메뉴 건너뛰기




Volumn 14, Issue , 2013, Pages

Scoring relevancy of features based on combinatorial analysis of Lasso with application to lymphoma diagnosis

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; BOOTSTRAPPING; CASE STUDY; CLASSIFIER; CONTROLLED STUDY; DATA ANALYSIS SOFTWARE; DATA EXTRACTION; DIAGNOSTIC TEST ACCURACY STUDY; DIAGNOSTIC VALUE; FLOW CYTOMETRY; HUMAN; INTERMETHOD COMPARISON; LASSO TECHNIQUE; LYMPHOMA; MACHINE LEARNING; MAJOR CLINICAL STUDY; PREDICTION; RECEIVER OPERATING CHARACTERISTIC; THEORETICAL STUDY; BIOLOGY; FACTUAL DATABASE;

EID: 84881279992     PISSN: None     EISSN: 14712164     Source Type: Journal    
DOI: 10.1186/1471-2164-14-S1-S14     Document Type: Article
Times cited : (29)

References (28)
  • 4
    • 33845263263 scopus 로고    scopus 로고
    • On Model Selection Consistency of Lasso
    • Zhao P, Yu B: On Model Selection Consistency of Lasso. J Mach Learn Res 2006, 7:2541-2563.
    • (2006) J Mach Learn Res , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 6
    • 65749083666 scopus 로고    scopus 로고
    • Sharp thresholds for high-dimensional and noisy sparsity recovery using l1-constrained quadratic programming (Lasso).
    • Wainwright MJ: Sharp thresholds for high-dimensional and noisy sparsity recovery using l1-constrained quadratic programming (Lasso). IEEE Trans Inf Theor 2009, 55(5).
    • (2009) IEEE Trans Inf Theor , vol.55 , Issue.5
    • Wainwright, M.J.1
  • 8
    • 79960143876 scopus 로고    scopus 로고
    • Model-consistent sparse estimation through the bootstrap
    • Bach F: Model-consistent sparse estimation through the bootstrap. Tech rep, HAL-00354771 2009.
    • (2009) Tech rep, HAL-00354771
    • Bach, F.1
  • 9
    • 65349193793 scopus 로고    scopus 로고
    • Lasso-type recovery of sparse representations for high-dimensional data
    • Meinshausen N, Yu B: Lasso-type recovery of sparse representations for high-dimensional data. Annals of Statistics 2009, 37:246-270.
    • (2009) Annals of Statistics , vol.37 , pp. 246-270
    • Meinshausen, N.1    Yu, B.2
  • 10
    • 56449113372 scopus 로고    scopus 로고
    • Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators
    • Lounici K, et al: Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators. Electronic Journal of statistics 2008, 2:90-102.
    • (2008) Electronic Journal of statistics , vol.2 , pp. 90-102
    • Lounici, K.1
  • 11
    • 77956705273 scopus 로고    scopus 로고
    • Consistent neighborhood selection for sparse high-dimensional graphs with the Lasso
    • Meinshausen N, Buhlmann P: Consistent neighborhood selection for sparse high-dimensional graphs with the Lasso. Statist Surv 2004, 2:61-93.
    • (2004) Statist Surv , vol.2 , pp. 61-93
    • Meinshausen, N.1    Buhlmann, P.2
  • 13
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L: Bagging predictors. Machine learning 1996, 24(2):123-140.
    • (1996) Machine learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 17
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • von Luxburg U: A tutorial on spectral clustering. Statistics and Computing 2007, 17(4):395-416.
    • (2007) Statistics and Computing , vol.17 , Issue.4 , pp. 395-416
    • von Luxburg, U.1
  • 20
    • 33845594195 scopus 로고    scopus 로고
    • Spectral Methods for Automatic Multiscale Data Clustering. Computer Vision and Pattern Recognition
    • Azran A, Ghahramani Z: Spectral Methods for Automatic Multiscale Data Clustering. Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, Volume 1 2006, 190-197.
    • (2006) 2006 IEEE Computer Society Conference on , vol.1 , pp. 190-197
    • Azran, A.1    Ghahramani, Z.2
  • 21
    • 77954938186 scopus 로고    scopus 로고
    • Data reduction for spectral clustering to analyze high throughput flow cytometry data
    • Zare H, Shooshtari P, Gupta A, Brinkman R: Data reduction for spectral clustering to analyze high throughput flow cytometry data. BMC Bioinformatics 2010, 11:403.
    • (2010) BMC Bioinformatics , vol.11 , pp. 403
    • Zare, H.1    Shooshtari, P.2    Gupta, A.3    Brinkman, R.4
  • 23
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon U, Barkai N, Notterman D, Gish K, Ybarra S, Mack D, Levine A: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA 1999, 96(12):6745-6750.
    • (1999) Proc Natl Acad Sci USA , vol.96 , Issue.12 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.7
  • 24
    • 79951528449 scopus 로고    scopus 로고
    • Variable selection for discriminant analysis with Markov random field priors for the analysis of microarray data
    • Stingo F, Vannucci M: Variable selection for discriminant analysis with Markov random field priors for the analysis of microarray data. Bioinformatics 2011, 27(4):495.
    • (2011) Bioinformatics , vol.27 , Issue.4 , pp. 495
    • Stingo, F.1    Vannucci, M.2
  • 25
    • 78649934709 scopus 로고    scopus 로고
    • UCI Machine Learning Repository
    • Frank A, Asuncion A: UCI Machine Learning Repository. 2010.
    • (2010)
    • Frank, A.1    Asuncion, A.2
  • 27
    • 0023843391 scopus 로고
    • Analysis of hidden units in a layered network trained to classify sonar targets
    • Gorman R, Sejnowski T: Analysis of hidden units in a layered network trained to classify sonar targets. Neural networks 1988, 1:75-89.
    • (1988) Neural networks , vol.1 , pp. 75-89
    • Gorman, R.1    Sejnowski, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.