메뉴 건너뛰기




Volumn 41, Issue 6, 2012, Pages 1558-1590

Agnostic learning of monomials by halfspaces is hard

Author keywords

Agnostic learning; Dictatorship tests; Hardness of learning; PCPs

Indexed keywords

ABSOLUTE VALUES; AGNOSTIC LEARNING; ARBITRARY CONSTANTS; CONCEPT CLASS; COVER PROBLEM; DECISION LISTS; DICTATORSHIP TESTS; HALF SPACES; HALF-SPACE; HARDNESS OF LEARNING; HARDNESS RESULT; HYPERCUBE; INAPPROXIMABILITY; INVARIANCE PRINCIPLE; LEARNING THEORY; LIST DECODING; LONG LINE; NEGATIVE EXAMPLES; NP-HARD; PCPS; PROPER LEARNING; UNIQUE GAMES; UNIQUE GAMES CONJECTURE;

EID: 84871531284     PISSN: 00975397     EISSN: None     Source Type: Journal    
DOI: 10.1137/120865094     Document Type: Conference Paper
Times cited : (114)

References (52)
  • 1
    • 0004493166 scopus 로고    scopus 로고
    • On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems
    • PII S0304397597001151
    • E. AMALDI AND V. KANN, On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems, Theoret. Comput. Sci., 109(1998), pp. 237-260. (Pubitemid 128450440)
    • (1998) Theoretical Computer Science , vol.209 , Issue.1-2 , pp. 237-260
    • Amaldi, E.1    Kann, V.2
  • 2
    • 0000492326 scopus 로고
    • Learning from noisy examples
    • D. ANGLUIN AND P. LAIRD, Learning from noisy examples, Machine Learning, 2(1988), pp. 343-370.
    • (1988) Machine Learning , vol.2 , pp. 343-370
    • Angluin, D.1    Laird, P.2
  • 4
    • 0031119485 scopus 로고    scopus 로고
    • The hardness of approximate optima in lattices, codes, and systems of linear equations
    • S. ARORA, L. BABAI, J. STERN, AND Z. SWEEDYK, The hardness of approximate optima in lattices, codes, and systems of linear equations, J. Comput. System. Sci., 54(1997), pp. 317-331. (Pubitemid 127433376)
    • (1997) Journal of Computer and System Sciences , vol.54 , Issue.2 , pp. 317-331
    • Arora, S.1    Babai, L.2    Stern, J.3    Sweedyk, Z.4
  • 5
    • 0032140937 scopus 로고    scopus 로고
    • Tracking the best disjunction
    • DOI 10.1023/A:1007472513967
    • P. AUER AND M. K. WARMUTH, Tracking the best disjunction, Machine Learning, 32(1998), pp. 127-150. (Pubitemid 40626078)
    • (1998) Machine Learning , vol.32 , Issue.2 , pp. 127-150
    • Auer, P.1    Warmuth, M.K.2
  • 6
    • 0038575680 scopus 로고    scopus 로고
    • On the difficulty of approximately maximizing agreements
    • S. BEN-DAVID, N. EIRON, AND P. M. LONG, On the difficulty of approximately maximizing agreements, J. Comput. System Sci., 66(2003), pp. 496-514.
    • (2003) J. Comput. System Sci. , vol.66 , pp. 496-514
    • Ben-David, S.1    Eiron, N.2    Long, P.M.3
  • 7
    • 0001926474 scopus 로고    scopus 로고
    • A polynomial-time algorithm for learning noisy linear threshold functions
    • A. BLUM, A. FRIEZE, R. KANNAN, AND S. VEMPALA, A polynomial-time algorithm for learning noisy linear threshold functions, Algorithmica, 22(1998), pp. 35-52. (Pubitemid 128684248)
    • (1998) Algorithmica (New York) , vol.22 , Issue.1-2 , pp. 35-52
    • Blum, A.1    Frieze, A.2    Kannan, R.3    Vempala, S.4
  • 10
    • 29144442322 scopus 로고    scopus 로고
    • Maximizing agreements and coagnostic learning
    • DOI 10.1016/j.tcs.2005.10.014, PII S0304397505006407, Algorithmic Learning Theory (ALT 2002)
    • N. BSHOUTY AND L. BURROUGHS, Maximizing agreements and coagnostic learning, Theoret. Comput. Sci., 350(2006), pp. 24-39. (Pubitemid 41817578)
    • (2006) Theoretical Computer Science , vol.350 , Issue.1 , pp. 24-39
