메뉴 건너뛰기




Volumn 100, Issue 1, 2013, Pages 75-89

Efficient Gaussian process regression for large datasets

Author keywords

Bayesian regression; Compressive sensing; Dimensionality reduction; Gaussian process; Random projection

Indexed keywords


EID: 84874776816     PISSN: 00063444     EISSN: 14643510     Source Type: Journal    
DOI: 10.1093/biomet/ass068     Document Type: Article
Times cited : (119)

References (37)
  • 2
    • 47649103974 scopus 로고    scopus 로고
    • Gaussian predictive process models for large spatial data sets
    • BANERJEE, S.,GELFAND, A. E., FINLEY, A. O. & SANG, H. (2008). Gaussian predictive process models for large spatial data sets. J. R. Statist. Soc. B 70, 825-48.
    • (2008) J. R. Statist. Soc , vol.70 , pp. 825-848
    • Banerjee, S.1    Gelfand, A.E.2    Finley, A.O.3    Sang, H.4
  • 4
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • CANDES, E. J., ROMBERG, J. & TAO, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Info. Theory 52, 489-509.
    • (2006) IEEE Trans. Info. Theory , vol.52 , pp. 489-509
    • Candes, E.J.1    Romberg, J.2    Tao, T.3
  • 5
    • 35348953749 scopus 로고    scopus 로고
    • On posterior consistency in nonparametric regression problems
    • CHOI, T. & SCHERVISH, M. J. (2007). On posterior consistency in nonparametric regression problems. J. Mult. Anal. 98, 1969-87.
    • (2007) J. Mult. Anal , vol.98 , pp. 1969-1987
    • Choi, T.1    Schervish, M.J.2
  • 6
    • 37849041594 scopus 로고    scopus 로고
    • Fixed rank kriging for very large spatial data sets
    • CRESSIE, N. & JOHANNESSON, G. (2008). Fixed rank kriging for very large spatial data sets. J. R. Statist. Soc. B 70, 209-26.
    • (2008) J. R. Statist. Soc , vol.70 , pp. 209-226
    • Cressie, N.1    Johannesson, G.2
  • 7
    • 0038891993 scopus 로고    scopus 로고
    • Sparse on-line Gaussian processes
    • CSAT ́O, L. & OPPER, M. (2002). Sparse on-line Gaussian processes. Neural Comp. 14, 641-68.
    • (2002) Neural Comp , vol.14 , pp. 641-668
    • Csat ́o, L.1    Opper, M.2
  • 8
    • 0037236821 scopus 로고    scopus 로고
    • An elementary proof of a theorem of Johnson and Lindenstrauss
    • DASGUPTA, S. & GUPTA, A. (2003). An elementary proof of a theorem of Johnson and Lindenstrauss. Random Struct. Algor. 22, 60-5.
    • (2003) Random Struct. Algor , vol.22 , pp. 60-65
    • Dasgupta, S.1    Gupta, A.2
  • 10
    • 34249922698 scopus 로고
    • Unitary similarity of projectors
    • DOKOVI'C, D. (1991). Unitary similarity of projectors. Aequationes Math. 42, 220-4.
    • (1991) Aequationes Math , vol.42 , pp. 220-224
    • Dokovi'C, D.1
  • 12
    • 29244453931 scopus 로고    scopus 로고
    • On the Nystr?om method for approximating a Gram matrix for improved kernel-based learning
    • DRINEAS, P. & MAHONEY, M. W. (2005). On the Nystr?om method for approximating a Gram matrix for improved kernel-based learning. J. Mach. Learn. Res. 6, 2153-75.
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 2153-2175
    • Drineas, P.1    Mahoney, M.W.2
  • 13
    • 62849106305 scopus 로고    scopus 로고
    • Improving the performance of predictive process modeling for large datasets
    • FINLEY, A. O., SANG, H., BANERJEE, S. & GELFAND, A. E. (2009). Improving the performance of predictive process modeling for large datasets. Comp. Statist. Data Anal. 53, 2873-84.
    • (2009) Comp. Statist. Data Anal , vol.53 , pp. 2873-2884
    • Finley, A.O.1    Sang, H.2    Banerjee, S.3    Gelfand, A.E.4
  • 16
    • 10444261986 scopus 로고    scopus 로고
    • Finite elements for elliptic problems with stochastic coefficients
    • FRAUENFELDER, P., SCHWAB, C. & TODOR, R. A. (2005). Finite elements for elliptic problems with stochastic coefficients. Comp. Meth. Appl. Mech. Eng. 194, 205-28.
    • (2005) Comp. Meth. Appl. Mech. Eng , vol.194 , pp. 205-228
    • Frauenfelder, P.1    Schwab, C.2    Todor, R.A.3
  • 18
    • 33750049940 scopus 로고    scopus 로고
    • Bayesian sequential inference for nonlinear multivariate diffusions
    • GOLIGHTLY, A.&WILKINSON, D. J. (2006). Bayesian sequential inference for nonlinear multivariate diffusions. Statist. Comp. 16, 323-38.
    • (2006) Statist. Comp , vol.16 , pp. 323-338
    • Golightly, A.1    Wilkinson, D.J.2
  • 19
    • 0042645752 scopus 로고    scopus 로고
