메뉴 건너뛰기




Volumn 5, Issue , 2015, Pages

ZFP36L1 promotes monocyte/macrophage differentiation by repressing CDK6

Author keywords

[No Author keywords available]

Indexed keywords

3' UNTRANSLATED REGION; BUTYRATE RESPONSE FACTOR 1; CD34 ANTIGEN; CDK6 PROTEIN, HUMAN; CYCLIN DEPENDENT KINASE 6; MESSENGER RNA; NUCLEAR PROTEIN; RNA BINDING PROTEIN; SMALL INTERFERING RNA; ZFP36L1 PROTEIN, HUMAN;

EID: 84946887627     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep16229     Document Type: Article
Times cited : (43)

References (59)
  • 1
    • 77956261738 scopus 로고    scopus 로고
    • Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line
    • Vogel, C. et al. Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol Syst Biol 6, 400, doi: 10.1038/msb.2010.59 (2010).
    • (2010) Mol Syst Biol , vol.6 , pp. 400
    • Vogel, C.1
  • 2
    • 84925010163 scopus 로고    scopus 로고
    • Regulation of pluripotency by RNA binding proteins
    • Ye, J. & Blelloch, R. Regulation of pluripotency by RNA binding proteins. Cell Stem Cell 15, 271-280, doi: 10.1016/j. stem.2014.08.010 (2014).
    • (2014) Cell Stem Cell , vol.15 , pp. 271-280
    • Ye, J.1    Blelloch, R.2
  • 3
    • 79960407300 scopus 로고    scopus 로고
    • Post-transcription initiation function of the ubiquitous SAGA complex in tissue-specific gene activation
    • Weake, V. M. et al. Post-transcription initiation function of the ubiquitous SAGA complex in tissue-specific gene activation. Genes Dev 25, 1499-1509, doi: 10.1101/gad.2046211 (2011).
    • (2011) Genes Dev , vol.25 , pp. 1499-1509
    • Weake, V.M.1
  • 4
    • 84861969926 scopus 로고    scopus 로고
    • Insights into RNA biology from an atlas of mammalian mRNA-binding proteins
    • Castello, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393-1406, doi: 10.1016/j.cell.2012.04.031 (2012).
    • (2012) Cell , vol.149 , pp. 1393-1406
    • Castello, A.1
  • 5
    • 84940234906 scopus 로고    scopus 로고
    • MicroRNAs and RNA-binding proteins: A complex network of interactions and reciprocal regulations in cancer
    • Ciafre, S. A. & Galardi, S. microRNAs and RNA-binding proteins: a complex network of interactions and reciprocal regulations in cancer. RNA Biol 10, 935-942, doi: 10.4161/rna.24641 (2013).
    • (2013) RNA Biol , vol.10 , pp. 935-942
    • Ciafre, S.A.1    Galardi, S.2
  • 6
    • 0347444723 scopus 로고    scopus 로고
    • MicroRNAs: Genomics, biogenesis, mechanism, and function
    • doi:S0092867404000455
    • Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297, doi: S0092867404000455 (2004).
    • (2004) Cell , vol.116 , pp. 281-297
    • Bartel, D.P.1
  • 7
    • 34249316905 scopus 로고    scopus 로고
    • RNA-binding proteins: Modular design for efficient function
    • Lunde, B. M., Moore, C. & Varani, G. RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol 8, 479-490, doi: 10.1038/nrm2178 (2007).
    • (2007) Nat Rev Mol Cell Biol , vol.8 , pp. 479-490
    • Lunde, B.M.1    Moore, C.2    Varani, G.3
  • 9
    • 44449166478 scopus 로고    scopus 로고
    • RNA-binding proteins and post-transcriptional gene regulation
    • Glisovic, T., Bachorik, J. L., Yong, J. & Dreyfuss, G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 582, 1977-1986, doi: 10.1016/j.febslet.2008.03.004 (2008).
    • (2008) FEBS Lett , vol.582 , pp. 1977-1986
    • Glisovic, T.1    Bachorik, J.L.2    Yong, J.3    Dreyfuss, G.4
  • 10
    • 84891818924 scopus 로고    scopus 로고
    • StarBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-seq data
    • Li, J. H., Liu, S., Zhou, H., Qu, L. H. & Yang, J. H. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42, D92-97, doi: 10.1093/nar/gkt1248 (2014).
