-
1
-
-
0038166193
-
Database-friendly random projections: Johnson-Lindenstrauss with binary coins
-
D. Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J. Comput. Syst. Sci., 66(4), 2003.
-
(2003)
J. Comput. Syst. Sci
, vol.66
, Issue.4
-
-
Achlioptas, D.1
-
2
-
-
62249143532
-
NP-hardness of Euclidean sum-of-squares clustering
-
D. Aloise, A. Deshpande, P. Hansen, and P. Popat. NP-hardness of Euclidean sum-of-squares clustering. Machine Learning, 75(2):245-248, 2009.
-
(2009)
Machine Learning
, vol.75
, Issue.2
, pp. 245-248
-
-
Aloise, D.1
Deshpande, A.2
Hansen, P.3
Popat, P.4
-
6
-
-
84937837293
-
Improved distributed principal component analysis
-
M.-F. Balcan, V. Kanchanapally, Y. Liang, and D. P. Woodruff. Improved distributed principal component analysis. In Advances in Neural Information Processing Systems (NIPS), pages 3113-3121, 2014.
-
(2014)
Advances in Neural Information Processing Systems (NIPS)
, pp. 3113-3121
-
-
Balcan, M.-F.1
Kanchanapally, V.2
Liang, Y.3
Woodruff, D.P.4
-
7
-
-
84871597376
-
Twice-Ramanujan sparsifiers
-
J. Batson, D. A. Spielman, and N. Srivastava. Twice-Ramanujan sparsifiers. SIAM Journal on Computing, 41(6):1704-1721, 2012.
-
(2012)
SIAM Journal on Computing
, vol.41
, Issue.6
, pp. 1704-1721
-
-
Batson, J.1
Spielman, D.A.2
Srivastava, N.3
-
8
-
-
84899628186
-
Near-optimal column-based matrix reconstruction
-
C. Boutsidis, P. Drineas, and M. Magdon-Ismail. Near-optimal column-based matrix reconstruction. SIAM Journal on Computing, 43(2):687-717, 2014.
-
(2014)
SIAM Journal on Computing
, vol.43
, Issue.2
, pp. 687-717
-
-
Boutsidis, C.1
Drineas, P.2
Magdon-Ismail, M.3
-
13
-
-
84921498474
-
Randomized dimensionality reduction for k-means clustering
-
Feb
-
C. Boutsidis, A. Zouzias, M. W. Mahoney, and P. Drineas. Randomized dimensionality reduction for k-means clustering. IEEE Transactions on Information Theory, 61(2):1045-1062, Feb 2015.
-
(2015)
IEEE Transactions on Information Theory
, vol.61
, Issue.2
, pp. 1045-1062
-
-
Boutsidis, C.1
Zouzias, A.2
Mahoney, M.W.3
Drineas, P.4
-
16
-
-
84958809211
-
Dimensionality reduction for k-means clustering and low rank approximation
-
abs/1410.6801
-
M. B. Cohen, S. Elder, C. Musco, C. Musco, and M. Persu. Dimensionality reduction for k-means clustering and low rank approximation. Computing Research Repository (CoRR), abs/1410.6801, 2014.
-
(2014)
Computing Research Repository (CoRR)
-
-
Cohen, M.B.1
Elder, S.2
Musco, C.3
Musco, C.4
Persu, M.5
-
17
-
-
84922209704
-
Uniform sampling for matrix approximation
-
M. B. Cohen, Y. T. Lee, C. Musco, C. Musco, R. Peng, and A. Sidford. Uniform sampling for matrix approximation. In Innovations in Theoretical Computer Science (ITCS), pages 181-190, 2015.
-
(2015)
Innovations in Theoretical Computer Science (ITCS)
, pp. 181-190
-
-
Cohen, M.B.1
Lee, Y.T.2
Musco, C.3
Musco, C.4
Peng, R.5
Sidford, A.6
-
19
-
-
45849092005
-
Matrix approximation and projective clustering via volume sampling
-
A. Deshpande, L. Rademacher, S. Vempala, and G. Wang. Matrix approximation and projective clustering via volume sampling. Theory of Computing, 2(1):225-247, 2006.
-
(2006)
Theory of Computing
, vol.2
, Issue.1
, pp. 225-247
-
-
Deshpande, A.1
Rademacher, L.2
Vempala, S.3
Wang, G.4
-
20
-
-
3142750484
-
Clustering large graphs via the singular value decomposition
-
P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay. Clustering large graphs via the singular value decomposition. Machine Learning, 56(1-3), 2004.
-
(2004)
Machine Learning
, vol.56
, Issue.1-3
-
-
Drineas, P.1
Frieze, A.2
Kannan, R.3
Vempala, S.4
Vinay, V.5
-
21
-
-
84876035763
-
Turning big data into tiny data: Constant-size coresets for k-means, PCA, and projective clustering
-
D. Feldman, M. Schmidt, and C. Sohler. Turning big data into tiny data: Constant-size coresets for k-means, PCA, and projective clustering. In Symposium on Discrete Algorithms (SODA), 2013.
