메뉴 건너뛰기




Volumn , Issue , 2006, Pages 143-152

Improved approximation algorithms for large matrices via random projections

Author keywords

[No Author keywords available]

Indexed keywords

DATA REDUCTION; RANDOM PROCESSES; REGRESSION ANALYSIS; SINGULAR VALUE DECOMPOSITION;

EID: 35348901208     PISSN: 02725428     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/FOCS.2006.37     Document Type: Conference Paper
Times cited : (749)

References (45)
  • 1
    • 0038166193 scopus 로고    scopus 로고
    • Database-friendly random projections: Johnson- Lindenstrauss with binary coins
    • D. Achlioptas. Database-friendly random projections: Johnson- Lindenstrauss with binary coins. Journal of Computer and System Sciences, 66(4):671-687, 2003.
    • (2003) Journal of Computer and System Sciences , vol.66 , Issue.4 , pp. 671-687
    • Achlioptas, D.1
  • 4
    • 26944433782 scopus 로고    scopus 로고
    • On spectral learning of mixtures of distributions
    • D. Achlioptas and F. McSherry. On spectral learning of mixtures of distributions. In Proc. of the 18th COLT, pages 458-469, 2005.
    • (2005) Proc. of the 18th COLT , pp. 458-469
    • Achlioptas, D.1    McSherry, F.2
  • 5
    • 33748109164 scopus 로고    scopus 로고
    • Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform
    • N. Ailon and B. Chazelle. Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform. In Proc. of the 38th STOC, 2006.
    • (2006) Proc. of the 38th STOC
    • Ailon, N.1    Chazelle, B.2
  • 7
  • 8
    • 0033354520 scopus 로고    scopus 로고
    • An algorithmic theory of learning: Robust concepts and random projection
    • R. I. Arriaga and S. Vempala. An algorithmic theory of learning: Robust concepts and random projection. In Proc. of the 40th FOCS, pages 616-623, 1999.
    • (1999) Proc. of the 40th FOCS , pp. 616-623
    • Arriaga, R.I.1    Vempala, S.2
  • 10
    • 0038784650 scopus 로고    scopus 로고
    • Sampling lower bounds via information theory
    • Z. Bar-Yossef. Sampling lower bounds via information theory. In Proc. of the 35th STOC, pages 335-344, 2003.
    • (2003) Proc. of the 35th STOC , pp. 335-344
    • Bar-Yossef, Z.1
  • 11
    • 0029546874 scopus 로고
    • Using linear algebra for intelligent information retrieval
    • M. W. Berry, S. T. Dumais, and G. W. O'Brien. Using linear algebra for intelligent information retrieval. SIAM Review, 37(4):573-595, 1995.
    • (1995) SIAM Review , vol.37 , Issue.4 , pp. 573-595
    • Berry, M.W.1    Dumais, S.T.2    O'Brien, G.W.3
  • 13
    • 0006670574 scopus 로고    scopus 로고
    • Approximating matrix multiplication for pattern recognition tasks
    • E. Cohen and D. D. Lewis. Approximating matrix multiplication for pattern recognition tasks. Journal of Algorithms, 30(2):211-252, 1999.
    • (1999) Journal of Algorithms , vol.30 , Issue.2 , pp. 211-252
    • Cohen, E.1    Lewis, D.D.2
  • 15
    • 85023205150 scopus 로고
    • Matrix multiplication via arithmetic progressions
    • D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation, 9(3):251-280, 1990.
    • (1990) Journal of Symbolic Computation , vol.9 , Issue.3 , pp. 251-280
    • Coppersmith, D.1    Winograd, S.2
  • 17
    • 0037236821 scopus 로고    scopus 로고
    • An elementary proof of a theorem of Johnson and Lindenstrauss
    • S. Dasgupta and A. Gupta. An elementary proof of a theorem of Johnson and Lindenstrauss. Random Structures and Algorithms, 22(1):60-65, 2003.
