메뉴 건너뛰기




Volumn 27, Issue 6, 2016, Pages 1677-1692

Learning node labels with multi-category Hopfield networks

Author keywords

Binary classification; Biological networks; Multi category Hopfield network; Protein function prediction; Unbalanced graphs

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; BIOINFORMATICS; FORECASTING; GRAPHIC METHODS; LEARNING ALGORITHMS; LEARNING SYSTEMS; PROTEINS; WORLD WIDE WEB;

EID: 84932097860     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-015-1965-1     Document Type: Article
Times cited : (9)

References (71)
  • 1
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: tool for the unification of biology. Gene ontology consortium
    • Ashburner M et al (2000) Gene ontology: tool for the unification of biology. Gene ontology consortium. Nat Genet 25(1):25–29
    • (2000) Nat Genet , vol.25 , Issue.1 , pp. 25-29
    • Ashburner, M.1
  • 2
    • 11144260929 scopus 로고    scopus 로고
    • Parametric identification of robotic systems with stable time-varying Hopfield networks
    • Atencia M, Joya G, Sandoval F (2004) Parametric identification of robotic systems with stable time-varying Hopfield networks. Neural Comput Appl 13(4):270–280. doi:10.1007/s00521-004-0421-4
    • (2004) Neural Comput Appl , vol.13 , Issue.4 , pp. 270-280
    • Atencia, M.1    Joya, G.2    Sandoval, F.3
  • 5
    • 0030861438 scopus 로고    scopus 로고
    • the SWISS-PROT protein sequence data bank and its supplement TrEMBL
    • Bairoch A, Apweiler R (1997) the SWISS-PROT protein sequence data bank and its supplement TrEMBL. Nucl Acids Res 25(1):31–36
    • (1997) Nucl Acids Res , vol.25 , Issue.1 , pp. 31-36
    • Bairoch, A.1    Apweiler, R.2
  • 6
    • 34547969350 scopus 로고    scopus 로고
    • Label propagation and quadratic criterion
    • Chapelle O, Scholkopf B, Zien A, (eds), MIT Press, Cambridge
    • Bengio Y, Delalleau O, Le Roux N (2006) Label propagation and quadratic criterion. In: Chapelle O, Scholkopf B, Zien A (eds) Semi supervised learning. MIT Press, Cambridge, pp 193–216
    • (2006) Semi supervised learning , pp. 193-216
    • Bengio, Y.1    Delalleau, O.2    Le Roux, N.3
  • 7
    • 80052409679 scopus 로고    scopus 로고
    • Cosnet: a cost sensitive neural network for semi-supervised learning in graphs. In: ECML/PKDD (1), Lecture Notes in Computer Science, vol 6911, pp 219–234
    • Bertoni A, Frasca M, Valentini G (2011) Cosnet: a cost sensitive neural network for semi-supervised learning in graphs. In: ECML/PKDD (1), Lecture Notes in Computer Science, vol 6911, pp 219–234. Springer
    • (2011) Springer
    • Bertoni, A.1    Frasca, M.2    Valentini, G.3
  • 12
    • 0035531681 scopus 로고    scopus 로고
    • Multiprocessor task assignment with fuzzy Hopfield neural network clustering technique
    • Chen RM, Huang YM (2001) Multiprocessor task assignment with fuzzy Hopfield neural network clustering technique. Neural Comput Appl 10(1):12–21. doi:10.1007/s005210170013
    • (2001) Neural Comput Appl , vol.10 , Issue.1 , pp. 12-21
    • Chen, R.M.1    Huang, Y.M.2
  • 13
    • 78651274362 scopus 로고    scopus 로고
    • You are where you tweet: a content-based approach to geo-locating twitter users. In: Proceedings of the 19th ACM international conference on information and knowledge management., CIKM ’10ACM, New York
    • Cheng Z, Caverlee J, Lee K (2010) You are where you tweet: a content-based approach to geo-locating twitter users. In: Proceedings of the 19th ACM international conference on information and knowledge management., CIKM ’10ACM, New York, pp 759–768
    • (2010) pp 759–768
    • Cheng, Z.1    Caverlee, J.2    Lee, K.3
  • 14
    • 33745619564 scopus 로고    scopus 로고
    • Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions
    • Chua HN, Sung WK, Wong L (2006) Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics 22:1623–1630
