메뉴 건너뛰기




Volumn 9, Issue 2, 2015, Pages 2255-2292

A fisher consistent multiclass loss function with variable margin on positive examples

Author keywords

Bayes consistency; Classification calibration; Fisher consistency; Hinge loss functions; Multiclass classification; Support vector machine

Indexed keywords


EID: 84947902992     PISSN: 19357524     EISSN: None     Source Type: Journal    
DOI: 10.1214/15-EJS1073     Document Type: Article
Times cited : (4)

References (44)
  • 1
    • 24044435942 scopus 로고    scopus 로고
    • Reducing multiclass to binary: A unifying approach for margin classifiers
    • MR1884092
    • Allwein, E. L., Schapire, R. E. and Singer, Y. (2001). Reducing multiclass to binary: A unifying approach for margin classifiers. The Journal of Machine Learning Research 1 113-141.MR1884092
    • (2001) The Journal of Machine Learning Research , vol.1 , pp. 113-141
    • Allwein, E.L.1    Schapire, R.E.2    Singer, Y.3
  • 2
    • 9444269962 scopus 로고    scopus 로고
    • Large Margin Classifiers: Convex Loss, Low Noise, and Convergence Rates
    • S. Thrun, L. K. Saul and B. Schölkopf, eds, MIT Press.MR1820960
    • Bartlett, P. L., Jordan, M. I. and Mcauliffe, J. D. (2004). Large Margin Classifiers: Convex Loss, Low Noise, and Convergence Rates. In Advances in Neural Information Processing Systems 16 (S. Thrun, L. K. Saul and B. Schölkopf, eds.) 1173-1180. MIT Press.MR1820960
    • (2004) Advances in Neural Information Processing Systems , vol.16 , pp. 1173-1180
    • Bartlett, P.L.1    Jordan, M.I.2    McAuliffe, J.D.3
  • 7
    • 0036643072 scopus 로고    scopus 로고
    • Logistic regression, AdaBoost and Bregman distances
    • Collins, M., Schapire, R. E. and Singer, Y. (2002). Logistic regression, AdaBoost and Bregman distances. Machine Learning 48 253-285.
    • (2002) Machine Learning , vol.48 , pp. 253-285
    • Collins, M.1    Schapire, R.E.2    Singer, Y.3
  • 8
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning 20 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 9
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • Crammer, K. and Singer, Y. (2002). On the algorithmic implementation of multiclass kernel-based vector machines. The Journal of Machine Learning Research 2 265-292.
    • (2002) The Journal of Machine Learning Research , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 12
    • 0001971618 scopus 로고
    • An algorithm for quadratic programming
    • MR0089102
    • Frank, M. and Wolfe, P. (1956). An algorithm for quadratic programming. Naval research logistics quarterly 3 95-110.MR0089102
    • (1956) Naval Research Logistics Quarterly , vol.3 , pp. 95-110
    • Frank, M.1    Wolfe, P.2
  • 13
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • MR1473055
    • Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences 55 119-139.MR1473055
    • (1997) Journal of Computer and System Sciences , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 14
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • MR1790002
    • Friedman, J. H., Hastie, T. J. and Tibshirani, R. J. (2000). Additive logistic regression: A statistical view of boosting. Annals of Statistics 337-374.MR1790002
    • (2000) Annals of Statistics , pp. 337-374
    • Friedman, J.H.1    Hastie, T.J.2    Tibshirani, R.J.3
  • 15
    • 0038259114 scopus 로고    scopus 로고
    • Classes of kernels for machine learning: A statistics perspective
    • MR1904760
    • Genton, M. G. (2002). Classes of kernels for machine learning: A statistics perspective. The Journal of Machine Learning Research 2 299-312.MR1904760
    • (2002) The Journal of Machine Learning Research , vol.2 , pp. 299-312
    • Genton, M.G.1
  • 16
    • 0036858503 scopus 로고    scopus 로고
    • Compactly supported correlation functions
    • MR1945966
    • Gneiting, T. (2002). Compactly supported correlation functions. Journal of Multivariate Analysis 83 493-508.MR1945966
    • (2002) Journal of Multivariate Analysis , vol.83 , pp. 493-508
    • Gneiting, T.1
  • 18
    • 79954473028 scopus 로고    scopus 로고
    • A quadratic loss multi-class SVM for which a radius-margin bound applies
    • MR2885660
    • Guermeur, Y. and Monfrini, E. (2011). A quadratic loss multi-class SVM for which a radius-margin bound applies. Informatica (ISSN 0868-4952) International Journal 22 73-96.MR2885660
    • (2011) Informatica (ISSN 0868-4952) International Journal , vol.22 , pp. 73-96
    • Guermeur, Y.1    Monfrini, E.2
  • 20
    • 0000545946 scopus 로고    scopus 로고
    • Improvements to Platt’s SMO algorithm for SVM classifier design
    • Keerthi, S. S., Shevade, S. K., Bhattacharyya, C. and Murthy, K. R. K. (2001). Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Computation 13 637-649.
