메뉴 건너뛰기




Volumn , Issue , 2014, Pages 2377-2384

Fisher and VLAD with FLAIR

Author keywords

Fisher encoding; FLAIR; ImageNet challenge; Object Detection; PASCAL VOC Objects; VLAD

Indexed keywords

ENCODING (SYMBOLS); OBJECT DETECTION; SIGNAL ENCODING;

EID: 84911370374     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.304     Document Type: Conference Paper
Times cited : (35)

References (33)
  • 1
    • 84866688216 scopus 로고    scopus 로고
    • Measuring the objectness of image windows
    • B. Alexe, T. Deselaers, and V. Ferrari. Measuring the objectness of image windows. TPAMI, 34(11):2189-2202, 2012.
    • (2012) TPAMI , vol.34 , Issue.11 , pp. 2189-2202
    • Alexe, B.1    Deselaers, T.2    Ferrari, V.3
  • 2
    • 84887356895 scopus 로고    scopus 로고
    • POOF: Part-based one-vs-one features for fine-grained categorization, face verification, and attribute estimation
    • T. Berg and P. N. Belhumeur. POOF: Part-Based One-vs-One Features for fine-grained categorization, face verification, and attribute estimation. In CVPR, 2013.
    • (2013) CVPR
    • Berg, T.1    Belhumeur, P.N.2
  • 4
    • 84887380771 scopus 로고    scopus 로고
    • Efficient maximum appearance search for large-scale object detection
    • Q. Chen, Z. Song, R. Feris, A. Datta, L. Cao, Z. Huang, and S. Yan. Efficient maximum appearance search for large-scale object detection. In CVPR, 2013.
    • (2013) CVPR
    • Chen, Q.1    Song, Z.2    Feris, R.3    Datta, A.4    Cao, L.5    Huang, Z.6    Yan, S.7
  • 5
    • 84898774288 scopus 로고    scopus 로고
    • Segmentation driven object detection with fisher vectors
    • R. G. Cinbis, J. Verbeek, and C. Schmid. Segmentation driven object detection with fisher vectors. In ICCV, 2013.
    • (2013) ICCV
    • Cinbis, R.G.1    Verbeek, J.2    Schmid, C.3
  • 10
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part based models
    • P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. TPAMI, 32:1627-1645, 2010.
    • (2010) TPAMI , vol.32 , pp. 1627-1645
    • Felzenszwalb, P.F.1    Girshick, R.B.2    McAllester, D.3    Ramanan, D.4
  • 12
    • 77953202990 scopus 로고    scopus 로고
    • Combining efficient object localization and image classification
    • H. Harzallah, F. Jurie, and C. Schmid. Combining efficient object localization and image classification. In ICCV, 2009.
    • (2009) ICCV
    • Harzallah, H.1    Jurie, F.2    Schmid, C.3
  • 13
    • 78649317568 scopus 로고    scopus 로고
    • Product quantization for nearest neighbor search
    • H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. TPAMI, 33(1):117-128, 2011.
    • (2011) TPAMI , vol.33 , Issue.1 , pp. 117-128
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 14
  • 15
    • 70350621774 scopus 로고    scopus 로고
    • Efficient subwindow search: A branch and bound framework for object localization
    • C. H. Lampert, M. B. Blaschko, and T. Hofmann. Efficient subwindow search: A branch and bound framework for object localization. TPAMI, 31(12):2129-2142, 2009.
    • (2009) TPAMI , vol.31 , Issue.12 , pp. 2129-2142
    • Lampert, C.H.1    Blaschko, M.B.2    Hofmann, T.3
  • 16
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006.
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 17
    • 85162384490 scopus 로고    scopus 로고
    • Learning to count objects in images
    • V. Lempitsky and A. Zisserman. Learning to count objects in images. In NIPS, 2010.
    • (2010) NIPS
    • Lempitsky, V.1    Zisserman, A.2
  • 18
    • 79959771606 scopus 로고    scopus 로고
    • Improving the fisher kernel for large-scale image classification
    • F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-scale image classification. In ECCV, 2010.
    • (2010) ECCV
    • Perronnin, F.1    Sánchez, J.2    Mensink, T.3
  • 19
    • 33744958383 scopus 로고    scopus 로고
    • Integral histogram: A fast way to extract histograms in cartesian spaces
    • F. M. Porikli. Integral histogram: A fast way to extract histograms in cartesian spaces. In CVPR, 2005.
    • (2005) CVPR
    • Porikli, F.M.1
  • 20
    • 84856655925 scopus 로고    scopus 로고
    • Learning a category independent object detection cascade
    • E. Rahtu, J. Kannala, and M. Blaschko. Learning a category independent object detection cascade. In ICCV, 2011.
    • (2011) ICCV
    • Rahtu, E.1    Kannala, J.2    Blaschko, M.3
  • 21
    • 84885881090 scopus 로고    scopus 로고
    • Object-centric spatial pooling for image classification
    • O. Russakovsky, Y. Lin, K. Yu, and L. Fei-Fei. Object-centric spatial pooling for image classification. In ECCV, 2012.
    • (2012) ECCV
    • Russakovsky, O.1    Lin, Y.2    Yu, K.3    Fei-Fei, L.4
  • 22
    • 84883487458 scopus 로고    scopus 로고
    • Image classification with the fisher vector: Theory and practice
    • J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Image classification with the fisher vector: Theory and practice. IJCV, 105(3):222-245, 2013.
    • (2013) IJCV , vol.105 , Issue.3 , pp. 222-245
    • Sánchez, J.1    Perronnin, F.2    Mensink, T.3    Verbeek, J.4
  • 23
    • 80052891624 scopus 로고    scopus 로고
    • Contextualizing object detection and classification
    • Z. Song, Q. Chen, Z. Huang, Y. Hua, and S. Yan. Contextualizing object detection and classification. In CVPR, 2011.
    • (2011) CVPR
    • Song, Z.1    Chen, Q.2    Huang, Z.3    Hua, Y.4    Yan, S.5
  • 28
    • 80052904027 scopus 로고    scopus 로고
    • Efficient region search for object detection
    • S. Vijayanarasimhan and K. Grauman. Efficient region search for object detection. In CVPR, 2011.
    • (2011) CVPR
    • Vijayanarasimhan, S.1    Grauman, K.2
  • 29
    • 0035680116 scopus 로고    scopus 로고
    • Rapid object detection using a boosted cascade of simple features
    • P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In CVPR, 2001.
    • (2001) CVPR
    • Viola, P.1    Jones, M.2
  • 31
    • 84898769710 scopus 로고    scopus 로고
    • Regionlets for generic object detection
    • X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic object detection. In ICCV, 2013.
    • (2013) ICCV
    • Wang, X.1    Yang, M.2    Zhu, S.3    Lin, Y.4
  • 32
    • 84866662426 scopus 로고    scopus 로고
    • Pose pooling kernels for sub-category recognition
    • N. Zhang, R. Farrell, and T. Darrell. Pose pooling kernels for sub-category recognition. In CVPR, 2012.
    • (2012) CVPR
    • Zhang, N.1    Farrell, R.2    Darrell, T.3
  • 33
    • 80052886214 scopus 로고    scopus 로고
    • Image classiffication using super-vector coding of local image descriptors
    • X. Zhou, K. Yu, T. Zhang, and T. S. Huang. Image classiffication using super-vector coding of local image descriptors. In ECCV, 2010.
    • (2010) ECCV
    • Zhou, X.1    Yu, K.2    Zhang, T.3    Huang, T.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.