-
1
-
-
0038166193
-
Database-Friendly Random Projections: Johnson-Lindenstrauss With Binary Coins
-
D.Achlioptas, (2003), Database-Friendly Random Projections: Johnson-Lindenstrauss With Binary Coins, Journal of Computer and System Sciences, 66, 671–687.
-
(2003)
Journal of Computer and System Sciences
, vol.66
, pp. 671-687
-
-
Achlioptas, D.1
-
2
-
-
0004493166
-
On The Approximation of Minimizing Non-Zero Variables or Unsatisfied Relations in Linear Systems
-
E.Amaldi,, and V.Kann, (1998), On The Approximation of Minimizing Non-Zero Variables or Unsatisfied Relations in Linear Systems, Theoretical Computer Science, 209, 237–260.
-
(1998)
Theoretical Computer Science
, vol.209
, pp. 237-260
-
-
Amaldi, E.1
Kann, V.2
-
3
-
-
84878094378
-
Generalized Double Pareto Shrinkage
-
A.Armagan,, D.B.Dunson,, and J.Lee, (2013), Generalized Double Pareto Shrinkage, Statistica Sinica, 23, 119–143.
-
(2013)
Statistica Sinica
, vol.23
, pp. 119-143
-
-
Armagan, A.1
Dunson, D.B.2
Lee, J.3
-
4
-
-
84884953606
-
-
Arxiv Preprint arxiv:1212.6088
-
A.Bhattacharya,, D.Pati,, N.Pillai,, and D.B.Dunson, (2012), Bayesian Shrinkage, available at Arxiv Preprint arxiv:1212.6088.
-
(2012)
Bayesian Shrinkage
-
-
Bhattacharya, A.1
Pati, D.2
Pillai, N.3
Dunson, D.B.4
-
5
-
-
33745604236
-
Stable Signal Recovery From Incomplete and Inaccurate Measurements
-
E.A.Candes,, J.Romberg,, and T.Tao, (2006), Stable Signal Recovery From Incomplete and Inaccurate Measurements, Communications in Pure and Applied Mathematics, 59, 1207–1223.
-
(2006)
Communications in Pure and Applied Mathematics
, vol.59
, pp. 1207-1223
-
-
Candes, E.A.1
Romberg, J.2
Tao, T.3
-
6
-
-
29144439194
-
Decoding by Linear Programming
-
E.A.Candes,, and T.Tao, (2005), Decoding by Linear Programming, IEEE Transactions Information Theory, 51, 4203–4215.
-
(2005)
IEEE Transactions Information Theory
, vol.51
, pp. 4203-4215
-
-
Candes, E.A.1
Tao, T.2
-
7
-
-
34548275795
-
The Dantzig Selector: Statistical Estimator When p is Much Larger than n
-
——— (2007), The Dantzig Selector: Statistical Estimator When p is Much Larger than n, The Annals of Statistics, 35, 2313–2351.
-
(2007)
The Annals of Statistics
, vol.35
, pp. 2313-2351
-
-
-
8
-
-
79958714651
-
Handling Sparsity via The Horseshoe
-
C.M.Carvalho,, N.G.Polson,, and J.G.Scott, (2009), Handling Sparsity via The Horseshoe, Journal of Machine Learning Research, 5, 73–80.
-
(2009)
Journal of Machine Learning Research
, vol.5
, pp. 73-80
-
-
Carvalho, C.M.1
Polson, N.G.2
Scott, J.G.3
-
9
-
-
77952811536
-
The Horseshoe Estimator for Sparse Signals
-
——— (2010), The Horseshoe Estimator for Sparse Signals, Biometrika, 97, 465–480.
-
(2010)
Biometrika
, vol.97
, pp. 465-480
-
-
-
13
-
-
0037236821
-
An Elementary Proof of The Theorem of Johnson and Lindenstrauss
-
S.Dasgupta,, and A.Gupta, (2003), An Elementary Proof of The Theorem of Johnson and Lindenstrauss, Random Structures and Algorithms, 22, 60–65.
-
(2003)
Random Structures and Algorithms
, vol.22
, pp. 60-65
-
-
Dasgupta, S.1
Gupta, A.2
-
14
-
-
77949735239
-
Signal Processing With Compressive Measurements
-
M.Davenport,, P.T.Boufounos,, M.Wakin,, and R.Baraniuk, (2010), Signal Processing With Compressive Measurements, Selected Topics in Signal Processing, IEEE Journal of, 4, 445–460.