    • Stochastic calculus: Applications in science and engineering
    • GRIGORIU, M. (2002). Stochastic Calculus: Applications in Science and Engineering. Boston: Birkh?auser.
    • (2002) Boston: Birkh?auser
    • Grigoriu, M.1
  • 20
    • 83555174652 scopus 로고    scopus 로고
    • Adaptive Gaussian predictive process models for large spatial datasets
    • GUHANIYOGI, R., FINLEY, A. O., BANERJEE, S. & GELFAND, A. E. (2011). Adaptive Gaussian predictive process models for large spatial datasets. Environmetrics 22, 997-1007.
    • (2011) Environmetrics , vol.22 , pp. 997-1007
    • Guhaniyogi, R.1    Finley, A.O.2    Banerjee, S.3    Gelfand, A.E.4
  • 21
    • 79960425522 scopus 로고    scopus 로고
    • Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions
    • HALKO, N.,MARTINSSON, P. G. & TROPP, J. A. (2011). Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53, 217-88.
    • (2011) SIAM Rev , vol.53 , pp. 217-288
    • Halko, N.1    Martinsson, P.G.2    Tropp, J.A.3
  • 23
    • 51249179296 scopus 로고
    • Extensions of Lipschitz maps into Banach spaces
    • LINDENSTRAUSS, J. & SCHECHTMAN, G. (1986). Extensions of Lipschitz maps into Banach spaces. Israel J. Math. 54, 129-38.
    • (1986) Israel J. Math , vol.54 , pp. 129-138
    • Lindenstrauss, J.1    Schechtman, G.2
  • 24
    • 84864068501 scopus 로고    scopus 로고
    • A matching pursuit approach to sparse Gaussian process regression
    • KEERTHI, S. & CHU, W. (2006). A matching pursuit approach to sparse Gaussian process regression. Adv. Neural Info. Proces. Syst. 18, 643-50.
    • (2006) Adv. Neural Info. Proces. Syst , vol.18 , pp. 643-650
    • Keerthi, S.1    Chu, W.2
  • 25
    • 41149087694 scopus 로고    scopus 로고
    • CODA: Convergence diagnosis and output analysis for MCMC
    • PLUMMER, M., BEST, N., COWLES, K. & VINES, K. (2006). CODA: Convergence diagnosis and output analysis for MCMC. R News 6, 7-11.
    • (2006) R News , vol.6 , pp. 7-11
    • Plummer, M.1    Best, N.2    Cowles, K.3    Vines, K.4
  • 26
    • 29144453489 scopus 로고    scopus 로고
    • A unifying view of sparse approximate Gaussian process regression
    • QUI ?NONERO CANDELA, J. & RASMUSSEN, C. E. (2005). A unifying view of sparse approximate Gaussian process regression. J. Mach. Learn. Res. 6, 1939-59.
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 1939-1959
    • Qui Nonero Candela, J.1    Rasmussen, C.E.2
  • 28
    • 35348901208 scopus 로고    scopus 로고
    • Improved approximation algorithms for large matrices via random projections
    • SARLOS, T. (2006). Improved approximation algorithms for large matrices via random projections. In Proc. 47th Ann. IEEE Symp. Found. Comp. Sci. pp. 143-52.
    • (2006) Proc. 47th Ann. IEEE Symp. Found. Comp. Sci , pp. 143-152
    • Sarlos, T.1
  • 29
    • 85156215194 scopus 로고    scopus 로고
    • Transductive and inductive methods for approximate Gaussian process regression
    • SCHWAIGHOFER, A. & TRESP, V. (2002). Transductive and inductive methods for approximate Gaussian process regression. Adv. Neural Info. Proces. Syst. 15, 953-60.
    • (2002) Adv. Neural Info. Proces. Syst , vol.15 , pp. 953-960
    • Schwaighofer, A.1    Tresp, V.2
  • 34
    • 0027879547 scopus 로고
    • On the early history of the singular value decomposition
    • STEWART, G. W. (1993). On the early history of the singular value decomposition. SIAM Rev. 35, 551-66.
    • (1993) SIAM Rev , vol.35 , pp. 551-566
    • Stewart, G.W.1
  • 35
    • 35349023855 scopus 로고    scopus 로고
    • Towards a faster implementation of density estimation with logistic Gaussian process priors
    • TOKDAR, S. T. (2007). Towards a faster implementation of density estimation with logistic Gaussian process priors. J. Comp. Graph. Statist. 16, 633-55.
    • (2007) J. Comp. Graph. Statist , vol.16 , pp. 633-655
    • Tokdar, S.T.1
  • 36
    • 51049088387 scopus 로고    scopus 로고
    • Rates of contraction of posterior distributions based on Gaussian process priors
    • VAN DER VAART, A. W. & VAN ZANTEN, J. H. (2008). Rates of contraction of posterior distributions based on Gaussian process priors. Ann. Statist. 36, 1435-63.
    • (2008) Ann. Statist , vol.36 , pp. 1435-1463
    • Van Der Vaart, A.W.1    Van Zanten, J.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.