysis of disease-gene associations using network integration and fast kernel-based gene prioritization methods
    • Valentini, G., Paccanaro, A., Caniza, H., et al. 2014. An extensive analysis of disease-gene associations using network integration and fast kernel-based gene prioritization methods. Artif. Intell. Med. 61, 63-78.
    • (2014) Artif. Intell. Med , vol.61 , pp. 63-78
    • Valentini, G.1    Paccanaro, A.2    Caniza, H.3
  • 53
    • 84885209138 scopus 로고    scopus 로고
    • Three-level prediction of protien function by combining profile-sequence search, profile-profile search, and domain co-occurence networks
    • Wang, Z., Cao, R., and Cheng, J. 2013. Three-level prediction of protien function by combining profile-sequence search, profile-profile search, and domain co-occurence networks. BMC Bioinform. 14, S3.
    • (2013) BMC Bioinform , vol.14 , pp. S3
    • Wang, Z.1    Cao, R.2    Cheng, J.3
  • 54
    • 84864455716 scopus 로고    scopus 로고
    • Imp: A multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks
    • Wong, A.K., Park, C.Y., Greene, C.S., et al. 2012. Imp: A multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks. Nucleic Acids Res. 40, W484-W490.
    • (2012) Nucleic Acids Res , vol.40 , pp. W484-W490
    • Wong, A.K.1    Park, C.Y.2    Greene, C.S.3
  • 55
    • 33947313355 scopus 로고    scopus 로고
    • A regression-based k nearest neighbor algorithm for gene function prediction from heterogeneous data
    • Yao, Z., and Ruzzo, W.L. 2006. A regression-based k nearest neighbor algorithm for gene function prediction from heterogeneous data. BMC Bioinform. 7, S1.
    • (2006) BMC Bioinform , vol.7 , pp. S1
    • Yao, Z.1    Ruzzo, W.L.2
  • 56
    • 84903398946 scopus 로고    scopus 로고
    • Negative example selection for protein function prediction: The NoGO database
    • Youngs, N., Penfold-Brown, D., Bonneau, R., and Shasha, D. 2014. Negative example selection for protein function prediction: The NoGO database. PLoS Comput. Biol. 10, e1003644.
    • (2014) PLoS Comput. Biol , vol.10 , pp. e1003644
    • Youngs, N.1    Penfold-Brown, D.2    Bonneau, R.3    Shasha, D.4
  • 57
    • 84859205429 scopus 로고    scopus 로고
    • A framework for incorporating functional interrelationships into protein function prediction algorithms
    • Zhang, X., and Dai, D. 2012. A framework for incorporating functional interrelationships into protein function prediction algorithms. IEEE ACM Trans. Comput. Biol. Bioinform. 9, 740-753.
    • (2012) IEEE ACM Trans. Comput. Biol. Bioinform , vol.9 , pp. 740-753
    • Zhang, X.1    Dai, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.