메뉴 건너뛰기




Volumn 14-17-June-2015, Issue , 2015, Pages 163-172

Dimensionality reduction for k-means clustering and low rank approximation

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; COMPUTATION THEORY; HEURISTIC ALGORITHMS; MATRIX ALGEBRA; PRINCIPAL COMPONENT ANALYSIS; REDUCTION;

EID: 84958764795     PISSN: 07378017     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2746539.2746569     Document Type: Conference Paper
Times cited : (372)

References (46)
  • 1
    • 0038166193 scopus 로고    scopus 로고
    • Database-friendly random projections: Johnson-Lindenstrauss with binary coins
    • D. Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J. Comput. Syst. Sci., 66(4), 2003.
    • (2003) J. Comput. Syst. Sci , vol.66 , Issue.4
    • Achlioptas, D.1
  • 2
    • 62249143532 scopus 로고    scopus 로고
    • NP-hardness of Euclidean sum-of-squares clustering
    • D. Aloise, A. Deshpande, P. Hansen, and P. Popat. NP-hardness of Euclidean sum-of-squares clustering. Machine Learning, 75(2):245-248, 2009.
    • (2009) Machine Learning , vol.75 , Issue.2 , pp. 245-248
    • Aloise, D.1    Deshpande, A.2    Hansen, P.3    Popat, P.4
  • 19
    • 45849092005 scopus 로고    scopus 로고
    • Matrix approximation and projective clustering via volume sampling
    • A. Deshpande, L. Rademacher, S. Vempala, and G. Wang. Matrix approximation and projective clustering via volume sampling. Theory of Computing, 2(1):225-247, 2006.
    • (2006) Theory of Computing , vol.2 , Issue.1 , pp. 225-247
    • Deshpande, A.1    Rademacher, L.2    Vempala, S.3    Wang, G.4
  • 21
    • 84876035763 scopus 로고    scopus 로고
    • Turning big data into tiny data: Constant-size coresets for k-means, PCA, and projective clustering
    • D. Feldman, M. Schmidt, and C. Sohler. Turning big data into tiny data: Constant-size coresets for k-means, PCA, and projective clustering. In Symposium on Discrete Algorithms (SODA), 2013.
    • (2013) Symposium on Discrete Algorithms (SODA)
    • Feldman, D.1    Schmidt, M.2    Sohler, C.3
  • 24
    • 79960425522 scopus 로고    scopus 로고
    • Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions
    • N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2):217-288, 2011.
    • (2011) SIAM Review , vol.53 , Issue.2 , pp. 217-288
    • Halko, N.1    Martinsson, P.-G.2    Tropp, J.A.3
  • 25
    • 33846811413 scopus 로고    scopus 로고
    • Smaller coresets for k-median and k-means clustering
    • S. Har-Peled and A. Kushal. Smaller coresets for k-median and k-means clustering. Discrete and Computational Geometry, 37(1):3-19, 2007.
    • (2007) Discrete and Computational Geometry , vol.37 , Issue.1 , pp. 3-19
    • Har-Peled, S.1    Kushal, A.2
  • 27
    • 84859392380 scopus 로고    scopus 로고
    • Tail inequalities for sums of random matrices that depend on the intrinsic dimension
    • D. Hsu, S. Kakade, and T. Zhang. Tail inequalities for sums of random matrices that depend on the intrinsic dimension. Electron. Commun. Probab., 17:1-13, 2012.
    • (2012) Electron. Commun. Probab , vol.17 , pp. 1-13
    • Hsu, D.1    Kakade, S.2    Zhang, T.3
  • 28
    • 0027928863 scopus 로고
    • Applications of weighted Voronoi diagrams and randomization to variance-based k-clustering
    • M. Inaba, N. Katoh, and H. Imai. Applications of weighted Voronoi diagrams and randomization to variance-based k-clustering. In Symposium on Computational Geometry (SCG), pages 332-339, 1994.
    • (1994) Symposium on Computational Geometry (SCG) , pp. 332-339
    • Inaba, M.1    Katoh, N.2    Imai, H.3
  • 29
    • 84893229593 scopus 로고    scopus 로고
    • Sparser Johnson-Lindenstrauss transforms
    • D. Kane and J. Nelson. Sparser Johnson-Lindenstrauss transforms. Journal of the ACM, 61(1):4, 2014.
    • (2014) Journal of the ACM , vol.61 , Issue.1
    • Kane, D.1    Nelson, J.2
  • 32
    • 11244288693 scopus 로고    scopus 로고
    • A simple linear time (1 + e)-approximation algorithm for fc-means clustering in any dimensions
    • A. Kumar, Y. Sabharwal, and S. Sen. A simple linear time (1 + e)-approximation algorithm for fc-means clustering in any dimensions. In Foundations of Computer Science (FOCS), pages 454-462, 2004.
    • (2004) Foundations of Computer Science (FOCS) , pp. 454-462
    • Kumar, A.1    Sabharwal, Y.2    Sen, S.3
  • 39
    • 84879805212 scopus 로고    scopus 로고
    • Low-distortion subspace embeddings in input-sparsity time and applications to robust linear regression
    • M. W. Mahoney and X. Meng. Low-distortion subspace embeddings in input-sparsity time and applications to robust linear regression. In Symposium on Theory of Computing (STOC), pages 91-100, 2013.
    • (2013) Symposium on Theory of Computing (STOC) , pp. 91-100
    • Mahoney, M.W.1    Meng, X.2
  • 40
    • 0002824680 scopus 로고
    • Symmetric gauge functions and unitarily invariant norms
    • L. Mirsky. Symmetric gauge functions and unitarily invariant norms. The Quarterly Journal of Mathematics, 11:50-59, 1960.
    • (1960) The Quarterly Journal of Mathematics , vol.11 , pp. 50-59
    • Mirsky, L.1
  • 41
    • 84893239024 scopus 로고    scopus 로고
    • OSNAP: Faster numerical linear algebra algorithms via sparser subspace embeddings
    • J. Nelson and H. L. Nguyen. OSNAP: Faster numerical linear algebra algorithms via sparser subspace embeddings. In Foundations of Computer Science (FOCS), pages 117-126, 2013.
    • (2013) Foundations of Computer Science (FOCS) , pp. 117-126
    • Nelson, J.1    Nguyen, H.L.2
  • 43
    • 35348901208 scopus 로고    scopus 로고
    • Improved approximation algorithms for large matrices via random projections
    • T. Sarlós. Improved approximation algorithms for large matrices via random projections. In Foundations of Computer Science (FOCS), pages 143-152, 2006.
    • (2006) Foundations of Computer Science (FOCS) , pp. 143-152
    • Sarlós, T.1
  • 46
    • 84877607371 scopus 로고    scopus 로고
    • Truncated power method for sparse eigenvalue problems
    • X.-T. Yuan and T. Zhang. Truncated power method for sparse eigenvalue problems. The Journal of Machine Learning Research, 14(1):899-925, 2013.
    • (2013) The Journal of Machine Learning Research , vol.14 , Issue.1 , pp. 899-925
    • Yuan, X.-T.1    Zhang, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.