메뉴 건너뛰기




Volumn 5, Issue , 2004, Pages 1225-1251

Statistical analysis of some multi-category large margin classification methods

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; SOFTWARE ENGINEERING;

EID: 26944483874     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (313)

References (28)
  • 5
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research, 2:265-292, 2001.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 6
    • 84898949656 scopus 로고    scopus 로고
    • Data-dependent bounds for multi-category classification based on convex losses
    • Ilya Desyatnikov and Ron Meir. Data-dependent bounds for multi-category classification based on convex losses. In COLT, 2003.
    • (2003) COLT
    • Desyatnikov, I.1    Meir, R.2
  • 7
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • With discussion
    • J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting. The Annals of Statistics, 28(2):337-407, 2000. With discussion.
    • (2000) The Annals of Statistics , vol.28 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 8
    • 26444545593 scopus 로고    scopus 로고
    • Process consistency for adaboost
    • with discussion
    • W. Jiang. Process consistency for adaboost. The Annals of Statistics, 32:13-29, 2004. with discussion.
    • (2004) The Annals of Statistics , vol.32 , pp. 13-29
    • Jiang, W.1
  • 9
    • 2142775432 scopus 로고    scopus 로고
    • Multicategory support vector machines, theory, and application to the classification of microarray data and satellite radiance data
    • Y. Lee, Y. Lin, and G. Wahba. Multicategory support vector machines, theory, and application to the classification of microarray data and satellite radiance data. Journal of American Statistical Association, 99:67-81, 2004.
    • (2004) Journal of American Statistical Association , vol.99 , pp. 67-81
    • Lee, Y.1    Lin, Y.2    Wahba, G.3
  • 10
    • 0036258405 scopus 로고    scopus 로고
    • Support vector machines and the bayes rule in classification
    • Yi Lin. Support vector machines and the bayes rule in classification. Data Mining and Knowledge Discovery, pages 259-275, 2002.
    • (2002) Data Mining and Knowledge Discovery , pp. 259-275
    • Lin, Y.1
  • 12
    • 9444269961 scopus 로고    scopus 로고
    • On the Bayes-risk consistency of regularized boosting methods
    • with discussion
    • G. Lugosi and N. Vayatis. On the Bayes-risk consistency of regularized boosting methods. The Annals of Statistics, 32:30-55, 2004. with discussion.
    • (2004) The Annals of Statistics , vol.32 , pp. 30-55
    • Lugosi, G.1    Vayatis, N.2
  • 13
    • 0033234630 scopus 로고    scopus 로고
    • Smooth discrimination analysis
    • E. Mammen and A. Tsybakov Smooth discrimination analysis. Annals of Statis., 27:1808-1829, 1999.
    • (1999) Annals of Statis. , vol.27 , pp. 1808-1829
    • Mammen, E.1    Tsybakov, A.2
  • 14
    • 2542488393 scopus 로고    scopus 로고
    • Greedy algorithms for classification - Consistency, convergence rates, and adaptivity
    • Shie Mannor, Ron Meir, and Tong Zhang. Greedy algorithms for classification - consistency, convergence rates, and adaptivity. Journal of Machine Learning Research, 4:713-741, 2003.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 713-741
    • Mannor, S.1    Meir, R.2    Zhang, T.3
  • 16
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Robert E. Schapire and Yoram Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37:297-336, 1999.
    • (1999) Machine Learning , vol.37 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 19
    • 0036749277 scopus 로고    scopus 로고
    • Support vector machines are universally consistent
    • Ingo Steinwart. Support vector machines are universally consistent. J. Complexity, 18:768-791, 2002.
    • (2002) J. Complexity , vol.18 , pp. 768-791
    • Steinwart, I.1
  • 21
    • 21844437252 scopus 로고    scopus 로고
    • Consistency of support vector machines and other regularized kernel machines
    • to appear
    • Ingo Steinwart. Consistency of support vector machines and other regularized kernel machines. IEEE Transactions on Information Theory, 2004. to appear.
    • (2004) IEEE Transactions on Information Theory
    • Steinwart, I.1
  • 25
    • 84925669872 scopus 로고
    • CBMS-NSF Regional Conference series in applied mathematics. SIAM
    • Grace Wahba. Spline Models for Observational Data. CBMS-NSF Regional Conference series in applied mathematics. SIAM, 1990.
    • (1990) Spline Models for Observational Data
    • Wahba, G.1
  • 27
    • 0347067948 scopus 로고    scopus 로고
    • Covering number bounds of certain regularized linear function classes
    • Tong Zhang. Covering number bounds of certain regularized linear function classes. Journal of Machine Learning Research, 2:527-550, 2002.
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 527-550
    • Zhang, T.1
  • 28
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • with discussion
    • Tong Zhang. Statistical behavior and consistency of classification methods based on convex risk minimization. The Annals of Statitics, 32:56-85, 2004. with discussion.
    • (2004) The Annals of Statitics , vol.32 , pp. 56-85
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.