메뉴 건너뛰기




Volumn 27, Issue 1, 2017, Pages 79-101

Random projections for Bayesian regression

Author keywords

Bayesian regression; Data reduction; Posterior approximation; Random projections

Indexed keywords


EID: 84947608290     PISSN: 09603174     EISSN: 15731375     Source Type: Journal    
DOI: 10.1007/s11222-015-9608-z     Document Type: Article
Times cited : (41)

References (69)
  • 1
    • 70350734557 scopus 로고    scopus 로고
    • Fast dimension reduction using Rademacher series on dual BCH codes
    • Ailon, N., Liberty, E.: Fast dimension reduction using Rademacher series on dual BCH codes. Discret. Comput. Geom. 42(4), 615–630 (2009)
    • (2009) Discret. Comput. Geom. , vol.42 , Issue.4 , pp. 615-630
    • Ailon, N.1    Liberty, E.2
  • 2
    • 0033077324 scopus 로고    scopus 로고
    • The space complexity of approximating the frequency moments
    • Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments. J. Comput. Syst. Sci. 58(1), 137–147 (1999)
    • (1999) J. Comput. Syst. Sci. , vol.58 , Issue.1 , pp. 137-147
    • Alon, N.1    Matias, Y.2    Szegedy, M.3
  • 3
    • 34147115328 scopus 로고    scopus 로고
    • A one-pass sequential Monte Carlo method for Bayesian analysis of massive datasets
    • Balakrishnan, S., Madigan, D.: A one-pass sequential Monte Carlo method for Bayesian analysis of massive datasets. Bayesian Anal. 1(2), 345–361 (2006)
    • (2006) Bayesian Anal. , vol.1 , Issue.2 , pp. 345-361
    • Balakrishnan, S.1    Madigan, D.2
  • 4
    • 84874776816 scopus 로고    scopus 로고
    • Efficient Gaussian process regression for large datasets
    • Banerjee, A., Dunson, D.B., Tokdar, S.T.: Efficient Gaussian process regression for large datasets. Biometrika 100(1), 75–89 (2013)
    • (2013) Biometrika , vol.100 , Issue.1 , pp. 75-89
    • Banerjee, A.1    Dunson, D.B.2    Tokdar, S.T.3
  • 5
    • 55649115527 scopus 로고    scopus 로고
    • A simple proof of the restricted isometry property for random matrices
    • Baraniuk, R., Davenport, M., Devore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28(3), 253–263 (2008)
    • (2008) Constr. Approx. , vol.28 , Issue.3 , pp. 253-263
    • Baraniuk, R.1    Davenport, M.2    Devore, R.3    Wakin, M.4
  • 6
    • 84919791245 scopus 로고    scopus 로고
    • Towards scaling up Markov Chain Monte Carlo an adaptive subsampling approach
    • Bardenet, R., Doucet, A., Holmes, C.C.: Towards scaling up Markov Chain Monte Carlo an adaptive subsampling approach. In: Proc. of ICML, pp. 405–413 (2014)
    • (2014) Proc. of ICML , pp. 405-413
    • Bardenet, R.1    Doucet, A.2    Holmes, C.C.3
  • 8
    • 0036964474 scopus 로고    scopus 로고
    • Approximate Bayesian computation in population genetics
    • Beaumont, M.A., Zhang, W., Balding, D.J.: Approximate Bayesian computation in population genetics. Genetics 162(4), 2025–2035 (2002)
    • (2002) Genetics , vol.162 , Issue.4 , pp. 2025-2035
    • Beaumont, M.A.1    Zhang, W.2    Balding, D.J.3
  • 11
    • 84887400770 scopus 로고    scopus 로고
    • Improved matrix algorithms via the subsampled randomized hadamard transform
    • Boutsidis, C., Gittens, A.: Improved matrix algorithms via the subsampled randomized hadamard transform. SIAM J. Matrix Anal. Appl. 34(3), 1301–1340 (2013)
    • (2013) SIAM J. Matrix Anal. Appl. , vol.34 , Issue.3 , pp. 1301-1340
    • Boutsidis, C.1    Gittens, A.2
  • 13
    • 85162014411 scopus 로고    scopus 로고
    • Boutsidis, C., Zouzias, A., Drineas, P.: Random projections for k -means clustering. In: Proceedings of NIPS, pp. 298–306 (2010)
    • Boutsidis, C., Zouzias, A., Drineas, P.: Random projections for k -means clustering. In: Proceedings of NIPS, pp. 298–306 (2010)
  • 14
  • 15
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
    • Candès, E.J., Romberg, J.K., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)
