메뉴 건너뛰기




Volumn 24, Issue 9, 2012, Pages 2473-2507

Inhibition in multiclass classification

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ANIMAL; ARTICLE; ARTIFICIAL INTELLIGENCE; AUTOMATED PATTERN RECOGNITION; BRAIN; CLASSIFICATION; HISTOLOGY; HUMAN; INHIBITION (PSYCHOLOGY); METHODOLOGY; PHYSIOLOGY; STATISTICAL MODEL; STATISTICS; SYNAPSE;

EID: 84871856618     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00321     Document Type: Article
Times cited : (28)

References (41)
  • 1
    • 7244229524 scopus 로고    scopus 로고
    • Synaptic computation
    • Abbott, L. F., & Regehr,W. G. (2004). Synaptic computation. Nature, 43, 796-803.
    • (2004) Nature , vol.43 , pp. 796-803
    • Abbott, L.F.1    Regehr, W.G.2
  • 2
    • 24044435942 scopus 로고    scopus 로고
    • Reducing multiclass to binary: A unifying approach for margin classifiers
    • Allwein, E. L., Schapire, R. E., & Singer, Y. (2000). Reducing multiclass to binary: A unifying approach for margin classifiers. Journal of Machine Learning Research, 1, 113-141.
    • (2000) Journal of Machine Learning Research , vol.1 , pp. 113-141
    • Allwein, E.L.1    Schapire, R.E.2    Singer, Y.3
  • 3
    • 85162035281 scopus 로고    scopus 로고
    • The tradeoffs of large scale learning
    • J. C. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Cambridge, MA: MIT Press
    • Bottou, L., & Bousquet, O. (2008). The tradeoffs of large scale learning. In J. C. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Advances in neural information processing systems, 20 (pp. 161-168). Cambridge, MA: MIT Press.
    • (2008) Advances in neural information processing systems , vol.20 , pp. 161-168
    • Bottou, L.1    Bousquet, O.2
  • 5
    • 32544437023 scopus 로고    scopus 로고
    • Kernel methods and the exponential family
    • Canu, S., & Smola, A. (2005). Kernel methods and the exponential family. Neurocomputing, 69, 714-720.
    • (2005) Neurocomputing , vol.69 , pp. 714-720
    • Canu, S.1    Smola, A.2
  • 6
    • 84856442166 scopus 로고    scopus 로고
    • Conditional modulation of spike-timing dependent plasticity for olfactory learning
    • Cassenaer, S., & Laurent, G. (2012). Conditional modulation of spike-timing dependent plasticity for olfactory learning Nature, 482, 47-52.
    • (2012) Nature , vol.482 , pp. 47-52
    • Cassenaer, S.1    Laurent, G.2
  • 8
    • 34247849152 scopus 로고    scopus 로고
    • Training a support vector machine in the primal
    • Chapelle, O. (2007). Training a support vector machine in the primal. Neural Computation, 19, 1155-1178.
    • (2007) Neural Computation , vol.19 , pp. 1155-1178
    • Chapelle, O.1
  • 9
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • Crammer, K., & Singer, Y. (2001). On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research, 2, 265-292.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 10
    • 21944455810 scopus 로고    scopus 로고
    • The direct use of likelihood for significance testing
    • Dempster, A. P. (1997). The direct use of likelihood for significance testing. Stat. Comput., 7, 242-252.
    • (1997) Stat. Comput. , vol.7 , pp. 242-252
    • Dempster, A.P.1
  • 11
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via errorcorrecting output codes
    • Diettrich, T. G., & Bakiri, G. (1995). Solving multiclass learning problems via errorcorrecting output codes. Journal of Artificial Intelligence Research, 2, 263-286.
    • (1995) Journal of Artificial Intelligence Research , vol.2 , pp. 263-286
    • Diettrich, T.G.1    Bakiri, G.2
  • 12
    • 0033281425 scopus 로고    scopus 로고
    • Large margin classification using the perceptron algorithm