-
(2013)
Symposium on Discrete Algorithms (SODA)
-
-
Feldman, D.1
Schmidt, M.2
Sohler, C.3
-
24
-
-
79960425522
-
Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions
-
N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2):217-288, 2011.
-
(2011)
SIAM Review
, vol.53
, Issue.2
, pp. 217-288
-
-
Halko, N.1
Martinsson, P.-G.2
Tropp, J.A.3
-
25
-
-
33846811413
-
Smaller coresets for k-median and k-means clustering
-
S. Har-Peled and A. Kushal. Smaller coresets for k-median and k-means clustering. Discrete and Computational Geometry, 37(1):3-19, 2007.
-
(2007)
Discrete and Computational Geometry
, vol.37
, Issue.1
, pp. 3-19
-
-
Har-Peled, S.1
Kushal, A.2
-
27
-
-
84859392380
-
Tail inequalities for sums of random matrices that depend on the intrinsic dimension
-
D. Hsu, S. Kakade, and T. Zhang. Tail inequalities for sums of random matrices that depend on the intrinsic dimension. Electron. Commun. Probab., 17:1-13, 2012.
-
(2012)
Electron. Commun. Probab
, vol.17
, pp. 1-13
-
-
Hsu, D.1
Kakade, S.2
Zhang, T.3
-
28
-
-
0027928863
-
Applications of weighted Voronoi diagrams and randomization to variance-based k-clustering
-
M. Inaba, N. Katoh, and H. Imai. Applications of weighted Voronoi diagrams and randomization to variance-based k-clustering. In Symposium on Computational Geometry (SCG), pages 332-339, 1994.
-
(1994)
Symposium on Computational Geometry (SCG)
, pp. 332-339
-
-
Inaba, M.1
Katoh, N.2
Imai, H.3
-
29
-
-
84893229593
-
Sparser Johnson-Lindenstrauss transforms
-
D. Kane and J. Nelson. Sparser Johnson-Lindenstrauss transforms. Journal of the ACM, 61(1):4, 2014.
-
(2014)
Journal of the ACM
, vol.61
, Issue.1
-
-
Kane, D.1
Nelson, J.2
-
31
-
-
0036361823
-
A local search approximation algorithm for k-means clustering
-
T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu. A local search approximation algorithm for k-means clustering. In Symposium on Computational Geometry (SCG), 2002.
-
(2002)
Symposium on Computational Geometry (SCG)
-
-
Kanungo, T.1
Mount, D.M.2
Netanyahu, N.S.3
Piatko, C.D.4
Silverman, R.5
Wu, A.Y.6
-
32
-
-
11244288693
-
A simple linear time (1 + e)-approximation algorithm for fc-means clustering in any dimensions
-
A. Kumar, Y. Sabharwal, and S. Sen. A simple linear time (1 + e)-approximation algorithm for fc-means clustering in any dimensions. In Foundations of Computer Science (FOCS), pages 454-462, 2004.
-
(2004)
Foundations of Computer Science (FOCS)
, pp. 454-462
-
-
Kumar, A.1
Sabharwal, Y.2
Sen, S.3
-
39
-
-
84879805212
-
Low-distortion subspace embeddings in input-sparsity time and applications to robust linear regression
-
M. W. Mahoney and X. Meng. Low-distortion subspace embeddings in input-sparsity time and applications to robust linear regression. In Symposium on Theory of Computing (STOC), pages 91-100, 2013.
-
(2013)
Symposium on Theory of Computing (STOC)
, pp. 91-100
-
-
Mahoney, M.W.1
Meng, X.2
-
40
-
-
0002824680
-
Symmetric gauge functions and unitarily invariant norms
-
L. Mirsky. Symmetric gauge functions and unitarily invariant norms. The Quarterly Journal of Mathematics, 11:50-59, 1960.
-
(1960)
The Quarterly Journal of Mathematics
, vol.11
, pp. 50-59
-
-
Mirsky, L.1
-
41
-
-
84893239024
-
OSNAP: Faster numerical linear algebra algorithms via sparser subspace embeddings
-
J. Nelson and H. L. Nguyen. OSNAP: Faster numerical linear algebra algorithms via sparser subspace embeddings. In Foundations of Computer Science (FOCS), pages 117-126, 2013.
-
(2013)
Foundations of Computer Science (FOCS)
, pp. 117-126
-
-
Nelson, J.1
Nguyen, H.L.2
-
43
-
-
35348901208
-
Improved approximation algorithms for large matrices via random projections
-
T. Sarlós. Improved approximation algorithms for large matrices via random projections. In Foundations of Computer Science (FOCS), pages 143-152, 2006.
-
(2006)
Foundations of Computer Science (FOCS)
, pp. 143-152
-
-
Sarlós, T.1
-
46
-
-
84877607371
-
Truncated power method for sparse eigenvalue problems
-
X.-T. Yuan and T. Zhang. Truncated power method for sparse eigenvalue problems. The Journal of Machine Learning Research, 14(1):899-925, 2013.
-
(2013)
The Journal of Machine Learning Research
, vol.14
, Issue.1
, pp. 899-925
-
-
Yuan, X.-T.1
Zhang, T.2
|