    • (2006) IEEE Trans. Inf. Theory , vol.52 , Issue.2 , pp. 489-509
    • Candès, E.J.1    Romberg, J.K.2    Tao, T.3
  • 16
    • 70350688128 scopus 로고    scopus 로고
    • Numerical linear algebra in the streaming model
    • Clarkson, K.L., Woodruff, D.P.: Numerical linear algebra in the streaming model. In: Proceedings of STOC, pp. 205–214 (2009)
    • (2009) Proceedings of STOC , pp. 205-214
    • Clarkson, K.L.1    Woodruff, D.P.2
  • 17
    • 84879805132 scopus 로고    scopus 로고
    • Low rank approximation and regression in input sparsity time
    • Clarkson, K.L., Woodruff, D.P.: Low rank approximation and regression in input sparsity time. In: Proceedings of STOC, pp. 81–90 (2013)
    • (2013) Proceedings of STOC , pp. 81-90
    • Clarkson, K.L.1    Woodruff, D.P.2
  • 18
    • 84938243406 scopus 로고    scopus 로고
    • Sketching for M-estimators: A unified approach to robust regression
    • Clarkson, K.L., Woodruff, D.P.: Sketching for M-estimators: A unified approach to robust regression. In: Proceedings of SODA, pp. 921–939 (2015)
    • (2015) Proceedings of SODA , pp. 921-939
    • Clarkson, K.L.1    Woodruff, D.P.2
  • 20
    • 84958764795 scopus 로고    scopus 로고
    • Cohen, M.B., Elder, S., Musco, C., Musco, C., Persu, M.: Dimensionality reduction for k -means clustering and low rank approximation. In: Proceedings of STOC (2015)
    • Cohen, M.B., Elder, S., Musco, C., Musco, C., Persu, M.: Dimensionality reduction for k -means clustering and low rank approximation. In: Proceedings of STOC (2015)
  • 22
    • 77954816556 scopus 로고    scopus 로고
    • Approximate Bayesian computation (ABC) in practice
    • Csillery, K., Blum, M., Gaggiotti, O., Francois, O.: Approximate Bayesian computation (ABC) in practice. Trends Ecol. Evol. 25(7), 410–418 (2010)
    • (2010) Trends Ecol. Evol. , vol.25 , Issue.7 , pp. 410-418
    • Csillery, K.1    Blum, M.2    Gaggiotti, O.3    Francois, O.4
  • 24
    • 84861354409 scopus 로고    scopus 로고
    • Communication-optimal parallel and sequential QR and LU factorizations. SIAM
    • Demmel, J., Grigori, L., Hoemmen, M., Langou, J.: Communication-optimal parallel and sequential QR and LU factorizations. SIAM J. Sci. Comput. 34(1), A206–A239 (2012)
    • (2012) J. Sci. Comput , vol.34 , Issue.1 , pp. A206-A239
    • Demmel, J.1    Grigori, L.2    Hoemmen, M.3    Langou, J.4
  • 25
  • 26
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(2), 1289–1306 (2006)
    • (2006) IEEE Trans. Inf. Theory , vol.52 , Issue.2 , pp. 1289-1306
    • Donoho, D.L.1
  • 27
    • 33244493810 scopus 로고    scopus 로고
    • 2 regression and applications. In: Proceedings of SODA, pp. 1127–1136 (2006)
    • 2 regression and applications. In: Proceedings of SODA, pp. 1127–1136 (2006)
  • 30
    • 85040007509 scopus 로고    scopus 로고
    • Event labeling combining ensemble detectors and background knowledge
    • Fanaee-T, H., Gama, J.: Event labeling combining ensemble detectors and background knowledge. Prog. in AI 2(2–3), 113–127 (2014)
    • (2014) Prog. in AI , vol.2 , Issue.2-3 , pp. 113-127
    • Fanaee, H.1    Gama, J.2
  • 31
    • 84876035763 scopus 로고    scopus 로고
    • Turning big data into tiny data: constant-size coresets for k-means, PCA and projective clustering
    • Feldman, D., Schmidt, M., Sohler, C.: Turning big data into tiny data: constant-size coresets for k-means, PCA and projective clustering. In: Proceedings of SODA, pp. 1434–1453 (2013)
    • (2013) Proceedings of SODA , pp. 1434-1453
    • Feldman, D.1    Schmidt, M.2    Sohler, C.3
  • 32
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper)
    • Gelman, A.: Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 1(3), 515–534 (2006)
    • (2006) Bayesian Anal. , vol.1 , Issue.3 , pp. 515-534
    • Gelman, A.1
  • 34
    • 85009990397 scopus 로고    scopus 로고
    • RaProR: Random Projections for Bayesian Linear Regression, R-package
