-
1
-
-
47549116997
-
A critical assessment of Mus musculus gene function prediction using integrated genomic evidence
-
Peña-Castillo L et al., A critical assessment of Mus musculus gene function prediction using integrated genomic evidence, Genome Biol 9(Suppl 1):S2, 2008.
-
(2008)
Genome Biol
, vol.9
, Issue.SUPPL. 1
-
-
Peña-Castillo, L.1
-
2
-
-
60749125063
-
Protein function annotation by homology-based inference
-
Loewenstein Y et al, Protein function annotation by homology-based inference, Genome Biol 10(2):207, 2009.
-
(2009)
Genome Biol
, vol.10
, Issue.2
, pp. 207
-
-
Loewenstein, Y.1
-
3
-
-
0034069495
-
Gene ontology consortium, gene ontology: Tool for the unification of biology
-
Gene Ontology Consortium, Gene ontology: Tool for the unification of biology, Nat Genet 25(1):25-29, 2000.
-
(2000)
Nat Genet
, vol.25
, Issue.1
, pp. 25-29
-
-
-
4
-
-
0025183708
-
Basic local alignment search tool
-
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ, Basic local alignment search tool, J Mol Biol 215(3):403-410, 1990.
-
(1990)
J Mol Biol
, vol.215
, Issue.3
, pp. 403-410
-
-
Altschul, S.F.1
Gish, W.2
Miller, W.3
Myers, E.W.4
Lipman, D.J.5
-
5
-
-
13244299124
-
Applying support vector machines for gene ontology based gene function prediction
-
Vinayagam A, Konig R, Moormann J, Schubert F, Eils R, Glatting KH, Suhai S, Applying support vector machines for gene ontology based gene function prediction. BMC Bioinformatics 5:178, 2004.
-
(2004)
BMC Bioinformatics
, vol.5
, pp. 178
-
-
Vinayagam, A.1
Konig, R.2
Moormann, J.3
Schubert, F.4
Eils, R.5
Glatting, K.H.6
Suhai, S.7
-
6
-
-
0032229196
-
Sources of systematic error in functional annotation of genomes: Domain rearrangement, non-orthologous gene displacement and operon disruption
-
Galperin MY, Koonin EV, Sources of systematic error in functional annotation of genomes: Domain rearrangement, non-orthologous gene displacement and operon disruption, In Silico Biol 1(1):55-67, 1998.
-
(1998)
Silico Biol
, vol.1
, Issue.1
, pp. 55-67
-
-
Galperin, M.Y.1
Koonin, E.V.2
-
7
-
-
0037701046
-
An integrated probabilistic model for functional prediction of proteins
-
Deng M, Chen T, Sun F, An integrated probabilistic model for functional prediction of proteins, in RECOMB, pp. 95-103, 2003.
-
(2003)
RECOMB
, pp. 95-103
-
-
Deng, M.1
Chen, T.2
Sun, F.3
-
8
-
-
8844263749
-
A statistical framework for genomic data fusion
-
Lanckriet GRG, De Bie T, Cristianini N, Jordan MI, Noble WS, A statistical framework for genomic data fusion, Bioinformatics 20(16):2626-2635, 2004.
-
(2004)
Bioinformatics
, vol.20
, Issue.16
, pp. 2626-2635
-
-
Lanckriet, G.R.G.1
De Bie, T.2
Cristianini, N.3
Jordan, M.I.4
Noble, W.S.5
-
9
-
-
77951575343
-
Fast protein classification with multiple networks
-
Tsuda K, Shin HJ, Schölkopf B, Fast protein classification with multiple networks, in ECCB, 2005.
-
(2005)
ECCB
-
-
Tsuda, K.1
Shin, H.J.2
Schölkopf, B.3
-
10
-
-
11844292002
-
Inference of protein function from protein structure
-
January
-
Pal D, Eisenberg D, Inference of protein function from protein structure, Structure 13:121-130, January 2005.
-
(2005)
Structure
, vol.13
, pp. 121-130
-
-
Pal, D.1
Eisenberg, D.2
-
11
-
-
47549107689
-
GeneMANIA: A real-time multiple association network integration algorithm for predicting gene function
-
Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q, GeneMANIA: A real-time multiple association network integration algorithm for predicting gene function, Genome Biol 9(Suppl 1):S4, 2008.
-
(2008)
Genome Biol
, vol.9
, Issue.SUPPL. 1
-
-
Mostafavi, S.1
Ray, D.2
Warde-Farley, D.3
Grouios, C.4
Morris, Q.5
-
12
-
-
33645323768
-
Hierarchical multi-label prediction of gene function
-
Barutcuoglu Z, Schapire RE, Troyanskaya OG, Hierarchical multi-label prediction of gene function, Bioinformatics 22(7):830-836, 2006.