    • (2006) Bioinformatics , vol.22 , pp. 1623-1630
    • Chua, H.N.1    Sung, W.K.2    Wong, L.3
  • 15
    • 3142622851 scopus 로고    scopus 로고
    • An integrated probabilistic model for functional prediction of proteins
    • Deng M, Chen T, Sun F (2004) An integrated probabilistic model for functional prediction of proteins. J Comput Biol 11:463–475
    • (2004) J Comput Biol , vol.11 , pp. 463-475
    • Deng, M.1    Chen, T.2    Sun, F.3
  • 16
    • 84867577175 scopus 로고    scopus 로고
    • The foundations of cost-sensitive learning. In: Proceedings of the seventeenth international joint conference on artificial intelligence
    • Elkan C (2001) The foundations of cost-sensitive learning. In: Proceedings of the seventeenth international joint conference on artificial intelligence, pp 973–978
    • (2001) pp 973–978
    • Elkan, C.1
  • 17
    • 0030220523 scopus 로고    scopus 로고
    • A new family of multivalued networks
    • Erdem MH, Ozturk Y (1996) A new family of multivalued networks. Neural Netw 9(6):979–989
    • (1996) Neural Netw , vol.9 , Issue.6 , pp. 979-989
    • Erdem, M.H.1    Ozturk, Y.2
  • 20
    • 84929277565 scopus 로고    scopus 로고
    • Frasca M Automated gene function prediction through gene multifunctionality in biological networks. In press
    • Frasca M (2015) Automated gene function prediction through gene multifunctionality in biological networks. Neurocomputing. doi: 10.1016/j.neucom.2015.04.007. http://www.sciencedirect.com/science/article/pii/S0925231215004142. In press
    • (2015) Neurocomputing.
  • 21
    • 84875251066 scopus 로고    scopus 로고
    • A neural network algorithm for semi-supervised node label learning from unbalanced data
    • Frasca M, Bertoni A et al (2013) A neural network algorithm for semi-supervised node label learning from unbalanced data. Neural Netw 43:84–98
    • (2013) Neural Netw , vol.43 , pp. 84-98
    • Frasca, M.1    Bertoni, A.2
  • 22
    • 84893617064 scopus 로고    scopus 로고
    • A neural network based algorithm for gene expression prediction from chromatin structure. In: IJCNN, pp 1–8
    • Frasca M, Pavesi G (2013) A neural network based algorithm for gene expression prediction from chromatin structure. In: IJCNN, pp 1–8. IEEE
    • (2013) IEEE
    • Frasca, M.1    Pavesi, G.2
  • 23
    • 0035798406 scopus 로고    scopus 로고
    • Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure
    • Gough J, Karplus K, Hughey R, Chothia C (2001) Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol 313(4):903–919
    • (2001) J Mol Biol , vol.313 , Issue.4 , pp. 903-919
    • Gough, J.1    Karplus, K.2    Hughey, R.3    Chothia, C.4
  • 25
    • 84863083687 scopus 로고    scopus 로고
    • The organization of behavior: a neuropsychological theory
    • US: Mahwah
    • Hebb DO (2002) The organization of behavior: a neuropsychological theory. Lawrence Erlbaum Associates Inc, US, Mahwah. http://www.loc.gov/catdir/enhancements/fy0659/2002018867-d.html
    • (2002) Lawrence Erlbaum Associates Inc
    • Hebb, D.O.1
  • 26
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield J (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79:2554–2558
    • (1982) Proc Natl Acad Sci USA , vol.79 , pp. 2554-2558
    • Hopfield, J.1
  • 28
    • 0015680655 scopus 로고
    • Clustering using a similarity measure based on shared near neighbors
    • Jarvis RA, Patrick EA (1973) Clustering using a similarity measure based on shared near neighbors. IEEE Trans Comput 22(11):1025–1034
    • (1973) IEEE Trans Comput , vol.22 , Issue.11 , pp. 1025-1034
    • Jarvis, R.A.1    Patrick, E.A.2
  • 29
    • 1542327694 scopus 로고    scopus 로고
    • Whole-genome annotation by using evidence integration in functional-linkage networks
    • Karaoz U et al (2004) Whole-genome annotation by using evidence integration in functional-linkage networks. Proc Natl Acad Sci USA 101:2888–2893