    • Freund, Y., & Schapire, R. E. (1999). Large margin classification using the perceptron algorithm. Machine Learning, 37, 277-296.
    • (1999) Machine Learning , vol.37 , pp. 277-296
    • Freund, Y.1    Schapire, R.E.2
  • 13
    • 37549053317 scopus 로고    scopus 로고
    • Locally dynamic synaptic learning rules in pyramidal neuron dendrites
    • Harvey, C. D., & Svoboda, K. (2007). Locally dynamic synaptic learning rules in pyramidal neuron dendrites. Nature, 450, 1195-1200.
    • (2007) Nature , vol.450 , pp. 1195-1200
    • Harvey, C.D.1    Svoboda, K.2
  • 14
    • 0038439322 scopus 로고    scopus 로고
    • Mushroom body memoir: From maps to models
    • Heisemberg, M. (2003). Mushroom body memoir: From maps to models. Nat. Rev. Neurosci., 4, 266-275.
    • (2003) Nat. Rev. Neurosci. , vol.4 , pp. 266-275
    • Heisemberg, M.1
  • 15
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu, C.-W., & Lin, C.-J. (2002). A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 13, 415-425.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 16
    • 70249084937 scopus 로고    scopus 로고
    • Fast and robust learning by reinforcement signals: Explorations in the insect brain
    • Huerta, R., & Nowotny, T. (2009). Fast and robust learning by reinforcement signals: Explorations in the insect brain. Neural Computation, 21, 2123-2151.
    • (2009) Neural Computation , vol.21 , pp. 2123-2151
    • Huerta, R.1    Nowotny, T.2
  • 20
    • 0036832159 scopus 로고    scopus 로고
    • Olfactory network dynamics and the coding ofmultidimensional signals
    • Laurent, G. (2002). Olfactory network dynamics and the coding ofmultidimensional signals. Nat. Rev. Neurosci., 3, 884-895.
    • (2002) Nat. Rev. Neurosci. , vol.3 , pp. 884-895
    • Laurent, G.1
  • 21
    • 35148893484 scopus 로고    scopus 로고
    • A tutorial on energy-based learning
    • G. Bakir, T. Hofmann, B. Schölkopf, A. Smola, & B. Taskar (Eds.), Cambridge, MA: MIT Press
    • Lecun, Y., Chopra, S., Hadshell, R., Ranzato, M., & Jie, H.-F. (2006). A tutorial on energy-based learning. In G. Bakir, T. Hofmann, B. Schölkopf, A. Smola, & B. Taskar (Eds.), Predicting structured data. Cambridge, MA: MIT Press.
    • (2006) Predicting structured data
    • Lecun, Y.1    Chopra, S.2    Hadshell, R.3    Ranzato, M.4    Jie, H.-F.5
  • 22
    • 2142775432 scopus 로고    scopus 로고
    • Multicategory support vector machines: Theory and application to the classification of microarray data and satellite radiance data
    • Lee, Y., Lin, Y., & Wahba, G. (2004). Multicategory support vector machines: Theory and application to the classification of microarray data and satellite radiance data. Journal of the American Statistical Association, 99, 67-81.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 67-81
    • Lee, Y.1    Lin, Y.2    Wahba, G.3
  • 23
    • 9444269961 scopus 로고    scopus 로고
    • On the Bayes-risk consistency of regularized boosting methods
    • Lugosi, G., & Vayatis, N. (2004). On the Bayes-risk consistency of regularized boosting methods. Annals of Statistics, 32, 30-55.
    • (2004) Annals of Statistics , vol.32 , pp. 30-55
    • Lugosi, G.1    Vayatis, N.2
  • 25
    • 0000776754 scopus 로고
    • On the problem of the most efficient tests of statistical hypotheses
    • Neyman, J., & Pearson, E. (1933). On the problem of the most efficient tests of statistical hypotheses. Phil. Trans. R. Soc. Lond. Ser. A, 231, 289-337.
    • (1933) Phil. Trans. R. Soc. Lond. Ser. A , vol.231 , pp. 289-337
    • Neyman, J.1    Pearson, E.2
  • 26
    • 28544440702 scopus 로고    scopus 로고
    • Selforganization in the olfactory system: One shot odor recognition in insects