    • (2001) Neural Computation , vol.13 , pp. 637-649
    • Keerthi, S.S.1    Shevade, S.K.2    Bhattacharyya, C.3    Murthy, K.4
  • 21
    • 80052210118 scopus 로고    scopus 로고
    • MSVMpack: A multi-class support vector machine package
    • MR2825427
    • Lauer, F. and Guermeur, Y. (2011). MSVMpack: A multi-class support vector machine package. The Journal of Machine Learning Research 12 2293-2296.MR2825427
    • (2011) The Journal of Machine Learning Research , vol.12 , pp. 2293-2296
    • Lauer, F.1    Guermeur, Y.2
  • 23
    • 2142775432 scopus 로고    scopus 로고
    • Multicategory support vector machines: Theory and application to the classification of microarray data and satellite radiance data
    • MR2054287
    • Lee, Y., Lin, Y. and Wahba, G. (2004). Multicategory support vector machines: Theory and application to the classification of microarray data and satellite radiance data. Journal of the American Statistical Association 99 67-81.MR2054287
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 67-81
    • Lee, Y.1    Lin, Y.2    Wahba, G.3
  • 25
    • 0036258405 scopus 로고    scopus 로고
    • Support vector machines and the Bayes rule in classification
    • MR1917926
    • Lin, Y. (2002). Support vector machines and the Bayes rule in classification. Data Mining and Knowledge Discovery 6 259-275.MR1917926
    • (2002) Data Mining and Knowledge Discovery , vol.6 , pp. 259-275
    • Lin, Y.1
  • 30
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT press
    • Platt, J. C. (1999). Fast training of support vector machines using sequential minimal optimization. In Advances in Kernel Methods 185-208. MIT press.
    • (1999) Advances in Kernel Methods , pp. 185-208
    • Platt, J.C.1
  • 36
    • 12444265838 scopus 로고    scopus 로고
    • Consistency of support vector machines and other regularized kernel classifiers
    • MR2234577
    • Steinwart, I. (2005). Consistency of support vector machines and other regularized kernel classifiers. IEEE Transactions on Information Theory 51 128-142.MR2234577
    • (2005) IEEE Transactions on Information Theory , vol.51 , pp. 128-142
    • Steinwart, I.1
  • 37
    • 34249062309 scopus 로고    scopus 로고
    • On the consistency of multiclass classification methods
    • MR2320680
    • Tewari, A. and Bartlett, P. L. (2007). On the consistency of multiclass classification methods. The Journal of Machine Learning Research 8 1007-1025.MR2320680
    • (2007) The Journal of Machine Learning Research , vol.8 , pp. 1007-1025
    • Tewari, A.1    Bartlett, P.L.2
  • 39
    • 0003425673 scopus 로고    scopus 로고
    • Multi-class support vector machines Technical Report
    • Royal Holloway, University of London
    • Weston, J. and Watkins, C. (1998). Multi-class support vector machines Technical Report, Department of Computer Science, Royal Holloway, University of London.
    • (1998) Department of Computer Science
    • Weston, J.1    Watkins, C.2
  • 40
    • 84878914736 scopus 로고    scopus 로고
    • Multicategory large-margin unified machines
    • MR3081927
    • Zhang, C. and Liu, Y. (2013). Multicategory large-margin unified machines. The Journal of Machine Learning Research 14 1349-1386.MR3081927
    • (2013) The Journal of Machine Learning Research , vol.14 , pp. 1349-1386
    • Zhang, C.1    Liu, Y.2
  • 41
    • 26944483874 scopus 로고    scopus 로고
    • Statistical analysis of some multi-category large margin classification methods
    • MR2248016
    • Zhang, T. (2004). Statistical analysis of some multi-category large margin classification methods. The Journal of Machine Learning Research 5 1225-1251.MR2248016
    • (2004) The Journal of Machine Learning Research , vol.5 , pp. 1225-1251
    • Zhang, T.1
  • 43
    • 84869196743 scopus 로고    scopus 로고
    • Coherence functions with applications in large-margin classification methods
    • MR2989912
    • Zhang, Z., Liu, D., Dai, G. and Jordan, M. I. (2012). Coherence functions with applications in large-margin classification methods. The Journal of Machine Learning Research 13 2705-2734.MR2989912
    • (2012) The Journal of Machine Learning Research , vol.13 , pp. 2705-2734
    • Zhang, Z.1    Liu, D.2    Dai, G.3    Jordan, M.I.4
  • 44
    • 70049095487 scopus 로고    scopus 로고
    • New multicategory boosting algorithms based on multicategory fisher-consistent losses
    • MR2655660
    • Zou, H., Zhu, J. and Hastie, T. (2008). New multicategory boosting algorithms based on multicategory fisher-consistent losses. The Annals of Applied Statistics 1290-1306.MR2655660
    • (2008) The Annals of Applied Statistics , pp. 1290-1306
    • Zou, H.1    Zhu, J.2    Hastie, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.