    • (2014) Nucleic Acids Res , vol.42 , pp. D92-97
    • Li, J.H.1    Liu, S.2    Zhou, H.3    Qu, L.H.4    Yang, J.H.5
  • 11
    • 84902682043 scopus 로고    scopus 로고
    • RAID: A comprehensive resource for human RNA-associated (RNA-RNA/RNA-protein) interaction
    • Zhang, X. et al. RAID: a comprehensive resource for human RNA-associated (RNA-RNA/RNA-protein) interaction. RNA 20, 989-993, doi: 10.1261/rna.044776.114 (2014).
    • (2014) RNA , vol.20 , pp. 989-993
    • Zhang, X.1
  • 12
    • 84941064390 scopus 로고    scopus 로고
    • ViRBase: A resource for virus-host ncRNA-associated interactions
    • Li, Y. et al. ViRBase: a resource for virus-host ncRNA-associated interactions. Nucleic Acids Res 43, D578-582, doi: 10.1093/nar/gku903 (2015).
    • (2015) Nucleic Acids Res , vol.43 , pp. D578-582
    • Li, Y.1
  • 13
    • 22544459628 scopus 로고    scopus 로고
    • Zfp36l3, a rodent X chromosome gene encoding a placenta-specific member of the tristetraprolin family of CCCH tandem zinc finger proteins
    • Blackshear, P. J. et al. Zfp36l3, a rodent X chromosome gene encoding a placenta-specific member of the Tristetraprolin family of CCCH tandem zinc finger proteins. Biol Reprod 73, 297-307, doi: 10.1095/biolreprod.105.040527 (2005).
    • (2005) Biol Reprod , vol.73 , pp. 297-307
    • Blackshear, P.J.1
  • 14
    • 47249083388 scopus 로고    scopus 로고
    • A unique C-terminal repeat domain maintains the cytosolic localization of the placenta-specific tristetraprolin family member ZFP36L3
    • Frederick, E. D., Ramos, S. B. & Blackshear, P. J. A unique C-terminal repeat domain maintains the cytosolic localization of the placenta-specific tristetraprolin family member ZFP36L3. J Biol Chem 283, 14792-14800, doi: 10.1074/jbc.M801234200 (2008).
    • (2008) J Biol Chem , vol.283 , pp. 14792-14800
    • Frederick, E.D.1    Ramos, S.B.2    Blackshear, P.J.3
  • 15
    • 84878596163 scopus 로고    scopus 로고
    • Multiple functions of tristetraprolin/TIS11 RNA-binding proteins in the regulation of mRNA biogenesis and degradation
    • Ciais, D., Cherradi, N. & Feige, J. J. Multiple functions of tristetraprolin/TIS11 RNA-binding proteins in the regulation of mRNA biogenesis and degradation. Cell Mol Life Sci 70, 2031-2044, doi: 10.1007/s00018-012-1150-y (2013).
    • (2013) Cell Mol Life Sci , vol.70 , pp. 2031-2044
    • Ciais, D.1    Cherradi, N.2    Feige, J.J.3
  • 16
    • 69249221371 scopus 로고    scopus 로고
    • TIS11 family proteins and their roles in posttranscriptional gene regulation
    • Baou, M., Jewell, A. & Murphy, J. J. TIS11 family proteins and their roles in posttranscriptional gene regulation. J Biomed Biotechnol 2009, 634520, doi:10.1155/2009/634520 (2009).
    • (2009) J Biomed Biotechnol , vol.2009 , pp. 634520
    • Baou, M.1    Jewell, A.2    Murphy, J.J.3
  • 17
    • 9644295900 scopus 로고    scopus 로고
    • Destabilization of vascular endothelial growth factor mRNA by the zinc-finger protein TIS11b
    • Ciais, D. et al. Destabilization of vascular endothelial growth factor mRNA by the zinc-finger protein TIS11b. Oncogene 23, 8673-8680, doi: 10.1038/sj.onc.1207939 (2004).