    • Bshouty, N.H.1    Burroughs, L.2
  • 18
    • 77952286782 scopus 로고    scopus 로고
    • On agnostic learning of parities, monomials, and halfspaces
    • V. FELDMAN, P. GOPALAN, S. KHOT, AND A. K. PONNUSWAMI, On agnostic learning of parities, monomials, and halfspaces, SIAM J. Comput., 39(2009), pp. 606-645.
    • (2009) SIAM J. Comput. , vol.39 , pp. 606-645
    • Feldman, V.1    Gopalan, P.2    Khot, S.3    Ponnuswami, A.K.4
  • 19
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Y. FREUND, Boosting a weak learning algorithm by majority, Inform. and Comput., 121(1995), pp. 256-285.
    • (1995) Inform. and Comput. , vol.121 , pp. 256-285
    • Freund, Y.1
  • 20
    • 0025449027 scopus 로고
    • Perceptron based learning algorithms
    • S. GALANT, Perceptron based learning algorithms, IEEE Trans. Neural Networks, 1(2) (1990), pp. 179-192.
    • (1990) IEEE Trans. Neural Networks , vol.1 , Issue.2 , pp. 179-192
    • Galant, S.1
  • 23
    • 77952268301 scopus 로고    scopus 로고
    • Hardness of reconstructing multivariate polynomials over finite fields
    • P. GOPALAN, S. KHOT, AND R. SAKET, Hardness of reconstructing multivariate polynomials over finite fields, SIAM J. Comput., 39(2010), pp. 2598-2621.
    • (2010) SIAM J. Comput. , vol.39 , pp. 2598-2621
    • Gopalan, P.1    Khot, S.2    Saket, R.3
  • 24
    • 78349307536 scopus 로고    scopus 로고
    • Hardness of learning halfspaces with noise
    • V. GURUSWAMI AND P. RAGHAVENDRA, Hardness of learning halfspaces with noise, SIAM J. Comput., 39(2009), pp. 742-765.
    • (2009) SIAM J. Comput. , vol.39 , pp. 742-765
    • Guruswami, V.1    Raghavendra, P.2
  • 26
    • 0002192516 scopus 로고
    • Decision theoretic generalizations of the PAC model for neural net and other learning applications
    • D. HAUSSLER, Decision theoretic generalizations of the PAC model for neural net and other learning applications, Inform. and Comput., 100(1992), pp. 78-150.
    • (1992) Inform. and Comput. , vol.100 , pp. 78-150
    • Haussler, D.1
  • 30
    • 0032202014 scopus 로고    scopus 로고
    • Efficient noise-tolerant learning from statistical queries
    • M. KEARNS, Efficient noise-tolerant learning from statistical queries, J. ACM, 45(1998), pp. 983-1006.
    • (1998) J. ACM , vol.45 , pp. 983-1006
    • Kearns, M.1
  • 31
  • 32
    • 0027640858 scopus 로고
    • Learning in the presence of malicious errors
    • M. KEARNS AND M. LI, Learning in the presence of malicious errors, SIAM J. Comput., 22(1993), pp. 807-837. (Pubitemid 23677152)
    • (1993) SIAM Journal on Computing , vol.22 , Issue.4 , pp. 807-837
    • Kearns Michael1    Li Ming2
  • 33
    • 0028460231 scopus 로고
    • Efficient distribution-free learning of probabilistic concepts
    • DOI 10.1016/S0022-0000(05)80062-5
    • M. J. KEARNS AND R. E. SCHAPIRE, Efficient distribution-free learning of probabilistic concepts, J. Comput. System Sci., 48(1994), pp. 464-497. (Pubitemid 124013300)
    • (1994) Journal of Computer and System Sciences , vol.48 , Issue.3 , pp. 464-497
    • Kearns, M.J.1    Schapire, R.E.2
  • 36
    • 40049085242 scopus 로고    scopus 로고
    • Optimal inapproximability results for MAX-CUT and other 2-variable CSPs?
    • DOI 10.1137/S0097539705447372
    • S. KHOT, G. KINDLER, E. MOSSEL, AND R. O'DONNELL, Optimal inapproximability results for MAX-CUT and other 2-variable CSPs?, SIAM J. Comput., 37(2007), pp. 319-357. (Pubitemid 351321999)