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 2888-2893
    • Karaoz, U.1
  • 30
    • 41549139527 scopus 로고    scopus 로고
    • Walking the interactome for prioritization of candidate disease genes
    • Kohler S, Bauer S, Horn D, Robinson P (2008) Walking the interactome for prioritization of candidate disease genes. Am J Human Genet 82(4):948–958
    • (2008) Am J Human Genet , vol.82 , Issue.4 , pp. 948-958
    • Kohler, S.1    Bauer, S.2    Horn, D.3    Robinson, P.4
  • 31
    • 56449101429 scopus 로고    scopus 로고
    • Variable step search algorithm for feedforward networks
    • Kordos M, Duch W (2008) Variable step search algorithm for feedforward networks. Neurocomputing 71(13–15):2470–2480. doi:10.1016/j.neucom.2008.02.019
    • (2008) Neurocomputing , vol.71 , Issue.13-15 , pp. 2470-2480
    • Kordos, M.1    Duch, W.2
  • 32
    • 84879477284 scopus 로고    scopus 로고
    • MS-kNN: protein function prediction by integrating multiple data sources
    • Lan L et al (2013) MS-kNN: protein function prediction by integrating multiple data sources. BMC Bioinformatics 14(Suppl 3:S8)
    • (2013) BMC Bioinformatics , vol.14
    • Lan, L.1
  • 34
    • 77949543086 scopus 로고    scopus 로고
    • Class imbalance problem
    • Ling C, Sheng V (2010) Class imbalance problem. In: Sammut C, Webb G (eds) Encyclopedia of machine learning, Springer, US, pp 171–171. doi:10.1007/978-0-387-30164-8_110
    • (2010) Encyclopedia of machine learning
    • Ling, C.1    Sheng, V.2
  • 35
    • 77949543086 scopus 로고    scopus 로고
    • Cost-sensitive learning
    • Ling C, Sheng V (2010) Cost-sensitive learning. In: Sammut C, Webb G (eds) Encyclopedia of machine learning, Springer, US, pp. 231–235. doi:10.1007/978-0-387-30164-8_181
    • (2010) Encyclopedia of machine learning
    • Ling, C.1    Sheng, V.2
  • 36
    • 0006217743 scopus 로고    scopus 로고
    • Random walks on graphs: a survey
    • Miklós D, Sós VT, Szőnyi T, (eds), 2, János Bolyai Mathematical Society, Budapest
    • Lovász L (1996) Random walks on graphs: a survey. In: Miklós D, Sós VT, Szőnyi T (eds) Combinatorics, Paul Erdős is eighty, vol 2. János Bolyai Mathematical Society, Budapest, pp 353–398
    • (1996) Combinatorics, Paul Erdős is eighty , pp. 353-398
    • Lovász, L.1
  • 37
    • 0033242064 scopus 로고    scopus 로고
    • The object perceptron learning algorithm on generalised Hopfield networks for associative memory
    • Ma J (1999) The object perceptron learning algorithm on generalised Hopfield networks for associative memory. Neural Comput Appl 8(1):25–32. doi:10.1007/s005210050004
    • (1999) Neural Comput Appl , vol.8 , Issue.1 , pp. 25-32
    • Ma, J.1
  • 38
  • 39
    • 0033664385 scopus 로고    scopus 로고
    • Protein networks-built by association
    • Mayer ML, Hieter P (2000) Protein networks-built by association. Nat Biotechnol 18(12):1242–3
    • (2000) Nat Biotechnol , vol.18 , Issue.12 , pp. 1242-1243
    • Mayer, M.L.1    Hieter, P.2
  • 40
    • 0035576070 scopus 로고    scopus 로고
    • An efficient multivalued Hopfield network for the traveling salesman problem
    • Mérida-Casermeiro E, Galán-Marín G, Muñoz Pérez J (2001) An efficient multivalued Hopfield network for the traveling salesman problem. Neural Process Lett 14(3):203–216. doi:10.1023/A:1012751230791
    • (2001) Neural Process Lett , vol.14 , Issue.3 , pp. 203-216
    • Mérida-Casermeiro, E.1    Galán-Marín, G.2    Muñoz Pérez, J.3
  • 41
    • 84928393479 scopus 로고    scopus 로고
    • Think globally and solve locally: secondary memory-based network learning for automated multi-species function prediction
    • Mesiti M, Re M, Valentini G (2014) Think globally and solve locally: secondary memory-based network learning for automated multi-species function prediction. Giga Sci 3:5. doi:10.1186/2047-217X-3-5
