메뉴 건너뛰기




Volumn 1, Issue , 2015, Pages 617-625

Statistical and algorithmic perspectives on randomized sketching for ordinary least-squares

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; EFFICIENCY; ERRORS; LEARNING ALGORITHMS; LEARNING SYSTEMS; MEAN SQUARE ERROR; SAMPLING; STATISTICS;

EID: 84969533825     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (21)

References (21)
  • 2
    • 84887400770 scopus 로고    scopus 로고
    • Improved matrix algorithms via the subsampled randomized Hadamard transform
    • Boutsidis, C. and Gittens, A. Improved matrix algorithms via the subsampled randomized Hadamard transform. SIAM Journal of Matrix Analysis and Applications, 34: 1301-1340, 2013.
    • (2013) SIAM Journal of Matrix Analysis and Applications , vol.34 , pp. 1301-1340
    • Boutsidis, C.1    Gittens, A.2
  • 3
    • 84972496372 scopus 로고    scopus 로고
    • Influential observations, high leverage point, and outliers in linear regression
    • Chatterjee, S. and Hadi, A. S. Influential observations, high leverage point, and outliers in linear regression. Statistical Science, 1 (3):379-416, 2006.
    • (2006) Statistical Science , vol.1 , Issue.3 , pp. 379-416
    • Chatterjee, S.1    Hadi, A.S.2
  • 10
    • 0001290271 scopus 로고
    • Hadamard matrices and their applications
    • Hedayat, A. and Wallis, W. D. Hadamard matrices and their applications. Annals of Statistics, 6(6): 1184-1238, 1978.
    • (1978) Annals of Statistics , vol.6 , Issue.6 , pp. 1184-1238
    • Hedayat, A.1    Wallis, W.D.2
  • 11
    • 84948783167 scopus 로고
    • The hat matrix in regression and ANOVA
    • Hoaglin, D.C. and Welsch, R.E. The hat matrix in regression and ANOVA. The American Statistician, 32(1): 17-22, 1978.
    • (1978) The American Statistician , vol.32 , Issue.1 , pp. 17-22
    • Hoaglin, D.C.1    Welsch, R.E.2
  • 14
    • 84938311437 scopus 로고    scopus 로고
    • A statistical perspective on algorithmic leveraging
    • To appear
    • Ma, P., Mahoney, M. W., and Yu, B. A statistical perspective on algorithmic leveraging. JMLR, 2015. To appear.
    • (2015) JMLR
    • Ma, P.1    Mahoney, M.W.2    Yu, B.3
  • 15
    • 84857179115 scopus 로고    scopus 로고
    • Foundations and Trends in Machine Learning. NOW Publishers, Boston arXiv 1104.5557
    • Mahoney, M. W. Randomized algorithms for matrices and data. Foundations and Trends in Machine Learning. NOW Publishers, Boston, 2011. Also available at: arXiv: 1104.5557.
    • (2011) Randomized Algorithms for Matrices and Data
    • Mahoney, M.W.1
  • 16
    • 84899620211 scopus 로고    scopus 로고
    • LSRN: A parallel iterative solver for strongly over-or under-determined systems
    • Meng, X., Saunders, M. A., and Mahoney, M. W. LSRN: A parallel iterative solver for strongly over-or under-determined systems. SIAM Journal on Scientific Computing, 36(2):C95-C118, 2014.
    • (2014) SIAM Journal on Scientific Computing , vol.36 , Issue.2 , pp. C95-C118
    • Meng, X.1    Saunders, M.A.2    Mahoney, M.W.3
  • 20
    • 0000064170 scopus 로고
    • On finite population sampling theory under certain linear regression models
    • Royall, R. M. On finite population sampling theory under certain linear regression models. Biometrika, 57:377-387, 1970.
    • (1970) Biometrika , vol.57 , pp. 377-387
    • Royall, R.M.1
  • 21
    • 84856490128 scopus 로고    scopus 로고
    • Optimal sample allocation for design-consistent regression in a cancer services survey when design variables are known for aggregates
    • Zavlavsky, A. M., Zheng, H., and Adams, J. Optimal sample allocation for design-consistent regression in a cancer services survey when design variables are known for aggregates. Survey Mehodology, 34(l):65-78, 2008.
    • (2008) Survey Mehodology , vol.34 , Issue.1 , pp. 65-78
    • Zavlavsky, A.M.1    Zheng, H.2    Adams, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.