    • (2007) SIAM Journal on Computing , vol.37 , Issue.1 , pp. 319-357
    • Khot, S.1    Kindler, G.2    Mossel, E.3    O'Donnell, R.4
  • 37
    • 38149105774 scopus 로고    scopus 로고
    • Vertex cover might be hard to approximate to within 2-epsilon
    • S. KHOT AND O. REGEV, Vertex cover might be hard to approximate to within 2-epsilon, J. Comput. System Sci., 74(2008), pp. 335-349.
    • (2008) J. Comput. System Sci. , vol.74 , pp. 335-349
    • Khot, S.1    Regev, O.2
  • 39
    • 35348904454 scopus 로고    scopus 로고
    • Unconditional lower bounds for learning intersections of halfspaces
    • DOI 10.1007/s10994-007-5010-1, Special Issue on COLT 2006; Guest Editors: Avrim Blum, Gabor Lugosi and Hans Ulrich Simon
    • A. KLIVANS AND A. SHERSTOV, Unconditional lower bounds for learning intersections of halfspaces, Machine Learning, 69(2007), pp. 97-114. (Pubitemid 47574311)
    • (2007) Machine Learning , vol.69 , Issue.2-3 , pp. 97-114
    • Klivans, A.R.1    Sherstov, A.A.2
  • 40
    • 56249100680 scopus 로고    scopus 로고
    • Cryptographic hardness for learning intersections of halfspaces
    • A. KLIVANS AND A. SHERSTOV, Cryptographic hardness for learning intersections of halfspaces, J. Comput. System Sci., 75(2009), pp. 2-12.
    • (2009) J. Comput. System Sci. , vol.75 , pp. 2-12
    • Klivans, A.1    Sherstov, A.2
  • 42
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
    • N. LITTLESTONE, Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm, Machine Learning, 2(1987), pp. 285-318.
    • (1987) Machine Learning , vol.2 , pp. 285-318
    • Littlestone, N.1
  • 45
    • 33748602908 scopus 로고    scopus 로고
    • Noise stability of functions with low influences: Invariance and optimality
    • DOI 10.1109/SFCS.2005.53, 1530698, Proceedings - 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2005
    • E. MOSSEL, R. O'DONNELL, AND K. OLESZKIEWICZ, Noise stability of functions with low influences: Invariance and optimality, in Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2005, pp. 21-30. (Pubitemid 44375716)
    • (2005) Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS , vol.2005 , pp. 21-30
    • Mossel, E.1    O'Donnell, R.2    Oleszkiewicz, K.3
  • 47
    • 1442267080 scopus 로고
    • Learning decision lists
    • R. RIVEST, Learning decision lists, Machine Learning, 2(1987), pp. 229-246.
    • (1987) Machine Learning , vol.2 , pp. 229-246
    • Rivest, R.1
  • 48
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • F. ROSENBLATT, The perceptron: A probabilistic model for information storage and organization in the brain, Psychological Rev., 65(1958), pp. 386-407.
    • (1958) Psychological Rev. , vol.65 , pp. 386-407
    • Rosenblatt, F.1
  • 49
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. SCHAPIRE, The strength of weak learnability, Machine Learning, 5(1990), pp. 197-227.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.1
  • 50
    • 34249103612 scopus 로고    scopus 로고
    • Every linear threshold function has a low-weight approximator
    • R. A. SERVEDIO, Every linear threshold function has a low-weight approximator, Comput. Complex., 16(2007), pp. 180-209.
    • (2007) Comput. Complex. , vol.16 , pp. 180-209
    • Servedio, R.A.1
  • 51
    • 0021518106 scopus 로고
    • A theory of the learnable
    • L. VALIANT, A theory of the learnable, Comm. ACM, 27(1984), pp. 1134-1142.
    • (1984) Comm. ACM , vol.27 , pp. 1134-1142
    • Valiant, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.