메뉴 건너뛰기




Volumn 189, Issue , 2012, Pages 176-190

Strengthening learning algorithms by feature discovery

Author keywords

Constructive induction; Feature construction; Feature discovery; Feature selection

Indexed keywords

CONSTRUCTIVE INDUCTION; DATA SETS; FEATURE CONSTRUCTION; FEATURE DISCOVERY; FUNCTIONAL RELATION; INPUT FEATURES; LEARNING PERFORMANCE; MATHEMATICAL FUNCTIONS; TARGET FEATURE;

EID: 84855873704     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2011.11.039     Document Type: Article
Times cited : (42)

References (30)
  • 1
    • 78650570828 scopus 로고    scopus 로고
    • Sequential covering rule induction algorithm for variable consistency rough set approaches
    • J. Blaszczynski, R. Slowinski, and M. Szelazg Sequential covering rule induction algorithm for variable consistency rough set approaches Information Sciences 181 2011 987 1002
    • (2011) Information Sciences , vol.181 , pp. 987-1002
    • Blaszczynski, J.1    Slowinski, R.2    Szelazg, M.3
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Machine Learning 24 1996 123 140 (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 3
    • 0035426683 scopus 로고    scopus 로고
    • Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems
    • DOI 10.1016/S0020-0255(01)00147-5, PII S0020025501001475
    • J. Casillas, O. Cordón, M.J. Del Jesus, and F. Herrera Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems Information Sciences 136 1-4 2001 135 157 (Pubitemid 32621498)
    • (2001) Information Sciences , vol.136 , Issue.1-4 , pp. 135-157
    • Casillas, J.1    Cordon, O.2    Del Jesus, M.J.3    Herrera, F.4
  • 4
    • 34447274515 scopus 로고    scopus 로고
    • Feature selection via coalitional game theory
    • S. Cohen, G. Dror, and E. Ruppin Feature selection via coalitional game theory Neural Computation 19 7 2007 1939 1961
    • (2007) Neural Computation , vol.19 , Issue.7 , pp. 1939-1961
    • Cohen, S.1    Dror, G.2    Ruppin, E.3
  • 5
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar Statistical comparisons of classifiers over multiple data sets Journal of Machine Learning Research 7 2006 1 30 (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 8
    • 77950860271 scopus 로고    scopus 로고
    • Evolving decision tree rule based system for audio stego anomalies detection based on Hausdorff distance statistics
    • S. Geetha, N. Ishwarya, and N. Kamaraj Evolving decision tree rule based system for audio stego anomalies detection based on Hausdorff distance statistics Information Sciences 180 2010 2540 2559
    • (2010) Information Sciences , vol.180 , pp. 2540-2559
    • Geetha, S.1    Ishwarya, N.2    Kamaraj, N.3
  • 10
    • 15544380168 scopus 로고    scopus 로고
    • Classification of multivariate time series and structured data using constructive induction
    • DOI 10.1007/s10994-005-5826-5
    • M.W. Kadous, and C. Sammut Classification of multivariate time series and structured data using constructive induction Machine Learning 58 2005 179 216 (Pubitemid 40400637)
    • (2005) Machine Learning , vol.58 , Issue.2-3 , pp. 179-216
    • Kadous, M.W.1    Sammut, C.2
  • 13
    • 0036778917 scopus 로고    scopus 로고
    • Feature generation using general constructor functions
    • DOI 10.1023/A:1014046307775
    • S. Markovitch, and D. Rosenstein Feature generation using general constructor functions Machine Learning 49 1 2002 59 98 (Pubitemid 34325695)
    • (2002) Machine Learning , vol.49 , Issue.1 , pp. 59-98
    • Markovitch, S.1    Rosenstein, D.2
  • 15
    • 9544227375 scopus 로고    scopus 로고
    • Feature construction for reduction of tabular knowledge-based systems
    • S. Piramuthu Feature construction for reduction of tabular knowledge-based systems Information Sciences 168 1-4 2004 201 215
    • (2004) Information Sciences , vol.168 , Issue.14 , pp. 201-215
    • Piramuthu, S.1
  • 16
    • 2342452616 scopus 로고    scopus 로고
    • Classification using Φ-machines and constructive function approximation
    • D. Precup, and P.E. Utgoff Classification using Φ-machines and constructive function approximation Machine Learning 55 1 2004 31 52
    • (2004) Machine Learning , vol.55 , Issue.1 , pp. 31-52
    • Precup, D.1    Utgoff, P.E.2
  • 17
    • 0037361892 scopus 로고    scopus 로고
    • Learning fuzzy classification rules from labeled data
    • J.A. Roubos, M. Setnes, and J. Abonyi Learning fuzzy classification rules from labeled data Information Sciences 150 2003 77 93
    • (2003) Information Sciences , vol.150 , pp. 77-93
    • Roubos, J.A.1    Setnes, M.2    Abonyi, J.3
  • 20
    • 32444442471 scopus 로고    scopus 로고
    • Constructive Induction and Algorithms for Learning Concepts with Complex interaction
    • DOI 10.1145/1068009.1068317, GECCO 2005 - Genetic and Evolutionary Computation Conference
    • L.S. Shafti, E.P. Perez, Constructive induction and genetic algorithms for learning concepts with complex interaction, Genetic And Evolutionary Computation Conference, in: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, 2005, pp. 1811-1818. (Pubitemid 43226535)
    • (2005) GECCO 2005 - Genetic and Evolutionary Computation Conference , pp. 1811-1818
    • Shafti, L.S.1    Perez, E.P.2
  • 21
    • 27944437848 scopus 로고    scopus 로고
    • Genetic programming with a genetic algorithm for feature construction and selection
    • DOI 10.1007/s10710-005-2988-7
    • M.G. Smith, and L. Bull Genetic programming with a genetic algorithm for feature construction and selection Genetic Programming and Evolvable Machines 6 3 2005 265 281 (Pubitemid 41677284)
    • (2005) Genetic Programming and Evolvable Machines , vol.6 , Issue.3 , pp. 265-281
    • Smith, M.G.1    Bull, L.2
  • 22
    • 0033353812 scopus 로고    scopus 로고
    • Neural networks with periodic and monotonic activation functions: A comparative study in classification problems
    • J.M. Sopena, E. Romero, R. Alquezar, Neural networks with periodic and monotonic activation functions: a comparative study in classification problems, Artificial Neural Networks, 1999, ICANN 99, in: Ninth International Conference on (Conf. Publ. No. 470), 1999, pp. 323-328. (Pubitemid 30519959)
    • (1999) IEE Conference Publication , vol.1 , Issue.470 , pp. 323-328
    • Sopena Josep, M.1    Romero Enrique2    Alquezar Rene3
  • 23
    • 78650540340 scopus 로고    scopus 로고
    • Applying electromagnetism-like mechanism for feature selection
    • C.T. Su, and H.C. Lin Applying electromagnetism-like mechanism for feature selection Information Sciences 181 5 2011 972 986
    • (2011) Information Sciences , vol.181 , Issue.5 , pp. 972-986
    • Su, C.T.1    Lin, H.C.2
  • 29
    • 0036697709 scopus 로고    scopus 로고
    • Use of periodic and monotonic activation functions in multilayer feedforward neural networks trained by extended Kalman filter algorithm
    • K.W. