메뉴 건너뛰기




Volumn 328, Issue , 2016, Pages 60-75

Graph-induced restricted Boltzmann machines for document modeling

Author keywords

Document modeling; Feature group discovery; Restricted Boltzmann machine; Topic coherence; Word graphs

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); GRAPHIC METHODS; LEARNING SYSTEMS; LINGUISTICS; SPEECH RECOGNITION;

EID: 84945529896     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2015.08.023     Document Type: Article
Times cited : (9)

References (83)
  • 2
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin, and P. Niyogi Laplacian eigenmaps for dimensionality reduction and data representation Neural Comput. 15 6 2003 1373 1396
    • (2003) Neural Comput. , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 3
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • (Also published as a book. Now Publishers, 2009)
    • Y. Bengio Learning deep architectures for AI Found. Trends Mach. Learning 2 1 2009 1 127 (Also published as a book. Now Publishers, 2009).
    • (2009) Found. Trends Mach. Learning , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 7
    • 84861170800 scopus 로고    scopus 로고
    • Probabilistic topic models
    • D.M. Blei Probabilistic topic models Commun. ACM 55 4 2012 77 84
    • (2012) Commun. ACM , vol.55 , Issue.4 , pp. 77-84
    • Blei, D.M.1
  • 8
    • 76849117578 scopus 로고    scopus 로고
    • The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies
    • D.M. Blei, T.L. Griffiths, and M.I. Jordan The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies J. ACM 57 2 2010 7
    • (2010) J. ACM , vol.57 , Issue.2 , pp. 7
    • Blei, D.M.1    Griffiths, T.L.2    Jordan, M.I.3
  • 10
    • 39849102639 scopus 로고    scopus 로고
    • Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with oscar
    • H.D. Bondell, and B.J. Reich Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with oscar Biometrics 64 1 2008 115 123
    • (2008) Biometrics , vol.64 , Issue.1 , pp. 115-123
    • Bondell, H.D.1    Reich, B.J.2
  • 12
    • 30344483178 scopus 로고    scopus 로고
    • Document clustering using locality preserving indexing
    • D. Cai, X. He, and J. Han Document clustering using locality preserving indexing IEEE Trans. Knowledge Data Eng. 17 12 2005 1624 1637
    • (2005) IEEE Trans. Knowledge Data Eng. , vol.17 , Issue.12 , pp. 1624-1637
    • Cai, D.1    He, X.2    Han, J.3
  • 17
  • 19
    • 84945556721 scopus 로고    scopus 로고
    • Training restricted Boltzmann machines on word observations
    • ABS/12025695
    • G.E. Dahl, R.P. Adams, and H. Larochelle Training restricted Boltzmann machines on word observations CoRR abs/1202.5695 2012
    • (2012) CoRR
    • Dahl, G.E.1    Adams, R.P.2    Larochelle, H.3
  • 20
    • 0037418225 scopus 로고    scopus 로고
    • Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization
    • D.L. Donoho, and M. Elad Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization Proc. Nat. Acad. Sci. 100 5 2003 2197 2202
    • (2003) Proc. Nat. Acad. Sci. , vol.100 , Issue.5 , pp. 2197-2202
    • Donoho, D.L.1    Elad, M.2
  • 21
    • 84855873704 scopus 로고    scopus 로고
    • Strengthening learning algorithms by feature discovery
    • O. Dor, and Y. Reich Strengthening learning algorithms by feature discovery Informat. Sci. 189 2012 176 190
    • (2012) Informat. Sci. , vol.189 , pp. 176-190
    • Dor, O.1    Reich, Y.2
  • 27
  • 29
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. Hinton, and R. Salakhutdinov Reducing the dimensionality of data with neural networks Science 313 5786 2006 504 507
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 30
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G.E. Hinton Training products of experts by minimizing contrastive divergence Neural Comput. 14 8 2002 1771 1800