    • (2004) Oncogene , vol.23 , pp. 8673-8680
    • Ciais, D.1
  • 18
    • 84904249893 scopus 로고    scopus 로고
    • Post-transcriptional regulation of BCL2 mRNA by the RNA-binding protein ZFP36L1 in malignant B cells
    • Zekavati, A. et al. Post-transcriptional regulation of BCL2 mRNA by the RNA-binding protein ZFP36L1 in malignant B cells. PLoS One 9, e102625, doi:10.1371/journal.pone.0102625 (2014).
    • (2014) PLoS One , vol.9 , pp. e102625
    • Zekavati, A.1
  • 19
    • 0032516626 scopus 로고    scopus 로고
    • Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin
    • Carballo, E., Lai, W. S. & Blackshear, P. J. Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 281, 1001-1005, doi: 10.1126/science.281.5379.1001 (1998).
    • (1998) Science , vol.281 , pp. 1001-1005
    • Carballo, E.1    Lai, W.S.2    Blackshear, P.J.3
  • 20
    • 84937062027 scopus 로고    scopus 로고
    • ZFP36L1 and ZFP36L2 control LDLR mRNA stability via the ERK-RSK pathway
    • Adachi, S. et al. ZFP36L1 and ZFP36L2 control LDLR mRNA stability via the ERK-RSK pathway. Nucleic Acids Res 42, 10037-10049, doi: 10.1093/nar/gku652 (2014).
    • (2014) Nucleic Acids Res , vol.42 , pp. 10037-10049
    • Adachi, S.1
  • 21
    • 79952770568 scopus 로고    scopus 로고
    • Deletion of tristetraprolin caused spontaneous reactive granulopoiesis by a non-cell-autonomous mechanism without disturbing long-term hematopoietic stem cell quiescence
    • Kaplan, I. M. et al. Deletion of tristetraprolin caused spontaneous reactive granulopoiesis by a non-cell-autonomous mechanism without disturbing long-term hematopoietic stem cell quiescence. J Immunol 186, 2826-2834, doi: 10.4049/jimmunol.1002806 (2011).
    • (2011) J Immunol , vol.186 , pp. 2826-2834
    • Kaplan, I.M.1
  • 22
    • 70350499492 scopus 로고    scopus 로고
    • Targeted disruption of zfp36l2, encoding a CCCH tandem zinc finger RNA-binding protein, results in defective hematopoiesis
    • Stumpo, D. J. et al. Targeted disruption of Zfp36l2, encoding a CCCH tandem zinc finger RNA-binding protein, results in defective hematopoiesis. Blood 114, 2401-2410, doi: 10.1182/blood-2009-04-214619 (2009).
    • (2009) Blood , vol.114 , pp. 2401-2410
    • Stumpo, D.J.1
  • 23
    • 77954939922 scopus 로고    scopus 로고
    • Deletion of the RNA-binding proteins ZFP36L1 and ZFP36L2 leads to perturbed thymic development and T lymphoblastic leukemia
    • Hodson, D. J. et al. Deletion of the RNA-binding proteins ZFP36L1 and ZFP36L2 leads to perturbed thymic development and T lymphoblastic leukemia. Nat Immunol 11, 717-724, doi: 10.1038/ni.1901 (2010).
    • (2010) Nat Immunol , vol.11 , pp. 717-724
    • Hodson, D.J.1
  • 24
    • 0037071391 scopus 로고    scopus 로고
    • Hematopoietic cytokines, transcription factors and lineage commitment
    • Zhu, J. & Emerson, S. G. Hematopoietic cytokines, transcription factors and lineage commitment. Oncogene 21, 3295-3313, doi:10.1038/sj.onc.1205318 (2002).
    • (2002) Oncogene , vol.21 , pp. 3295-3313
    • Zhu, J.1    Emerson, S.G.2
  • 25
    • 77958074159 scopus 로고    scopus 로고
    • ZFP36L1 negatively regulates erythroid differentiation of CD34+ hematopoietic stem cells by interfering with the stat5b pathway
    • Vignudelli, T. et al. ZFP36L1 negatively regulates erythroid differentiation of CD34+ hematopoietic stem cells by interfering with the Stat5b pathway. Mol Biol Cell 21, 3340-3351, doi: 10.1091/mbc.E10-01-0040 (2010).
