메뉴 건너뛰기




Volumn 110, Issue 512, 2015, Pages 1500-1514

Bayesian Compressed Regression

Author keywords

Compressed sensing; Data compression; Dimensionality reduction; Large p, small n; Random projection; Sparsity; Sufficient dimension reduction

Indexed keywords


EID: 84954443066     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1080/01621459.2014.969425     Document Type: Article
Times cited : (63)

References (49)
  • 1
    • 0038166193 scopus 로고    scopus 로고
    • Database-Friendly Random Projections: Johnson-Lindenstrauss With Binary Coins
    • D.Achlioptas, (2003), Database-Friendly Random Projections: Johnson-Lindenstrauss With Binary Coins, Journal of Computer and System Sciences, 66, 671–687.
    • (2003) Journal of Computer and System Sciences , vol.66 , pp. 671-687
    • Achlioptas, D.1
  • 2
    • 0004493166 scopus 로고    scopus 로고
    • On The Approximation of Minimizing Non-Zero Variables or Unsatisfied Relations in Linear Systems
    • E.Amaldi,, and V.Kann, (1998), On The Approximation of Minimizing Non-Zero Variables or Unsatisfied Relations in Linear Systems, Theoretical Computer Science, 209, 237–260.
    • (1998) Theoretical Computer Science , vol.209 , pp. 237-260
    • Amaldi, E.1    Kann, V.2
  • 3
    • 84878094378 scopus 로고    scopus 로고
    • Generalized Double Pareto Shrinkage
    • A.Armagan,, D.B.Dunson,, and J.Lee, (2013), Generalized Double Pareto Shrinkage, Statistica Sinica, 23, 119–143.
    • (2013) Statistica Sinica , vol.23 , pp. 119-143
    • Armagan, A.1    Dunson, D.B.2    Lee, J.3
  • 7
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig Selector: Statistical Estimator When p is Much Larger than n
    • ——— (2007), The Dantzig Selector: Statistical Estimator When p is Much Larger than n, The Annals of Statistics, 35, 2313–2351.
    • (2007) The Annals of Statistics , vol.35 , pp. 2313-2351
  • 9
    • 77952811536 scopus 로고    scopus 로고
    • The Horseshoe Estimator for Sparse Signals
    • ——— (2010), The Horseshoe Estimator for Sparse Signals, Biometrika, 97, 465–480.
    • (2010) Biometrika , vol.97 , pp. 465-480
  • 13
    • 0037236821 scopus 로고    scopus 로고
    • An Elementary Proof of The Theorem of Johnson and Lindenstrauss
    • S.Dasgupta,, and A.Gupta, (2003), An Elementary Proof of The Theorem of Johnson and Lindenstrauss, Random Structures and Algorithms, 22, 60–65.
    • (2003) Random Structures and Algorithms , vol.22 , pp. 60-65
    • Dasgupta, S.1    Gupta, A.2
  • 18
    • 0038207146 scopus 로고    scopus 로고
    • Bayesian Latent Variable Models for Median Regression on Multiple Regression
    • D.B.Dunson,, M.Watson,, and J.A.Taylor, (2003), Bayesian Latent Variable Models for Median Regression on Multiple Regression, Biometrics, 59, 296–304.
    • (2003) Biometrics , vol.59 , pp. 296-304
    • Dunson, D.B.1    Watson, M.2    Taylor, J.A.3
  • 19
    • 80054689997 scopus 로고    scopus 로고
    • Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data
    • C.Faes,, J.T.Ormerod,, and M.P.Wand, (2011), Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data, Journal of the American Statistical Association, 106, 959–971.
    • (2011) Journal of the American Statistical Association , vol.106 , pp. 959-971
    • Faes, C.1    Ormerod, J.T.2    Wand, M.P.3
  • 23
    • 0035470893 scopus 로고    scopus 로고
    • Entropies and Rates of Convergence for Bayes and Maximum Likelihood Estimation for Mixture of Normal Densities
    • S.Ghosal,, and A.W.Van Der Vaart, (2001), Entropies and Rates of Convergence for Bayes and Maximum Likelihood Estimation for Mixture of Normal Densities, The Annals of Statistics, 29, 1233–1263.
    • (2001) The Annals of Statistics , vol.29 , pp. 1233-1263
    • Ghosal, S.1    Van Der Vaart, A.W.2
  • 24
    • 49449093584 scopus 로고    scopus 로고
    • Convergence Rates of Posterior Distributions for Non iid Observations
    • ——— (2007), Convergence Rates of Posterior Distributions for Non iid Observations, The Annals of Statistics, 35, 192–223.
    • (2007) The Annals of Statistics , vol.35 , pp. 192-223
  • 25
    • 33745841370 scopus 로고    scopus 로고
    • Variational Bayesian Multinomial Probit Regression With Gaussian Process Priors
    • M.Girolami,, and S.Rogers, (2006), Variational Bayesian Multinomial Probit Regression With Gaussian Process Priors, Neural Computation, 18, 1790–1817.
    • (2006) Neural Computation , vol.18 , pp. 1790-1817
    • Girolami, M.1    Rogers, S.2
  • 27
    • 71249130909 scopus 로고    scopus 로고
    • Bayesian Lasso Regression