    • (2002) Neural Comput. , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 31
    • 84872506495 scopus 로고    scopus 로고
    • A practical guide to training restricted Boltzmann machines
    • Montavon Lecture Notes in Computer Science Springer Berlin Heidelberg
    • G.E. Hinton A practical guide to training restricted Boltzmann machines Montavon Neural Networks: Tricks of the Trade Lecture Notes in Computer Science 7700 2012 Springer Berlin Heidelberg 599 619
    • (2012) Neural Networks: Tricks of the Trade , vol.7700 , pp. 599-619
    • Hinton, G.E.1
  • 32
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic latent semantic analysis
    • T. Hofmann Unsupervised learning by probabilistic latent semantic analysis Mach. Learning 42 1-2 2001 177 196
    • (2001) Mach. Learning , vol.42 , Issue.1-2 , pp. 177-196
    • Hofmann, T.1
  • 33
    • 84903184372 scopus 로고    scopus 로고
    • Next-generation phenotyping of electronic health records
    • G. Hripcsak, and D.J. Albers Next-generation phenotyping of electronic health records J. Amer. Med. Informat. Assoc. 2012 amiajnl 2012
    • (2012) J. Amer. Med. Informat. Assoc. , pp. amiajnl-2012
    • Hripcsak, G.1    Albers, D.J.2
  • 34
    • 66249102619 scopus 로고    scopus 로고
    • A group bridge approach for variable selection
    • J. Huang, S. Ma, H. Xie, and C.-H. Zhang A group bridge approach for variable selection Biometrika 96 2 2009 339 355
    • (2009) Biometrika , vol.96 , Issue.2 , pp. 339-355
    • Huang, J.1    Ma, S.2    Xie, H.3    Zhang, C.-H.4
  • 35
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • A. Hyvärinen, and E. Oja Independent component analysis: algorithms and applications Neural Netw. 13 4 2000 411 430
    • (2000) Neural Netw. , vol.13 , Issue.4 , pp. 411-430
    • Hyvärinen, A.1    Oja, E.2
  • 40
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D.D. Lee, and H.S. Seung Learning the parts of objects by non-negative matrix factorization Nature 401 6755 1999 788 791
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 42
    • 42649140560 scopus 로고    scopus 로고
    • Network-constrained regularization and variable selection for analysis of genomic data
    • C. Li, and H. Li Network-constrained regularization and variable selection for analysis of genomic data Bioinformatics 24 9 2008 1175 1182
    • (2008) Bioinformatics , vol.24 , Issue.9 , pp. 1175-1182
    • Li, C.1    Li, H.2
  • 44
    • 77950032550 scopus 로고    scopus 로고
    • Markov chain sampling methods for Dirichlet process mixture models
    • R.M. Neal Markov chain sampling methods for Dirichlet process mixture models J. Comput. Graphical Stat. 9 2 2000 249 265
    • (2000) J. Comput. Graphical Stat. , vol.9 , Issue.2 , pp. 249-265
    • Neal, R.M.1
  • 46
    • 84893532404 scopus 로고    scopus 로고
    • Latent patient profile modelling and applications with mixed-variate restricted Boltzmann machine
    • J. Pei, V. Tseng, L. Cao, H. Motoda, G. Xu, Lecture Notes in Computer Science Springer-Verlag Berlin Heidelberg
    • T.D. Nguyen, T. Tran, D. Phung, and S. Venkatesh Latent patient profile modelling and applications with mixed-variate restricted Boltzmann machine J. Pei, V. Tseng, L. Cao, H. Motoda, G. Xu, Advances in Knowledge Discovery and Data Mining Lecture Notes in Computer Science 7818 2013 Springer-Verlag Berlin Heidelberg 123 135
    • (2013) Advances in Knowledge Discovery and Data Mining , vol.7818 , pp. 123-135
    • Nguyen, T.D.1    Tran, T.2    Phung, D.3    Venkatesh, S.4
  • 49
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • B.A. Olshausen, and et al. Emergence of simple-cell receptive field properties by learning a sparse code for natural images Nature 381 6583 1996 607 609