    • (2010) Mol Biol Cell , vol.21 , pp. 3340-3351
    • Vignudelli, T.1
  • 26
    • 18744384006 scopus 로고    scopus 로고
    • Decrease in hnRNP A/B expression during erythropoiesis mediates a pre-mRNA splicing switch
    • Hou, V. C. et al. Decrease in hnRNP A/B expression during erythropoiesis mediates a pre-mRNA splicing switch. EMBO J 21, 6195-6204, doi: 10.1093/emboj/cdf625 (2002).
    • (2002) EMBO J , vol.21 , pp. 6195-6204
    • Hou, V.C.1
  • 27
    • 84908166897 scopus 로고    scopus 로고
    • Cpeb4-mediated translational regulatory circuitry controls terminal erythroid differentiation
    • Hu, W., Yuan, B. & Lodish, H. F. Cpeb4-mediated translational regulatory circuitry controls terminal erythroid differentiation. Dev Cell 30, 660-672, doi: 10.1016/j.devcel.2014.07.008 (2014).
    • (2014) Dev Cell , vol.30 , pp. 660-672
    • Hu, W.1    Yuan, B.2    Lodish, H.F.3
  • 28
    • 79960925248 scopus 로고    scopus 로고
    • The roles of TTP and BRF proteins in regulated mRNA decay
    • Sanduja, S., Blanco, F. F. & Dixon, D. A. The roles of TTP and BRF proteins in regulated mRNA decay. Wiley Interdiscip Rev RNA 2, 42-57, doi: 10.1002/wrna.28 (2011).
    • (2011) Wiley Interdiscip Rev RNA , vol.2 , pp. 42-57
    • Sanduja, S.1    Blanco, F.F.2    Dixon, D.A.3
  • 29
    • 18544370404 scopus 로고    scopus 로고
    • Functional cloning of BRF1, a regulator of ARE-dependent mRNA turnover
    • Stoecklin, G. et al. Functional cloning of BRF1, a regulator of ARE-dependent mRNA turnover. EMBO J 21, 4709-4718, doi: 10.1093/emboj/cdf444 (2002).
    • (2002) EMBO J , vol.21 , pp. 4709-4718
    • Stoecklin, G.1
  • 30
    • 78651291563 scopus 로고    scopus 로고
    • AREsite: A database for the comprehensive investigation of AU-rich elements
    • Gruber, A. R., Fallmann, J., Kratochvill, F., Kovarik, P. & Hofacker, I. L. AREsite: a database for the comprehensive investigation of AU-rich elements. Nucleic Acids Res 39, D66-69, doi: 10.1093/nar/gkq990 (2011).
    • (2011) Nucleic Acids Res , vol.39 , pp. D66-69
    • Gruber, A.R.1    Fallmann, J.2    Kratochvill, F.3    Kovarik, P.4    Hofacker, I.L.5
  • 31
    • 1442311533 scopus 로고    scopus 로고
    • Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d
    • Hudson, B. P., Martinez-Yamout, M. A., Dyson, H. J. & Wright, P. E. Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d. Nat Struct Mol Biol 11, 257-264, doi: 10.1038/nsmb738 (2004).
    • (2004) Nat Struct Mol Biol , vol.11 , pp. 257-264
    • Hudson, B.P.1    Martinez-Yamout, M.A.2    Dyson, H.J.3    Wright, P.E.4
  • 32
    • 84861499437 scopus 로고    scopus 로고
    • MicroRNA-29a and microRNA-142-3p are regulators of myeloid differentiation and acute myeloid leukemia
    • Wang, X. S. et al. MicroRNA-29a and microRNA-142-3p are regulators of myeloid differentiation and acute myeloid leukemia. Blood 119, 4992-5004, doi: 10.1182/blood-2011-10-385716 (2012).
    • (2012) Blood , vol.119 , pp. 4992-5004
    • Wang, X.S.1
  • 33
    • 0028788194 scopus 로고
    • AU-rich elements: Characterization and importance in mRNA degradation
    • Chen, C. Y. & Shyu, A. B. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 20, 465-470, doi: 10.1016/S0968-0004(00)89102-1 (1995).