    • C.Hans, (2009), Bayesian Lasso Regression, Biometrika, 96, 835–845.
    • (2009) Biometrika , vol.96 , pp. 835-845
    • Hans, C.1
  • 29
    • 50449090913 scopus 로고    scopus 로고
    • Bayesian Variable Selection for High Dimensional Generalized Linear Models: Convergence Rates of The Fitted Densities
    • W.Jiang, (2007), Bayesian Variable Selection for High Dimensional Generalized Linear Models: Convergence Rates of The Fitted Densities, The Annals of Statistics, 35, 1487–1511.
    • (2007) The Annals of Statistics , vol.35 , pp. 1487-1511
    • Jiang, W.1
  • 30
    • 0042693799 scopus 로고
    • Some Inequalities of Bessel and Modified Bessel Functions
    • Series A
    • C.M.Joshi,, and S.K.Bissu, (1991), Some Inequalities of Bessel and Modified Bessel Functions, Journal of Australian Math Society, Series A, 50, 333–342.
    • (1991) Journal of Australian Math Society , vol.50 , pp. 333-342
    • Joshi, C.M.1    Bissu, S.K.2
  • 31
    • 70349405387 scopus 로고    scopus 로고
    • A Randomized Algorithm for Large Scale Support Vector Learning
    • 20, eds. J. C. Platt, D. Koller, Y. Singer, and S. Roweis, Cambridge, MA: MIT Press
    • S.Krishnan,, C.Bhattacharyya,, and R.Hariharan, (2007), A Randomized Algorithm for Large Scale Support Vector Learning, Advances in Neural Information Processing Systems (NIPS), 20, eds. J. C. Platt, D. Koller, Y. Singer, and S. Roweis, Cambridge, MA: MIT Press.
    • (2007) Advances in Neural Information Processing Systems (NIPS)
    • Krishnan, S.1    Bhattacharyya, C.2    Hariharan, R.3
  • 34
    • 0036100902 scopus 로고    scopus 로고
    • Likelihood-Based Data Squashing: A Modeling Approach to Instance Construction
    • D.Madigan,, N.Raghavan,, and W.Dumouchel, (2002), Likelihood-Based Data Squashing: A Modeling Approach to Instance Construction, Data Mining and Knowledge Discovery, 6, 173–190.
    • (2002) Data Mining and Knowledge Discovery , vol.6 , pp. 173-190
    • Madigan, D.1    Raghavan, N.2    Dumouchel, W.3
  • 36
    • 0025270234 scopus 로고
    • Heterogeneity in Radiation-Induced DNA Damage and Repair in Tumour and Normal Cells Measured Using The Comet Assay
    • P.L.Olive,, J.P.Banath,, and R.E.Durand, (1990), Heterogeneity in Radiation-Induced DNA Damage and Repair in Tumour and Normal Cells Measured Using The Comet Assay, Radiation Research, 112, 86–94.
    • (1990) Radiation Research , vol.112 , pp. 86-94
    • Olive, P.L.1    Banath, J.P.2    Durand, R.E.3
  • 37
    • 84859847512 scopus 로고    scopus 로고
    • Gaussian Variational Approximate Inference for Generalized Linear Mixed Models
    • J.T.Ormerod,, and M.P.Wand, (2012), Gaussian Variational Approximate Inference for Generalized Linear Mixed Models, Journal of Computational and Graphical Statistics, 21, 2–17.
    • (2012) Journal of Computational and Graphical Statistics , vol.21 , pp. 2-17
    • Ormerod, J.T.1    Wand, M.P.2
  • 38
    • 0037242790 scopus 로고    scopus 로고
    • Data Squashing by Empirical Likelihood
    • A.Owen, (2003), Data Squashing by Empirical Likelihood, Data Mining and Knowledge Discovery, 7, 101–113.
    • (2003) Data Mining and Knowledge Discovery , vol.7 , pp. 101-113
    • Owen, A.1
  • 41
    • 85006662852 scopus 로고    scopus 로고
    • B.Ripley, (2012), MASS Package Manual. Available at http://cran.r-project.org/web/packages/MASS/MASS.pdf.
    • (2012) MASS Package Manual.
    • Ripley, B.1
  • 44
    • 0001287271 scopus 로고    scopus 로고
    • Regression Selection and Shrinkage via The Lasso
    • Series B
    • R.Tibshirani, (1996), Regression Selection and Shrinkage via The Lasso. Journal of the Royal Statistical Society, Series B, 58, 267–288.
    • (1996) Journal of the Royal Statistical Society , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 46
    • 79956336373 scopus 로고    scopus 로고
    • Bayesian Density Regression With Logistic Gaussian Process and Subspace Projection
    • S.T.Tokdar,, Y.M.Zhu,, and J.K.Ghosh, (2010), Bayesian Density Regression With Logistic Gaussian Process and Subspace Projection, Bayesian Analysis, 5, 319–344.
    • (2010) Bayesian Analysis , vol.5 , pp. 319-344
    • Tokdar, S.T.1    Zhu, Y.M.2    Ghosh, J.K.3
  • 49
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and Variable Selection via the Elastic Net
    • Series B
    • H.Zou,, and T.Hastie, (2005), Regularization and Variable Selection via the Elastic Net, Journal of the Royal Statistical Society, Series B, 67, 301–320.
    • (2005) Journal of the Royal Statistical Society , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.