-
(2010)
Selected Topics in Signal Processing, IEEE Journal of
, vol.4
, pp. 445-460
-
-
Davenport, M.1
Boufounos, P.T.2
Wakin, M.3
Baraniuk, R.4
-
15
-
-
85006665386
-
The Smashed Filter for Compressive Classification and Target Recognition
-
M.Davenport,, M.Durate,, M.Wakin,, J.Laska,, D.Takhar,, K.Kelly,, and R.Baraniuk, (2007), “The Smashed Filter for Compressive Classification and Target Recognition,” in Proceedings of Computational Imaging V.
-
(2007)
Proceedings of Computational Imaging V
-
-
Davenport, M.1
Durate, M.2
Wakin, M.3
Laska, J.4
Takhar, D.5
Kelly, K.6
Baraniuk, R.7
-
18
-
-
0038207146
-
Bayesian Latent Variable Models for Median Regression on Multiple Regression
-
D.B.Dunson,, M.Watson,, and J.A.Taylor, (2003), Bayesian Latent Variable Models for Median Regression on Multiple Regression, Biometrics, 59, 296–304.
-
(2003)
Biometrics
, vol.59
, pp. 296-304
-
-
Dunson, D.B.1
Watson, M.2
Taylor, J.A.3
-
19
-
-
80054689997
-
Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data
-
C.Faes,, J.T.Ormerod,, and M.P.Wand, (2011), Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data, Journal of the American Statistical Association, 106, 959–971.
-
(2011)
Journal of the American Statistical Association
, vol.106
, pp. 959-971
-
-
Faes, C.1
Ormerod, J.T.2
Wand, M.P.3
-
20
-
-
84868297800
-
Compressed Least-Squares Regression on Sparse Spaces
-
M.M.Fard,, Y.Grinberg,, J.Pineau,, and D.Precup, (2012), “Compressed Least-Squares Regression on Sparse Spaces,” in Proceedings of the 26th AAAI Conference on Artificial Intelligence, pp. 1054–1060.
-
(2012)
Proceedings of the 26th AAAI Conference on Artificial Intelligence
, pp. 1054-1060
-
-
Fard, M.M.1
Grinberg, Y.2
Pineau, J.3
Precup, D.4
-
22
-
-
0034164796
-
Convergence Rates of Posterior Distributions
-
S.Ghosal,, J.K.Ghosh,, and A.W.Van Der Vaart, (2000), Convergence Rates of Posterior Distributions, The Annals of Statistics, 28, 500–531.
-
(2000)
The Annals of Statistics
, vol.28
, pp. 500-531
-
-
Ghosal, S.1
Ghosh, J.K.2
Van Der Vaart, A.W.3
-
23
-
-
0035470893
-
Entropies and Rates of Convergence for Bayes and Maximum Likelihood Estimation for Mixture of Normal Densities
-
S.Ghosal,, and A.W.Van Der Vaart, (2001), Entropies and Rates of Convergence for Bayes and Maximum Likelihood Estimation for Mixture of Normal Densities, The Annals of Statistics, 29, 1233–1263.
-
(2001)
The Annals of Statistics
, vol.29
, pp. 1233-1263
-
-
Ghosal, S.1
Van Der Vaart, A.W.2
-
24
-
-
49449093584
-
Convergence Rates of Posterior Distributions for Non iid Observations
-
——— (2007), Convergence Rates of Posterior Distributions for Non iid Observations, The Annals of Statistics, 35, 192–223.
-
(2007)
The Annals of Statistics
, vol.35
, pp. 192-223
-
-
-
25
-
-
33745841370
-
Variational Bayesian Multinomial Probit Regression With Gaussian Process Priors
-
M.Girolami,, and S.Rogers, (2006), Variational Bayesian Multinomial Probit Regression With Gaussian Process Priors, Neural Computation, 18, 1790–1817.
-
(2006)
Neural Computation
, vol.18
, pp. 1790-1817
-
-
Girolami, M.1
Rogers, S.2
-
27
-
-
71249130909
-
Bayesian Lasso Regression
-
C.Hans, (2009), Bayesian Lasso Regression, Biometrika, 96, 835–845.