-
(2006)
Bioinformatics
, vol.22
, Issue.7
, pp. 830-836
-
-
Barutcuoglu, Z.1
Schapire, R.E.2
Troyanskaya, O.G.3
-
13
-
-
47549108100
-
Predicting gene function in a hierarchical context with an ensemble of classifiers
-
Guan Y, Myers C, Hess D, Barutcuoglu Z, Caudy A, Troyanskaya OG, Predicting gene function in a hierarchical context with an ensemble of classifiers, Genome Biol 9(Suppl 1):S3, 2008.
-
(2008)
Genome Biol
, vol.9
, Issue.SUPPL. 1
-
-
Guan, Y.1
Myers, C.2
Hess, D.3
Barutcuoglu, Z.4
Caudy, A.5
Troyanskaya, O.G.6
-
14
-
-
33645901213
-
Diffusion kernel-based logistic regression models for protein function prediction
-
Lee H, Tu Z, Deng M, Sun F, Chen T, Diffusion kernel-based logistic regression models for protein function prediction, OMICS: A Journal of Integrative Biology 10(1):40-55, 2006.
-
(2006)
OMICS: A Journal of Integrative Biology
, vol.10
, Issue.1
, pp. 40-55
-
-
Lee, H.1
Tu, Z.2
Deng, M.3
Sun, F.4
Chen, T.5
-
15
-
-
47549088657
-
Consistent probabilistic outputs for protein function prediction
-
Obozinski G, Lanckriet G, Grant C, Jordan MI, Noble WS, Consistent probabilistic outputs for protein function prediction, Genome Biol 9(Suppl 1):S6, 2008.
-
(2008)
Genome Biol
, vol.9
, Issue.SUPPL. 1
-
-
Obozinski, G.1
Lanckriet, G.2
Grant, C.3
Jordan, M.I.4
Noble, W.S.5
-
17
-
-
13444283846
-
Global protein function annotation through mining genome-scale data in yeast Saccharomyces cerevisiae
-
Chen Y, Xu D, Global protein function annotation through mining genome-scale data in yeast Saccharomyces cerevisiae, Nucleic Acids Res 32(21):6414, 2004.
-
(2004)
Nucleic Acids Res
, vol.32
, Issue.21
, pp. 6414
-
-
Chen, Y.1
Xu, D.2
-
19
-
-
84898948585
-
Max-margin Markov networks
-
MIT Press
-
Taskar B, Guestrin C, Koller D, Max-margin Markov networks, in Advances in Neural Information Processing Systems, Vol. 16, pp. 51, MIT Press, 2004.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
, pp. 51
-
-
Taskar, B.1
Guestrin, C.2
Koller, D.3
-
20
-
-
24944537843
-
Large margin methods for structured and interdependent output variables
-
Tsochantaridis I, Joachims T, Hofmann T, Altun Y, Large margin methods for structured and interdependent output variables, The Journal of Machine Learning Research 6:1453-1484, 2005.
-
(2005)
The Journal of Machine Learning Research
, vol.6
, pp. 1453-1484
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
-
21
-
-
55449125185
-
Support Vector machines and Kernels for computational biology
-
Ben-Hur A, Ong CS, Sonnenburg S, Schölkopf B, Rätsch G, Support Vector Machines and Kernels for Computational Biology, PLoS Computat Biol 4(10), 2008.
-
(2008)
PLoS Computat Biol
, vol.4
, Issue.10
-
-
Ben-Hur, A.1
Ong, C.S.2
Sonnenburg, S.3
Schölkopf, B.4
Rätsch, G.5
-
22
-
-
33745768424
-
Kernel-based learning of hierarchical multilabel classification models
-
Rousu J, Saunders C, Szedmak S, Shawe-Taylor J, Kernel-based learning of hierarchical multilabel classification models, The Journal of Machine Learning Research 7:1601-1626, 2006.
-
(2006)
The Journal of Machine Learning Research
, vol.7
, pp. 1601-1626
-
-
Rousu, J.1
Saunders, C.2
Szedmak, S.3
Shawe-Taylor, J.4
-
24
-
-
77950630179
-
Towards structured output prediction of enzyme function
-
BioMed Central Ltd
-
Astikainen K, Holm L, Pitkaanen E, Szedmak S, Rousu J. Towards structured output prediction of enzyme function, in BMC Proceedings, Vol. 2, S2. BioMed Central Ltd, 2008.
-
(2008)
BMC Proceedings
, vol.2
-
-
Astikainen, K.1
Holm, L.2
Pitkaanen, E.3
Szedmak, S.4
Rousu, J.5
-
25
-
-
56449104958
-
Learning and inference over constrained output
-
Punyakanok V, Roth D, Yih W, Zimak D. Learning and inference over constrained output, in Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 1124-1129, 2005.
-
(2005)
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI)
, pp. 1124-1129
-
-
Punyakanok, V.1
Roth, D.2
Yih, W.3
Zimak, D.4
-
26
-
-
29644434908
-
Incremental algorithms for hierarchical classification
-
Cesa-Bianchi M, Gentile C, Zaniboni L, Incremental algorithms for hierarchical classification, The Journal of Machine Learning Research 7:31-54, 2006.