    • (2003) Random Structures and Algorithms , vol.22 , Issue.1 , pp. 60-65
    • Dasgupta, S.1    Gupta, A.2
  • 19
    • 51849141693 scopus 로고    scopus 로고
    • Adaptive sampling and fast low-rank matrix approximation
    • A. Deshpande and S. Vempala. Adaptive sampling and fast low-rank matrix approximation. In Proc. of the 10th RANDOM, 2006.
    • (2006) Proc. of the 10th RANDOM
    • Deshpande, A.1    Vempala, S.2
  • 21
    • 33751115359 scopus 로고    scopus 로고
    • Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication
    • P. Drineas, R. Kannan, and M. W. Mahoney. Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication. SIAM Journal on Computing, 36:132-157, 2006.
    • (2006) SIAM Journal on Computing , vol.36 , pp. 132-157
    • Drineas, P.1    Kannan, R.2    Mahoney, M.W.3
  • 22
    • 33751097630 scopus 로고    scopus 로고
    • Fast Monte Carlo algorithms for matrices III: Computing a compressed approximate matrix decomposition
    • P. Drineas, R. Kannan, and M. W. Mahoney. Fast Monte Carlo algorithms for matrices III: Computing a compressed approximate matrix decomposition. SIAM Journal on Computing, 36:184-206, 2006.
    • (2006) SIAM Journal on Computing , vol.36 , pp. 184-206
    • Drineas, P.1    Kannan, R.2    Mahoney, M.W.3
  • 24
    • 26944440870 scopus 로고    scopus 로고
    • Approximating a Gram matrix for improved kernel-based learning
    • P. Drineas and M. W. Mahoney. Approximating a Gram matrix for improved kernel-based learning. In Proc. of the 18th COLT, pages 323-337, 2005.
    • (2005) Proc. of the 18th COLT , pp. 323-337
    • Drineas, P.1    Mahoney, M.W.2
  • 25
    • 38749127785 scopus 로고    scopus 로고
    • P. Drineas and M. W. Mahoney. A randomized algorithm for a tensor-based generalization of the SVD, 2005. To appear in Linear Algebra and Its Applications.
    • P. Drineas and M. W. Mahoney. A randomized algorithm for a tensor-based generalization of the SVD, 2005. To appear in Linear Algebra and Its Applications.
  • 26
    • 33751075906 scopus 로고    scopus 로고
    • Fast Monte Carlo algorithms for matrices II: Computing a low rank approximation to a matrix
    • P. Drineas, M. W. Mahoney, and R. Kannan. Fast Monte Carlo algorithms for matrices II: Computing a low rank approximation to a matrix. SIAM Journal on Computing, 36:158-183, 2006.
    • (2006) SIAM Journal on Computing , vol.36 , pp. 158-183
    • Drineas, P.1    Mahoney, M.W.2    Kannan, R.3
  • 28
    • 34547707771 scopus 로고    scopus 로고
    • Subspace sampling and relative-error matrix approximation: Column-based methods
    • P. Drineas, M. W. Mahoney, and S. Muthukrishnan. Subspace sampling and relative-error matrix approximation: Column-based methods. In Proc. of the 10th RANDOM, 2006.
    • (2006) Proc. of the 10th RANDOM
    • Drineas, P.1    Mahoney, M.W.2    Muthukrishnan, S.3
  • 29
    • 34547707771 scopus 로고    scopus 로고
    • Subspace sampling and relative-error matrix approximation: Column-row-based methods
    • P. Drineas, M. W. Mahoney, and S. Muthukrishnan. Subspace sampling and relative-error matrix approximation: Column-row-based methods. In Proc. of the 14th ESA, 2006.
    • (2006) Proc. of the 14th ESA
    • Drineas, P.1    Mahoney, M.W.2    Muthukrishnan, S.3
  • 30
    • 38249031101 scopus 로고
    • The Johnson-Lindenstrauss Lemma and the sphericity of some graphs