-
(2009)
Biometrika
, vol.96
, pp. 835-845
-
-
Hans, C.1
-
29
-
-
50449090913
-
Bayesian Variable Selection for High Dimensional Generalized Linear Models: Convergence Rates of The Fitted Densities
-
W.Jiang, (2007), Bayesian Variable Selection for High Dimensional Generalized Linear Models: Convergence Rates of The Fitted Densities, The Annals of Statistics, 35, 1487–1511.
-
(2007)
The Annals of Statistics
, vol.35
, pp. 1487-1511
-
-
Jiang, W.1
-
30
-
-
0042693799
-
Some Inequalities of Bessel and Modified Bessel Functions
-
Series A
-
C.M.Joshi,, and S.K.Bissu, (1991), Some Inequalities of Bessel and Modified Bessel Functions, Journal of Australian Math Society, Series A, 50, 333–342.
-
(1991)
Journal of Australian Math Society
, vol.50
, pp. 333-342
-
-
Joshi, C.M.1
Bissu, S.K.2
-
31
-
-
70349405387
-
A Randomized Algorithm for Large Scale Support Vector Learning
-
20, eds. J. C. Platt, D. Koller, Y. Singer, and S. Roweis, Cambridge, MA: MIT Press
-
S.Krishnan,, C.Bhattacharyya,, and R.Hariharan, (2007), A Randomized Algorithm for Large Scale Support Vector Learning, Advances in Neural Information Processing Systems (NIPS), 20, eds. J. C. Platt, D. Koller, Y. Singer, and S. Roweis, Cambridge, MA: MIT Press.
-
(2007)
Advances in Neural Information Processing Systems (NIPS)
-
-
Krishnan, S.1
Bhattacharyya, C.2
Hariharan, R.3
-
32
-
-
77953022494
-
Selection of a Representative Sample
-
H.K.H.Lee,, M.Taddy,, and G.A.Gray, (2008), Selection of a Representative Sample, Journal of Classification, 27, 41–53.
-
(2008)
Journal of Classification
, vol.27
, pp. 41-53
-
-
Lee, H.K.H.1
Taddy, M.2
Gray, G.A.3
-
33
-
-
85162551376
-
Hashing Algorithms for Large-Scale Learning
-
P.Li,, A.Shrivastava,, J.Moore,, and A.C.Konig, (2011), Hashing Algorithms for Large-Scale Learning, Advances in Neural Information Processing Systems (NIPS), 24, 2672–2680.
-
(2011)
Advances in Neural Information Processing Systems (NIPS)
, vol.24
, pp. 2672-2680
-
-
Li, P.1
Shrivastava, A.2
Moore, J.3
Konig, A.C.4
-
34
-
-
0036100902
-
Likelihood-Based Data Squashing: A Modeling Approach to Instance Construction
-
D.Madigan,, N.Raghavan,, and W.Dumouchel, (2002), Likelihood-Based Data Squashing: A Modeling Approach to Instance Construction, Data Mining and Knowledge Discovery, 6, 173–190.
-
(2002)
Data Mining and Knowledge Discovery
, vol.6
, pp. 173-190
-
-
Madigan, D.1
Raghavan, N.2
Dumouchel, W.3
-
36
-
-
0025270234
-
Heterogeneity in Radiation-Induced DNA Damage and Repair in Tumour and Normal Cells Measured Using The Comet Assay
-
P.L.Olive,, J.P.Banath,, and R.E.Durand, (1990), Heterogeneity in Radiation-Induced DNA Damage and Repair in Tumour and Normal Cells Measured Using The Comet Assay, Radiation Research, 112, 86–94.
-
(1990)
Radiation Research
, vol.112
, pp. 86-94
-
-
Olive, P.L.1
Banath, J.P.2
Durand, R.E.3
-
37
-
-
84859847512
-
Gaussian Variational Approximate Inference for Generalized Linear Mixed Models
-
J.T.Ormerod,, and M.P.Wand, (2012), Gaussian Variational Approximate Inference for Generalized Linear Mixed Models, Journal of Computational and Graphical Statistics, 21, 2–17.