    • (1995) Trends Biochem Sci , vol.20 , pp. 465-470
    • Chen, C.Y.1    Shyu, A.B.2
  • 34
    • 84922479489 scopus 로고    scopus 로고
    • Instruction of hematopoietic lineage choice by cytokine signaling
    • Endele, M., Etzrodt, M. & Schroeder, T. Instruction of hematopoietic lineage choice by cytokine signaling. Exp Cell Res 329, 207-213, doi: 10.1016/j.yexcr.2014.07.011 (2014).
    • (2014) Exp Cell Res , vol.329 , pp. 207-213
    • Endele, M.1    Etzrodt, M.2    Schroeder, T.3
  • 35
    • 84896110188 scopus 로고    scopus 로고
    • MicroRNAs as haematopoiesis regulators
    • Undi, R. B., Kandi, R. & Gutti, R. K. MicroRNAs as Haematopoiesis Regulators. Adv Hematol 2013, 695754, doi: 10.1155/2013/695754 (2013).
    • (2013) Adv Hematol , vol.2013 , pp. 695754
    • Undi, R.B.1    Kandi, R.2    Gutti, R.K.3
  • 36
    • 84938767591 scopus 로고    scopus 로고
    • Long non-coding RNAs: New players in hematopoiesis and leukemia
    • Morlando, M., Ballarino, M. & Fatica, A. Long Non-Coding RNAs: New Players in Hematopoiesis and Leukemia. Front Med (Lausanne) 2, 23, doi: 10.3389/fmed.2015.00023 (2015).
    • (2015) Front Med (Lausanne) , vol.2 , pp. 23
    • Morlando, M.1    Ballarino, M.2    Fatica, A.3
  • 37
    • 84939621888 scopus 로고    scopus 로고
    • PU.1-regulated long noncoding RNA lnc-MC controls human monocyte/macrophage differentiation through interaction with MicroRNA 199a-5p
    • Chen, M. T. et al. PU.1-Regulated Long Noncoding RNA lnc-MC Controls Human Monocyte/Macrophage Differentiation through Interaction with MicroRNA 199a-5p. Mol Cell Biol 35, 3212-3224, doi: 10.1128/MCB.00429-15 (2015).
    • (2015) Mol Cell Biol , vol.35 , pp. 3212-3224
    • Chen, M.T.1
  • 38
    • 84865757142 scopus 로고    scopus 로고
    • Landscape of transcription in human cells
    • Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101-108, doi: 10.1038/nature11233 (2012).
    • (2012) Nature , vol.489 , pp. 101-108
    • Djebali, S.1
  • 39
    • 84868683051 scopus 로고    scopus 로고
    • Regulation of mammalian cell differentiation by long non-coding RNAs
    • Hu, W., Alvarez-Dominguez, J. R. & Lodish, H. F. Regulation of mammalian cell differentiation by long non-coding RNAs. EMBO Rep 13, 971-983, doi: 10.1038/embor.2012.145 (2012).
    • (2012) EMBO Rep , vol.13 , pp. 971-983
    • Hu, W.1    Alvarez-Dominguez, J.R.2    Lodish, H.F.3
  • 40
    • 67449084504 scopus 로고    scopus 로고
    • Emerging roles of RNA and RNA-binding protein network in cancer cells
    • Kim, M. Y., Hur, J. & Jeong, S. Emerging roles of RNA and RNA-binding protein network in cancer cells. BMB Rep 42, 125-130, doi: 10.5483/BMBRep.2009.42.3.125 (2009).
    • (2009) BMB Rep , vol.42 , pp. 125-130
    • Kim, M.Y.1    Hur, J.2    Jeong, S.3
  • 41
    • 84863975738 scopus 로고    scopus 로고
    • Precision mechanics with multifunctional tools: How hnRNP K and hnRNPs E1/E2 contribute to post-transcriptional control of gene expression in hematopoiesis
    • doi:CPPSEPUB-20120618-6
    • Ostareck-Lederer, A. & Ostareck, D. H. Precision mechanics with multifunctional tools: how hnRNP K and hnRNPs E1/E2 contribute to post-transcriptional control of gene expression in hematopoiesis. Curr Protein Pept Sci 13, 391-400, doi: CPPSEPUB- 20120618-6 (2012).