    • Geppert, L.N., Ickstadt, K., Munteanu, A., Quedenfeld, J., Sohler, C.: RaProR: Random Projections for Bayesian Linear Regression, R-package, Version 1.0 (2015) http://ls2-www.cs.uni-dortmund.de/projekte/RaProR/
    • (2015) Version , vol.1 , pp. 0
    • Geppert, L.N.1    Ickstadt, K.2    Munteanu, A.3    Quedenfeld, J.4    Sohler, C.5
  • 35
    • 0000797976 scopus 로고
    • A class of Wasserstein metrics for probability distributions
    • Givens, C.R., Shortt, R.M.: A class of Wasserstein metrics for probability distributions. Mich. Math. J. 31(2), 231–240 (1984)
    • (1984) Mich. Math. J. , vol.31 , Issue.2 , pp. 231-240
    • Givens, C.R.1    Shortt, R.M.2
  • 36
    • 0000924593 scopus 로고
    • Numerical methods for solving linear least squares problems
    • Golub, G.H.: Numerical methods for solving linear least squares problems. Numer. Math. 7(3), 206–216 (1965)
    • (1965) Numer. Math. , vol.7 , Issue.3 , pp. 206-216
    • Golub, G.H.1
  • 38
    • 84954443066 scopus 로고    scopus 로고
    • Bayesian compressed regression. J. Amer. Stat. Assoc
    • Guhaniyogi, R., Dunson, D.B.: Bayesian compressed regression. J. Amer. Stat. Assoc. published online (2014) doi:10.1080/01621459.2014.969425
    • (2014) published online
    • Guhaniyogi, R.1    Dunson, D.B.2
  • 39
    • 79960425522 scopus 로고    scopus 로고
    • Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions
    • Halko, N., Martinsson, P.-G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)
    • (2011) SIAM Rev. , vol.53 , Issue.2 , pp. 217-288
    • Halko, N.1    Martinsson, P.-G.2    Tropp, J.A.3
  • 41
    • 84901687683 scopus 로고    scopus 로고
    • The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo
    • Hoffman, M.D., Gelman, A.: The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15, 1593–1623 (2014)
    • (2014) J. Mach. Learn. Res. , vol.15 , pp. 1593-1623
    • Hoffman, M.D.1    Gelman, A.2
  • 42
    • 0004151494 scopus 로고
    • Cambridge University Press, Cambridge
    • Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge (1990)
    • (1990) Matrix Analysis
    • Horn, R.1    Johnson, C.2
  • 43
    • 34547990838 scopus 로고    scopus 로고
    • Bayesian compressive sensing and projection optimization
    • Ji, S., Carin, L.: Bayesian compressive sensing and projection optimization. In: Proceedings of ICML, pp. 377–384 (2007)
    • (2007) Proceedings of ICML , pp. 377-384
    • Ji, S.1    Carin, L.2
  • 46
    • 84915816508 scopus 로고    scopus 로고
    • Principal component analysis and higher correlations for distributed data
    • Kannan, R., Vempala, S., Woodruff, D.P.: Principal component analysis and higher correlations for distributed data. In: Proceedings of COLT, pp. 1040–1057 (2014)
    • (2014) Proceedings of COLT , pp. 1040-1057
    • Kannan, R.1    Vempala, S.2    Woodruff, D.P.3
  • 47
    • 85009942432 scopus 로고    scopus 로고
    • Approximation and streaming algorithms for projective clustering via random projections
    • Kerber, M., Raghvendra, S.: Approximation and streaming algorithms for projective clustering via random projections. CoRR abs/1407.2063 (2014)
    • (2014) CoRR abs/1407 , pp. 2063
    • Kerber, M.1    Raghvendra, S.2
  • 49
    • 85009942436 scopus 로고    scopus 로고
    • Lichman, M.: UCI machine learning repository. (2013)
    • Lichman, M.: UCI machine learning repository. http://archive.ics.uci.edu/ml (2013)
  • 50
    • 84994174340 scopus 로고    scopus 로고
    • A statistical perspective on algorithmic leveraging
    • Ma, P., Mahoney, M.W., Yu, B.: A statistical perspective on algorithmic leveraging. In: Proceedings of ICML, pp. 91–99 (2014)
    • (2014) Proceedings of ICML , pp. 91-99
    • Ma, P.1    Mahoney, M.W.2    Yu, B.3
  • 53
    • 30344485261 scopus 로고    scopus 로고
    • Data streams: algorithms and applications