-
(2012)
Journal of Computational and Graphical Statistics
, vol.21
, pp. 2-17
-
-
Ormerod, J.T.1
Wand, M.P.2
-
38
-
-
0037242790
-
Data Squashing by Empirical Likelihood
-
A.Owen, (2003), Data Squashing by Empirical Likelihood, Data Mining and Knowledge Discovery, 7, 101–113.
-
(2003)
Data Mining and Knowledge Discovery
, vol.7
, pp. 101-113
-
-
Owen, A.1
-
39
-
-
49549105778
-
The Bayesian Lasso
-
T.Park,, and G.Casella, (2008), The Bayesian Lasso, Journal of the American Statistical Association, 103, 681–686.
-
(2008)
Journal of the American Statistical Association
, vol.103
, pp. 681-686
-
-
Park, T.1
Casella, G.2
-
40
-
-
0031506560
-
Bayesian Model Averaging for Linear Regression Models
-
A.E.Raftery,, D.Madigan,, and J.A.Hoeting, (1997), Bayesian Model Averaging for Linear Regression Models, Journal of the American Statistical Association, 92, 179–191.
-
(1997)
Journal of the American Statistical Association
, vol.92
, pp. 179-191
-
-
Raftery, A.E.1
Madigan, D.2
Hoeting, J.A.3
-
41
-
-
85006662852
-
-
B.Ripley, (2012), MASS Package Manual. Available at http://cran.r-project.org/web/packages/MASS/MASS.pdf.
-
(2012)
MASS Package Manual.
-
-
Ripley, B.1
-
42
-
-
73549107233
-
Hash Kernels for Structured Data
-
Q.Shi,, J.Petterson,, G.Dror,, J.Langford,, A.Smola,, and S.V.N.Viswanathan, (2009), Hash Kernels for Structured Data, Journal of Machine Learning Research, 11, 2615–2637.
-
(2009)
Journal of Machine Learning Research
, vol.11
, pp. 2615-2637
-
-
Shi, Q.1
Petterson, J.2
Dror, G.3
Langford, J.4
Smola, A.5
Viswanathan, S.V.N.6
-
43
-
-
84875094691
-
-
Arxiv Preprint arxiv:1207.4854
-
N.Strawn,, A.Armagan,, R.Saab,, L.Carin,, and D.B.Dunson, (2012), Finite Sample Posterior Concentration in High Dimensional Regression, Arxiv Preprint arxiv:1207.4854.
-
(2012)
Finite Sample Posterior Concentration in High Dimensional Regression
-
-
Strawn, N.1
Armagan, A.2
Saab, R.3
Carin, L.4
Dunson, D.B.5
-
44
-
-
0001287271
-
Regression Selection and Shrinkage via The Lasso
-
Series B
-
R.Tibshirani, (1996), Regression Selection and Shrinkage via The Lasso. Journal of the Royal Statistical Society, Series B, 58, 267–288.
-
(1996)
Journal of the Royal Statistical Society
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
46
-
-
79956336373
-
Bayesian Density Regression With Logistic Gaussian Process and Subspace Projection
-
S.T.Tokdar,, Y.M.Zhu,, and J.K.Ghosh, (2010), Bayesian Density Regression With Logistic Gaussian Process and Subspace Projection, Bayesian Analysis, 5, 319–344.
-
(2010)
Bayesian Analysis
, vol.5
, pp. 319-344
-
-
Tokdar, S.T.1
Zhu, Y.M.2
Ghosh, J.K.3
-
48
-
-
61349111475
-
Compressed and Privacy-Sensitive Sparse Regression
-
S.Zhou,, J.Lafferty,, and L.Wasserman, (2009), Compressed and Privacy-Sensitive Sparse Regression, IEEE Transactions on Information Theory, 55, 846–866.
-
(2009)
IEEE Transactions on Information Theory
, vol.55
, pp. 846-866
-
-
Zhou, S.1
Lafferty, J.2
Wasserman, L.3
-
49
-
-
16244401458
-
Regularization and Variable Selection via the Elastic Net
-
Series B
-
H.Zou,, and T.Hastie, (2005), Regularization and Variable Selection via the Elastic Net, Journal of the Royal Statistical Society, Series B, 67, 301–320.
-
(2005)
Journal of the Royal Statistical Society
, vol.67
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
|