    • (2014) Giga Sci , vol.3 , pp. 5
    • Mesiti, M.1    Re, M.2    Valentini, G.3
  • 43
    • 77954309042 scopus 로고    scopus 로고
    • Fast integration of heterogeneous data sources for predicting gene function with limited annotation
    • Mostafavi S, Morris Q (2010) Fast integration of heterogeneous data sources for predicting gene function with limited annotation. Bioinformatics 26(14):1759–1765
    • (2010) Bioinformatics , vol.26 , Issue.14 , pp. 1759-1765
    • Mostafavi, S.1    Morris, Q.2
  • 44
    • 47549107689 scopus 로고    scopus 로고
    • GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function
    • Mostafavi S, Ray D, Farley DW, et al (2008) GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol 9(Suppl 1), S4+
    • (2008) Genome Biol , vol.9 , pp. 4
    • Mostafavi, S.1    Ray, D.2    Farley, D.W.3
  • 46
    • 75549085495 scopus 로고    scopus 로고
    • eggnog v2. 0: extending the evolutionary genealogy of genes with enhanced non-supervised orthologous groups, species and functional annotations
    • Muller J, Szklarczyk D, Julien P, Letunic I, Roth A, Kuhn M, Powell S, von Mering C, Doerks T, Jensen LJ et al (2010) eggnog v2. 0: extending the evolutionary genealogy of genes with enhanced non-supervised orthologous groups, species and functional annotations. Nucl Acids Res 38(suppl 1):D190–D195
    • (2010) Nucl Acids Res , vol.38 , pp. D190-D195
    • Muller, J.1    Szklarczyk, D.2    Julien, P.3    Letunic, I.4    Roth, A.5    Kuhn, M.6    Powell, S.7    von Mering, C.8    Doerks, T.9    Jensen, L.J.10
  • 47
    • 33845701686 scopus 로고    scopus 로고
    • The art of gene function prediction
    • Murali TM, Wu CJ, Kasif S (2006) The art of gene function prediction. Nat Biotechnol 24(12):1474–1475. doi:10.1038/nbt1206-1474
    • (2006) Nat Biotechnol , vol.24 , Issue.12 , pp. 1474-1475
    • Murali, T.M.1    Wu, C.J.2    Kasif, S.3
  • 48
    • 84898945868 scopus 로고    scopus 로고
    • A review of impulse buying behavior
    • Muruganantham G, Bhakat RS (2013) A review of impulse buying behavior. Int J Mark Stud 5(3):p149
    • (2013) Int J Mark Stud , vol.5 , Issue.3 , pp. 149
    • Muruganantham, G.1    Bhakat, R.S.2
  • 49
    • 29144442904 scopus 로고    scopus 로고
    • Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps
    • Nabieva E, Jim K, Agarwal A, Chazelle B, Singh M (2005) Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 21(S1):302–310
    • (2005) Bioinformatics , vol.21 , Issue.S1 , pp. 302-310
    • Nabieva, E.1    Jim, K.2    Agarwal, A.3    Chazelle, B.4    Singh, M.5
  • 50
    • 0346972456 scopus 로고    scopus 로고
    • A neuro-fuzzy approach for functional genomics data interpretation and analysis
    • Neagu D, Palade V (2003) A neuro-fuzzy approach for functional genomics data interpretation and analysis. Neural Comput Appl 12(3–4):153–159. doi:10.1007/s00521-003-0388-6
    • (2003) Neural Comput Appl , vol.12 , Issue.3-4 , pp. 153-159
    • Neagu, D.1    Palade, V.2
  • 51
    • 77952807496 scopus 로고    scopus 로고
    • A general graph-based semi-supervised learning with novel class discovery
    • Nie F, Xiang S, Liu Y, Zhang C (2010) A general graph-based semi-supervised learning with novel class discovery. Neural Comput Appl 19(4):549–555. doi:10.1007/s00521-009-0305-8
    • (2010) Neural Comput Appl , vol.19 , Issue.4 , pp. 549-555
    • Nie, F.1    Xiang, S.2    Liu, Y.3    Zhang, C.4
  • 52
    • 47549116997 scopus 로고    scopus 로고
    • A critical assessment of Mus musculus gene function prediction using integrated genomic evidence
    • Pena-Castillo L, Tasan M, Myers C et al (2008) A critical assessment of Mus musculus gene function prediction using integrated genomic evidence. Genome Biol 9:S1
    • (2008) Genome Biol , vol.9 , pp. 1
    • Pena-Castillo, L.1    Tasan, M.2    Myers, C.3
  • 53