-
(2006)
The Journal of Machine Learning Research
, vol.7
, pp. 31-54
-
-
Cesa-Bianchi, M.1
Gentile, C.2
Zaniboni, L.3
-
28
-
-
29644433459
-
Learning with taxonomies: Classifying documents and words
-
Hofmann T, Cai L, Ciaramita M, Learning with taxonomies: Classifying documents and words, in NIPS Workshop on Syntax, Semantics, and Statistics, 2003.
-
(2003)
NIPS Workshop on Syntax, Semantics, and Statistics
-
-
Hofmann, T.1
Cai, L.2
Ciaramita, M.3
-
29
-
-
33847207586
-
Functional annotation of genes using hierarchical text categorization
-
Kiritchenko S, Matwin S, Fazel Famili A, Functional annotation of genes using hierarchical text categorization, in Proc. BioLINK SIG: Linking Literature, Information and Knowledge for Biology, a Joint Meeting of the ISMB BioLINK Special Interest Group on Text Data Mining and the ACL Workshop on Linking Biological Literature, Ontologies and Databases, 2005.
-
(2005)
Proc. BioLINK SIG: Linking Literature, Information and Knowledge for Biology, a Joint Meeting of the ISMB BioLINK Special Interest Group on Text Data Mining and the ACL Workshop on Linking Biological Literature, ontologies and Databases
-
-
Kiritchenko, S.1
Matwin, S.2
Fazel Famili, A.3
-
31
-
-
0003120218
-
Sequential minimal optimization: A fast algorithm for training support vector machines
-
Platt J, Sequential minimal optimization: A fast algorithm for training support vector machines, Advances in Kernel Methods-Support Vector Learning 208, 1999.
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, vol.208
-
-
Platt, J.1
-
32
-
-
69549111057
-
Cutting-plane training of structural SVMs
-
Joachims T, Finley T, Yu CNJ, Cutting-plane training of structural SVMs, Machine Learning 77(1):27-59, 2009.
-
(2009)
Machine Learning
, vol.77
, Issue.1
, pp. 27-59
-
-
Joachims, T.1
Finley, T.2
Yu, C.N.J.3
-
33
-
-
65449147869
-
The use of gene ontology evidence codes in preventing classifier assessment bias
-
Rogers M, Ben-Hur A, The use of Gene Ontology evidence codes in preventing classifier assessment bias, Bioinformatics 25(9):1173-1177, 2009.
-
(2009)
Bioinformatics
, vol.25
, Issue.9
, pp. 1173-1177
-
-
Rogers, M.1
Ben-Hur, A.2
-
34
-
-
40549141405
-
A kernel approach for learning from almost orthogonal patterns
-
Springer-Verlag London, UK
-
Schölkopf B, Weston J, Eskin E, Leslie C, Noble WS, A kernel approach for learning from almost orthogonal patterns, in Proceedings of the 13th European Conference on Machine Learning, pp. 511-528, Springer-Verlag London, UK, 2002.
-
(2002)
Proceedings of the 13th European Conference on Machine Learning
, pp. 511-528
-
-
Schölkopf, B.1
Weston, J.2
Eskin, E.3
Leslie, C.4
Noble, W.S.5
-
36
-
-
47549098627
-
Inferring mouse gene functions from genomic-scale data using a combined functional network/classification strategy
-
Kim W, Krumpelman C, Marcotte E, Inferring mouse gene functions from genomic-scale data using a combined functional network/classification strategy, Genome Biol 9(Suppl 1):S5, 2008.
-
(2008)
Genome Biol
, vol.9
, Issue.SUPPL. 1
-
-
Kim, W.1
Krumpelman, C.2
Marcotte, E.3
-
37
-
-
47549104748
-
Combining guilt-by-association and guilt-by-profiling to predict Saccharomyces cerevisiae gene function
-
Tian W, Zhang L, Ta̧san M, Gibbons F, King O, Park J, Wunderlich Z, Cherry JM, Roth F, Combining guilt-by-association and guilt-by-profiling to predict Saccharomyces cerevisiae gene function, Genome Biol 9(Suppl 1):S7, 2008.
-
(2008)
Genome Biol
, vol.9
, Issue.SUPPL. 1
-
-
Tian, W.1
Zhang, L.2
Ta̧san, M.3
Gibbons, F.4
King, O.5
Park, J.6
Wunderlich, Z.7
Cherry, J.M.8
Roth, F.9
-
38
-
-
69949151212
-
Protein sequence motifs: Highly predictive features of protein function
-
Guyon I, Gunn S, Nikravesh M, Zadeh L (eds.) Springer Verlag
-
Ben-Hur A, Brutlag D, Protein sequence motifs: Highly predictive features of protein function, in Guyon I, Gunn S, Nikravesh M, Zadeh L (eds.), Feature Extraction, Foundations and Applications, Springer Verlag, 2006.
-
(2006)
Feature Extraction, Foundations and Applications
-
-
Ben-Hur, A.1
Brutlag, D.2
|