    • P. Frankl and H. Maehara. The Johnson-Lindenstrauss Lemma and the sphericity of some graphs. J. Combin. Theory Ser. B, 44:355-362, 1988.
    • (1988) J. Combin. Theory Ser. B , vol.44 , pp. 355-362
    • Frankl, P.1    Maehara, H.2
  • 31
    • 0017677282 scopus 로고
    • Probabilistic machines can use less running time
    • R. Freivalds. Probabilistic machines can use less running time. In Proc. of the IFIP Congress 1977, 1977.
    • (1977) Proc. of the IFIP Congress , pp. 1977
    • Freivalds, R.1
  • 32
    • 0032308232 scopus 로고    scopus 로고
    • Fast Monte-Carlo algorithms for finding low rank approximations
    • A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo algorithms for finding low rank approximations. In Proc. of the 39th FOCS, pages 370-378, 1998.
    • (1998) Proc. of the 39th FOCS , pp. 370-378
    • Frieze, A.1    Kannan, R.2    Vempala, S.3
  • 34
    • 38749126607 scopus 로고    scopus 로고
    • S. Har-Peled. Low rank matrix approximation in linear time, 2006. Manuscript.
    • S. Har-Peled. Low rank matrix approximation in linear time, 2006. Manuscript.
  • 36
    • 0031644241 scopus 로고    scopus 로고
    • Approximate nearest neighbors: Towards removing the curse of dimensionality
    • P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality. In Proc. of the 30th STOC, pages 604-613, 1998.
    • (1998) Proc. of the 30th STOC , pp. 604-613
    • Indyk, P.1    Motwani, R.2
  • 37
    • 0001654702 scopus 로고
    • Extensions of Lipschitz mappings into Hilbert space
    • W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into Hilbert space. Contemporary Mathematics, 26:189-206, 1984.
    • (1984) Contemporary Mathematics , vol.26 , pp. 189-206
    • Johnson, W.B.1    Lindenstrauss, J.2
  • 39
    • 4243148480 scopus 로고    scopus 로고
    • Authoritative sources in a hyperlinked environment
    • J. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5): 604-632, 1999.
    • (1999) Journal of the ACM , vol.46 , Issue.5 , pp. 604-632
    • Kleinberg, J.1
  • 40
    • 0043178250 scopus 로고
    • Estimating the largest eigenvalue by the power and Lanczos algorithms with a random start
    • J. Kuczynski and H. Wozniakowski. Estimating the largest eigenvalue by the power and Lanczos algorithms with a random start. SIAM J. Matrix Anal. Appl., 13(4):1094-1122, 1992.
    • (1992) SIAM J. Matrix Anal. Appl , vol.13 , Issue.4 , pp. 1094-1122
    • Kuczynski, J.1    Wozniakowski, H.2
  • 41
    • 38049187128 scopus 로고    scopus 로고
    • A randomized algorithm for the approximation of matrices
    • Technical Report 1361, Yale University
    • P.-G. Martinsson, V. Rokhlin, and M. Tygert. A randomized algorithm for the approximation of matrices. Technical Report 1361, Yale University, 2006.
    • (2006)
    • Martinsson, P.-G.1    Rokhlin, V.2    Tygert, M.3
  • 42
    • 0035186726 scopus 로고    scopus 로고
    • Spectral partitioning of random graphs
    • F. McSherry. Spectral partitioning of random graphs. In Proc. of the 42nd FOCS, pages 529-537, 2001.
    • (2001) Proc. of the 42nd FOCS , pp. 529-537
    • McSherry, F.1
  • 44
    • 38749098345 scopus 로고    scopus 로고
    • M. Rudelson and R. Vershynin. Sampling from large matrices: An approach through geometric functional analysis, 2005. Submitted.
    • M. Rudelson and R. Vershynin. Sampling from large matrices: An approach through geometric functional analysis, 2005. Submitted.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.