    • 84874663959 scopus 로고    scopus 로고
    • A large-scale evaluation of computational protein function prediction
    • Radivojac P et al (2013) A large-scale evaluation of computational protein function prediction. Nat Methods 10(3):221–227
    • (2013) Nat Methods , vol.10 , Issue.3 , pp. 221-227
    • Radivojac, P.1
  • 54
    • 84875276463 scopus 로고    scopus 로고
    • A fast ranking algorithm for predicting gene functions in biomolecular networks
    • Re M, Mesiti M, Valentini G (2012) A fast ranking algorithm for predicting gene functions in biomolecular networks. IEEE/ACM Trans Comput Biol Bioinform 9(6):1812–1818. doi:10.1109/TCBB.2012.114
    • (2012) IEEE/ACM Trans Comput Biol Bioinform , vol.9 , Issue.6 , pp. 1812-1818
    • Re, M.1    Mesiti, M.2    Valentini, G.3
  • 55
    • 84870859088 scopus 로고    scopus 로고
    • Cancer module genes ranking using kernelized score functions
    • Re M, Valentini G (2012) Cancer module genes ranking using kernelized score functions. BMC Bioinform 13(Suppl 14/S3). doi:10.1186/1471-2105-13-S14-S3. http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S14/S3
    • (2012) BMC Bioinform
    • Re, M.1    Valentini, G.2
  • 56
    • 84976312333 scopus 로고    scopus 로고
    • A non-binary associative memory with exponential pattern retrieval capacity and iterative learning: Extended Results
    • Salavati AH, Kumar KR, Shokrollahi A (2013) A non-binary associative memory with exponential pattern retrieval capacity and iterative learning: Extended Results. CoRR abs/1302.1156
    • (2013) CoRR abs/1302 , pp. 1156
    • Salavati, A.H.1    Kumar, K.R.2    Shokrollahi, A.3
  • 57
    • 0033669189 scopus 로고    scopus 로고
    • A network of protein-protein interactions in yeast
    • Schwikowski B, Uetz P, Fields S (2000) A network of protein-protein interactions in yeast. Nat Biotechnol 18(12):1257–1261
    • (2000) Nat Biotechnol , vol.18 , Issue.12 , pp. 1257-1261
    • Schwikowski, B.1    Uetz, P.2    Fields, S.3
  • 58
    • 84875639259 scopus 로고    scopus 로고
    • Predicting in-hospital mortality of icu patients: the physionet/computing in cardiology challenge 2012
    • Silva I, Moody G, Scott DJ, Celi LA, Mark RG (2012) Predicting in-hospital mortality of icu patients: the physionet/computing in cardiology challenge 2012. Comput Cardiol 39:245–248. http://www.biomedsearch.com/nih/Predicting-In-Hospital-Mortality-ICU/24678516.html
    • (2012) Comput Cardiol , vol.39 , pp. 245-248
    • Silva, I.1    Moody, G.2    Scott, D.J.3    Celi, L.A.4    Mark, R.G.5
  • 59
    • 84976305596 scopus 로고    scopus 로고
    • Partially labeled classification with Markov random walks. In: Advances in neural information processing systems (NIPS) 14:945–952
    • Szummer M, Jaakkola T (2001) Partially labeled classification with Markov random walks. In: Advances in neural information processing systems (NIPS) 14:945–952. MIT Press
    • (2001) MIT Press
    • Szummer, M.1    Jaakkola, T.2
  • 60
    • 27544435126 scopus 로고    scopus 로고
    • Fast protein classification with multiple networks
    • Tsuda K, Shin H, Scholkopf B (2005) Fast protein classification with multiple networks. Bioinformatics 21(Suppl 2):ii59–ii65
    • (2005) Bioinformatics , vol.21 , pp. ii59-ii65
    • Tsuda, K.1    Shin, H.2    Scholkopf, B.3
  • 61
    • 84902547630 scopus 로고    scopus 로고
    • An extensive analysis of disease-gene associations using network integration and fast kernel-based gene prioritization methods
    • Valentini G, Paccanaro A, Caniza H, Romero A, Re M (2014) An extensive analysis of disease-gene associations using network integration and fast kernel-based gene prioritization methods. Artif Intell Med 61(2):63–78. doi:10.1016/j.artmed.2014.03.003
    • (2014) Artif Intell Med , vol.61 , Issue.2 , pp. 63-78
    • Valentini, G.1    Paccanaro, A.2    Caniza, H.3    Romero, A.4    Re, M.5