    • (2012) Curr Protein Pept Sci , vol.13 , pp. 391-400
    • Ostareck-Lederer, A.1    Ostareck, D.H.2
  • 42
    • 77649133970 scopus 로고    scopus 로고
    • MiR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts
    • Eiring, A. M. et al. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell 140, 652-665, doi: 10.1016/j.cell.2010.01.007 (2010).
    • (2010) Cell , vol.140 , pp. 652-665
    • Eiring, A.M.1
  • 43
    • 84875761924 scopus 로고    scopus 로고
    • Exploring the RNA world in hematopoietic cells through the lens of RNA-binding proteins
    • Yuan, J. & Muljo, S. A. Exploring the RNA world in hematopoietic cells through the lens of RNA-binding proteins. Immunol Rev 253, 290-303, doi: 10.1111/imr.12048 (2013).
    • (2013) Immunol Rev , vol.253 , pp. 290-303
    • Yuan, J.1    Muljo, S.A.2
  • 44
    • 80355146868 scopus 로고    scopus 로고
    • Monocyte recruitment during infection and inflammation
    • Shi, C. & Pamer, E. G. Monocyte recruitment during infection and inflammation. Nat Rev Immunol 11, 762-774, doi: 10.1038/nri3070 (2011).
    • (2011) Nat Rev Immunol , vol.11 , pp. 762-774
    • Shi, C.1    Pamer, E.G.2
  • 45
    • 0029918710 scopus 로고    scopus 로고
    • Functional characterization of a non-AUUUA AU-rich element from the c-jun protooncogene mRNA: Evidence for a novel class of AU-rich elements
    • Peng, S. S., Chen, C. Y. & Shyu, A. B. Functional characterization of a non-AUUUA AU-rich element from the c-jun protooncogene mRNA: evidence for a novel class of AU-rich elements. Mol Cell Biol 16, 1490-1499 (1996).
    • (1996) Mol Cell Biol , vol.16 , pp. 1490-1499
    • Peng, S.S.1    Chen, C.Y.2    Shyu, A.B.3
  • 46
    • 82155183375 scopus 로고    scopus 로고
    • AU-rich RNA binding proteins in hematopoiesis and leukemogenesis
    • Baou, M., Norton, J. D. & Murphy, J. J. AU-rich RNA binding proteins in hematopoiesis and leukemogenesis. Blood 118, 5732-5740, doi: 10.1182/blood-2011-07-347237 (2011).
    • (2011) Blood , vol.118 , pp. 5732-5740
    • Baou, M.1    Norton, J.D.2    Murphy, J.J.3
  • 47
    • 84871416070 scopus 로고    scopus 로고
    • ZFP36L1 negatively regulates plasmacytoid differentiation of BCL1 cells by targeting BLIMP1 mRNA
    • Nasir, A. et al. ZFP36L1 negatively regulates plasmacytoid differentiation of BCL1 cells by targeting BLIMP1 mRNA. PLoS One 7, e52187, doi: 10.1371/journal.pone.0052187 (2012).
    • (2012) PLoS One , vol.7 , pp. e52187
    • Nasir, A.1
  • 48
    • 1642442715 scopus 로고    scopus 로고
    • Identification of nucleolin as an AU-rich element binding protein involved in bcl-2 mRNA stabilization
    • Sengupta, T. K., Bandyopadhyay, S., Fernandes, D. J. & Spicer, E. K. Identification of nucleolin as an AU-rich element binding protein involved in bcl-2 mRNA stabilization. J Biol Chem 279, 10855-10863, doi: 10.1074/jbc.M309111200 (2004).
    • (2004) J Biol Chem , vol.279 , pp. 10855-10863
    • Sengupta, T.K.1    Bandyopadhyay, S.2    Fernandes, D.J.3    Spicer, E.K.4
  • 49
    • 80555143014 scopus 로고    scopus 로고
    • Competitive regulation of nucleolin expression by HuR and miR-494
    • Tominaga, K. et al. Competitive regulation of nucleolin expression by HuR and miR-494. Mol Cell Biol 31, 4219-4231, doi: 10.1128/MCB.05955-11 (2011).
    • (2011) Mol Cell Biol , vol.31 , pp. 4219-4231
    • Tominaga, K.1
  • 50
    • 20044388720 scopus 로고    scopus 로고
    • Involvement of microRNA in AU-rich element-mediated mRNA instability
    • Jing, Q. et al. Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120, 623-634, doi: 10.1016/j. cell.2004.12.038 (2005).