    • Muthukrishnan, S.: Data streams: algorithms and applications. Found. Trends Theor. Comput. Sci. 1(2) 1–126 (2005)
    • (2005) Found. Trends Theor. Comput. Sci , vol.1 , Issue.2 , pp. 1-126
    • Muthukrishnan, S.1
  • 54
    • 84893239024 scopus 로고    scopus 로고
    • OSNAP: Faster numerical linear algebra algorithms via sparser subspace embeddings
    • Nelson, J., Nguyen, H.L.: OSNAP: Faster numerical linear algebra algorithms via sparser subspace embeddings. In: Proceedings of FOCS, pp. 117–126 (2013a)
    • (2013) Proceedings of FOCS , pp. 117-126
    • Nelson, J.1    Nguyen, H.L.2
  • 55
    • 84879806069 scopus 로고    scopus 로고
    • Sparsity lower bounds for dimensionality reducing maps
    • Nelson, J., Nguyen, H.L.: Sparsity lower bounds for dimensionality reducing maps. In: Proceedings of STOC, pp. 101–110 (2013b)
    • (2013) Proceedings of STOC , pp. 101-110
    • Nelson, J.1    Nguyen, H.L.2
  • 56
    • 84904157119 scopus 로고    scopus 로고
    • Lower bounds for oblivious subspace embeddings
    • Nelson, J., Nguyên, H.L.: Lower bounds for oblivious subspace embeddings. In: Proceedings of ICALP, Part I, pp. 883–894 (2014)
    • (2014) Proceedings of ICALP, Part I , pp. 883-894
    • Nelson, J.1    Nguyên, H.L.2
  • 60
    • 84969533825 scopus 로고    scopus 로고
    • Statistical and algorithmic perspectives on randomized sketching for ordinary least-squares
    • Raskutti, G., Mahoney, M.: Statistical and algorithmic perspectives on randomized sketching for ordinary least-squares. In: Proceedings of ICML, pp. 617–625 (2015)
    • (2015) Proceedings of ICML , pp. 617-625
    • Raskutti, G.1    Mahoney, M.2
  • 61
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion)
    • Rue, H., Martino, S., Chopin, N.: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion). J. R. Stat. Soc. B 71, 319–392 (2009)
    • (2009) J. R. Stat. Soc. B , vol.71 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 62
    • 34547438873 scopus 로고    scopus 로고
    • Pseudo-random number generation for sketch-based estimations
    • Rusu, F., Dobra, A.: Pseudo-random number generation for sketch-based estimations. ACM Trans. Database Syst. 32(2), 11 (2007)
    • (2007) ACM Trans. Database Syst. , vol.32 , Issue.2 , pp. 11
    • Rusu, F.1    Dobra, A.2
  • 63
    • 35348901208 scopus 로고    scopus 로고
    • Improved approximation algorithms for large matrices via random projections
    • Sarlós, T.: Improved approximation algorithms for large matrices via random projections. In: Proceedings of FOCS, pp. 143–152 (2006)
    • (2006) Proceedings of FOCS , pp. 143-152
    • Sarlós, T.1
  • 64
    • 84930573402 scopus 로고    scopus 로고
    • Stan: A C++ Library for Probability and Sampling
    • Stan Development Team: Stan: A C++ Library for Probability and Sampling, Version 2.3. (2013) http://mc-stan.org/
    • (2013) Version , vol.2 , pp. 3
  • 65
    • 84856429885 scopus 로고    scopus 로고
    • The Johnson-Lindenstrauss transform: an empirical study
    • Venkatasubramanian, S., Wang, Q.: The Johnson-Lindenstrauss transform: an empirical study. In: Proceedings of ALENEX, pp. 164–173 (2011)
    • (2011) Proceedings of ALENEX , pp. 164-173
    • Venkatasubramanian, S.1    Wang, Q.2
  • 68
    • 84898048673 scopus 로고    scopus 로고
    • p -regression using exponential random variables. In: Proceedings of COLT, pp. 546–567 (2013)
    • p -regression using exponential random variables. In: Proceedings of COLT, pp. 546–567 (2013)
  • 69
    • 84962800684 scopus 로고    scopus 로고
    • Implementing randomized matrix algorithms in parallel and distributed environments
    • Yang, J., Meng, X., Mahoney, M.W.: Implementing randomized matrix algorithms in parallel and distributed environments. CoRR abs/1502.03032 (2015)
    • (2015) CoRR abs/1502 , pp. 03032
    • Yang, J.1    Meng, X.2    Mahoney, M.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.