    • Nowotny, T., Huerta, R., Abarbanel, H.D.I., & Rabinovich, M. I. (2005). Selforganization in the olfactory system: One shot odor recognition in insects. Biol. Cybern., 93, 436-446.
    • (2005) Biol. Cybern. , vol.93 , pp. 436-446
    • Nowotny, T.1    Huerta, R.2    Abarbanel, H.D.I.3    Rabinovich, M.I.4
  • 27
    • 0035380627 scopus 로고    scopus 로고
    • Generalization in interactive networks: The benefits of inhibitory competition and Hebbian learning
    • O'Reilly, R. C. (2001). Generalization in interactive networks: The benefits of inhibitory competition and Hebbian learning. Neural Computation, 13, 1199-1241.
    • (2001) Neural Computation , vol.13 , pp. 1199-1241
    • O'Reilly, R.C.1
  • 28
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf, C. Burges, & A. Smola (Eds.), Cambridge, MA: MIT Press
    • Platt, J. C. (1999a). Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in kernel methods: Support vector machines (pp. 185-208). Cambridge, MA: MIT Press.
    • (1999) Advances in kernel methods: Support vector machines , pp. 185-208
    • Platt, J.C.1
  • 29
    • 84898983292 scopus 로고    scopus 로고
    • Using analytic QP and sparseness to speed training of support vector machines
    • M. S. Kearns, S. A. Solla, & D. A. Cohn (Eds.), Cambridge, MA: MIT Press
    • Platt, J. C. (1999b). Using analytic QP and sparseness to speed training of support vector machines. In M. S. Kearns, S. A. Solla, & D. A. Cohn (Eds.), Advances in neural information processing Systems, 11 (pp. 557-563). Cambridge, MA: MIT Press.
    • (1999) Advances in neural information processing Systems , vol.11 , pp. 557-563
    • Platt, J.C.1
  • 32
    • 66349085039 scopus 로고    scopus 로고
    • Techniques for temporal detection of neural sensitivity to external stimulation
    • Rodriguez, F. B., & Huerta, R. (2009). Techniques for temporal detection of neural sensitivity to external stimulation. Biol. Cybern., 100, 289-297.
    • (2009) Biol. Cybern. , vol.100 , pp. 289-297
    • Rodriguez, F.B.1    Huerta, R.2
  • 33
    • 0347362917 scopus 로고    scopus 로고
    • Learning in spiking neural networks by reinforcement of stochastic synaptic transmission
    • Seung, H. S. (2003.) Learning in spiking neural networks by reinforcement of stochastic synaptic transmission. Neuron, 40, 1063-1073.
    • (2003) Neuron , vol.40 , pp. 1063-1073
    • Seung, H.S.1
  • 35
    • 0026265517 scopus 로고
    • Conditional withholding of proboscis extension in honeybees (Apis mellifera) during discriminative punishment
    • Smith, B. H., Abramson, C. I., & Tobin, T. R. (1991). Conditional withholding of proboscis extension in honeybees (Apis mellifera) during discriminative punishment. J. Comp. Psychol., 105, 345-356.
    • (1991) J. Comp. Psychol. , vol.105 , pp. 345-356
    • Smith, B.H.1    Abramson, C.I.2    Tobin, T.R.3
  • 36
    • 58549110412 scopus 로고    scopus 로고
    • Learning-based recognition and discrimination of floral odors
    • N. Dudareva, & E. Pichersky (Eds.), Boca Raton, FL: CRC Press
    • Smith, B. H., Wright, G. A., & Daly, K. C. (2005). Learning-based recognition and discrimination of floral odors. In N. Dudareva, & E. Pichersky (Eds.), Biology of floral scent (pp. 263-295). Boca Raton, FL: CRC Press.
    • (2005) Biology of floral scent , pp. 263-295
    • Smith, B.H.1    Wright, G.A.2    Daly, K.C.3
  • 37
    • 34249062309 scopus 로고    scopus 로고
    • On the consistency of multiclass classification methods
    • Tewari, A., & Bartlett, P. L. (2007). On the consistency of multiclass classification methods. Journal of Machine Learning Research, 8, 1007-1025.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1007-1025
    • Tewari, A.1    Bartlett, P.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.