    • (2005) Cell , vol.120 , pp. 623-634
    • Jing, Q.1
  • 51
    • 68149165414 scopus 로고    scopus 로고
    • HuR recruits let-7/RISC to repress c-Myc expression
    • Kim, H. H. et al. HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev 23, 1743-1748, doi: 10.1101/gad.1812509 (2009).
    • (2009) Genes Dev , vol.23 , pp. 1743-1748
    • Kim, H.H.1
  • 52
    • 0036406845 scopus 로고    scopus 로고
    • Genetics of myeloid leukemias
    • doi:032802.115046
    • Kelly, L. M. & Gilliland, D. G. Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet 3, 179-198, doi: 032802.115046 (2002).
    • (2002) Annu Rev Genomics Hum Genet , vol.3 , pp. 179-198
    • Kelly, L.M.1    Gilliland, D.G.2
  • 53
    • 84928891066 scopus 로고    scopus 로고
    • Long noncoding RNA, CCDC26, controls myeloid leukemia cell growth through regulation of KIT expression
    • Hirano, T. et al. Long noncoding RNA, CCDC26, controls myeloid leukemia cell growth through regulation of KIT expression. Mol Cancer 14, 90, doi: 10.1186/s12943-015-0364-7 (2015).
    • (2015) Mol Cancer , vol.14 , pp. 90
    • Hirano, T.1
  • 54
    • 84880264045 scopus 로고    scopus 로고
    • Cdks, cyclins and CKIs: Roles beyond cell cycle regulation
    • Lim, S. & Kaldis, P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 140, 3079-3093, doi: 10.1242/dev.091744 (2013).
    • (2013) Development , vol.140 , pp. 3079-3093
    • Lim, S.1    Kaldis, P.2
  • 55
    • 0028181760 scopus 로고
    • Identification of G1 kinase activity for cdk6, a novel cyclin D partner
    • Meyerson, M. & Harlow, E. Identification of G1 kinase activity for cdk6, a novel cyclin D partner. Mol Cell Biol 14, 2077-2086, doi: 10.1128/MCB.14.3.2077 (1994).
    • (1994) Mol Cell Biol , vol.14 , pp. 2077-2086
    • Meyerson, M.1    Harlow, E.2
  • 56
    • 84903954701 scopus 로고    scopus 로고
    • Requirement for CDK6 in MLL-rearranged acute myeloid leukemia
    • Placke, T. et al. Requirement for CDK6 in MLL-rearranged acute myeloid leukemia. Blood 124, 13-23, doi: 10.1182/blood-2014-02-558114 (2014).
    • (2014) Blood , vol.124 , pp. 13-23
    • Placke, T.1
  • 57
    • 77649175453 scopus 로고    scopus 로고
    • Genomic instability-an evolving hallmark of cancer
    • Negrini, S., Gorgoulis, V. G. & Halazonetis, T. D. Genomic instability-an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11, 220-228, doi: 10.1038/nrm2858 (2010).
    • (2010) Nat Rev Mol Cell Biol , vol.11 , pp. 220-228
    • Negrini, S.1    Gorgoulis, V.G.2    Halazonetis, T.D.3
  • 58
    • 32244441908 scopus 로고    scopus 로고
    • From cell cycle to differentiation: An expanding role for cdk6
    • Grossel, M. J. & Hinds, P. W. From cell cycle to differentiation: an expanding role for cdk6. Cell Cycle 5, 266-270, doi: 10.4161/cc.5.3.2385 (2006).
    • (2006) Cell Cycle , vol.5 , pp. 266-270
    • Grossel, M.J.1    Hinds, P.W.2
  • 59
    • 25444440873 scopus 로고    scopus 로고
    • Cell cycle progression without cyclin D-CDK4 and cyclin D-CDK6 complexes
    • Kozar, K. & Sicinski, P. Cell cycle progression without cyclin D-CDK4 and cyclin D-CDK6 complexes. Cell Cycle 4, 388-391, doi: 10.4161/cc.4.3.1551 (2005).
    • (2005) Cell Cycle , vol.4 , pp. 388-391
    • Kozar, K.1    Sicinski, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.