  • 62
    • 0038699587 scopus 로고    scopus 로고
    • Global protein function prediction from protein-protein interaction networks
    • Vazquez A, Flammini A, Maritan A, Vespignani A (2003) Global protein function prediction from protein-protein interaction networks. Nat Biotechnol 21:697–700
    • (2003) Nat Biotechnol , vol.21 , pp. 697-700
    • Vazquez, A.1    Flammini, A.2    Maritan, A.3    Vespignani, A.4
  • 63
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1:80–83
    • (1945) Biometrics , vol.1 , pp. 80-83
    • Wilcoxon, F.1
  • 64
    • 84976284222 scopus 로고    scopus 로고
    • Wolfram Research Inc: Mathematica. Version 9.0
    • Wolfram Research Inc: Mathematica (2012) http://www.wolfram.com/mathematica/. Version 9.0
    • (2012)
  • 65
    • 84864455716 scopus 로고    scopus 로고
    • Imp: a multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks
    • Wong AK, Park CY, Greene CS, Bongo LA, Guan Y, Troyanskaya OG (2012) Imp: a multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks. Nucl Acids Res 40(W1):W484–W490
    • (2012) Nucl Acids Res , vol.40 , Issue.W1 , pp. W484-W490
    • Wong, A.K.1    Park, C.Y.2    Greene, C.S.3    Bongo, L.A.4    Guan, Y.5    Troyanskaya, O.G.6
  • 66
    • 80052815520 scopus 로고    scopus 로고
    • Glocalization pursuit support vector machine
    • Xue H, Chen S (2011) Glocalization pursuit support vector machine. Neural Comput Appl 20(7):1043–1053. doi:10.1007/s00521-010-0448-7
    • (2011) Neural Comput Appl , vol.20 , Issue.7 , pp. 1043-1053
    • Xue, H.1    Chen, S.2
  • 67
    • 34547507567 scopus 로고    scopus 로고
    • A data reduction approach for resolving the imbalanced data issue in functional genomics
    • Yoon K, Kwek S (2007) A data reduction approach for resolving the imbalanced data issue in functional genomics. Neural Comput Appl 16(3):295–306. doi:10.1007/s00521-007-0089-7
    • (2007) Neural Comput Appl , vol.16 , Issue.3 , pp. 295-306
    • Yoon, K.1    Kwek, S.2
  • 68
    • 84886411294 scopus 로고    scopus 로고
    • Parametric Bayesian priors and better choice of negative examples improve protein function prediction
    • Youngs N, Penfold-Brown D, Drew K, Shasha D, Bonneau R (2013) Parametric Bayesian priors and better choice of negative examples improve protein function prediction. Bioinformatics 29(9):btt110–1198. doi:10.1093/bioinformatics/btt110
    • (2013) Bioinformatics , vol.29 , Issue.9 , pp. btt110-btt1198
    • Youngs, N.1    Penfold-Brown, D.2    Drew, K.3    Shasha, D.4    Bonneau, R.5
  • 69
    • 84899006908 scopus 로고    scopus 로고
    • Learning with local and global consistency. In: Thrun S, Saul L, Schölkopf B (eds) Advances in neural information processing systems 16:321–328
    • Zhou D et al (2004) Learning with local and global consistency. In: Thrun S, Saul L, Schölkopf B (eds) Advances in neural information processing systems 16:321–328. MIT Press. http://papers.nips.cc/paper/2506-learning-with-local-and-global-consistency
    • (2004) MIT Press
    • Zhou, D.1
  • 70
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using Gaussian fields and harmonic functions
    • Zhu X, Ghahramani Z, Lafferty J (2003) Semi-supervised learning using Gaussian fields and harmonic functions. In. In ICML, pp 912–919
    • (2003) In. In ICML , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3
  • 71
    • 0030271748 scopus 로고    scopus 로고
    • Generalized Hopfield networks for associative memories with multi-valued stable states
    • Zurada JM, Cloete I, van der Poel E (1996) Generalized Hopfield networks for associative memories with multi-valued stable states. Neurocomputing 13(24):135–149
    • (1996) Neurocomputing , vol.13 , Issue.24 , pp. 135-149
    • Zurada, J.M.1    Cloete, I.2    van der Poel, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.