    • (1996) Nature , vol.381 , Issue.6583 , pp. 607-609
    • Olshausen, B.A.1
  • 50
    • 85081941118 scopus 로고    scopus 로고
    • Wordnet::similarity: Measuring the relatedness of concepts
    • HLT-NAACL-Demonstrations '04 Association for Computational Linguistics Stroudsburg, PA, USA
    • T. Pedersen, S. Patwardhan, and J. Michelizzi Wordnet::similarity: measuring the relatedness of concepts Demonstration Papers at HLT-NAACL 2004 HLT-NAACL-Demonstrations '04 2004 Association for Computational Linguistics Stroudsburg, PA, USA 38 41
    • (2004) Demonstration Papers at HLT-NAACL 2004 , pp. 38-41
    • Pedersen, T.1    Patwardhan, S.2    Michelizzi, J.3
  • 52
    • 84894107278 scopus 로고    scopus 로고
    • Sentiment topic models for social emotion mining
    • Y. Rao, Q. Li, X. Mao, and L. Wenyin Sentiment topic models for social emotion mining Informat. Sci. 266 2014 90 100
    • (2014) Informat. Sci. , vol.266 , pp. 90-100
    • Rao, Y.1    Li, Q.2    Mao, X.3    Wenyin, L.4
  • 54
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S.T. Roweis, and L.K. Saul Nonlinear dimensionality reduction by locally linear embedding Science 290 5500 2000 2323 2326
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 60
    • 84890154381 scopus 로고    scopus 로고
    • Consistent group identification and variable selection in regression with correlated predictors
    • D.B. Sharma, H.D. Bondell, and H.H. Zhang Consistent group identification and variable selection in regression with correlated predictors J. Comput. Graphical Stat. 22 2 2013 319 340
    • (2013) J. Comput. Graphical Stat. , vol.22 , Issue.2 , pp. 319-340
    • Sharma, D.B.1    Bondell, H.D.2    Zhang, H.H.3
  • 75
    • 77952700189 scopus 로고    scopus 로고
    • From frequency to meaning: Vector space models of semantics
    • P.D. Turney, P. Pantel, and et al. From frequency to meaning: Vector space models of semantics J. Artificial Intell. Res. 37 1 2010 141 188
    • (2010) J. Artificial Intell. Res. , vol.37 , Issue.1 , pp. 141-188
    • Turney, P.D.1    Pantel, P.2
  • 77
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion J. Mach. Learning Res. 11 2010 3371 3408
    • (2010) J. Mach. Learning Res. , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 79
    • 84894542017 scopus 로고    scopus 로고
    • The cluster elastic net for high-dimensional regression with unknown variable grouping
    • D.M. Witten, A. Shojaie, and F. Zhang The cluster elastic net for high-dimensional regression with unknown variable grouping Technometrics 56 1 2014 112 122
    • (2014) Technometrics , vol.56 , Issue.1 , pp. 112-122
    • Witten, D.M.1    Shojaie, A.2    Zhang, F.3
  • 80
    • 0000355193 scopus 로고
    • Parametric inference for imperfectly observed Gibbsian fields
    • L. Younes Parametric inference for imperfectly observed Gibbsian fields Probability Theory Related Fields 82 4 1989 625 645
    • (1989) Probability Theory Related Fields , vol.82 , Issue.4 , pp. 625-645
    • Younes, L.1
  • 81
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • M. Yuan, and Y. Lin Model selection and estimation in regression with grouped variables J. Royal Stat. Soc.: Series B (Stat. Methodol.) 68 1 2006 49 67
    • (2006) J. Royal Stat. Soc.: Series B (Stat. Methodol.) , vol.68 , Issue.1 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 82
    • 84855890620 scopus 로고    scopus 로고
    • Group variable selection for data with dependent structures
    • L. Zeng, and J. Xie Group variable selection for data with dependent structures J. Stat. Comput. Simulation 82 1 2012 95 106
    • (2012) J. Stat. Comput. Simulation , vol.82 , Issue.1 , pp. 95-106
    • Zeng, L.1    Xie, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.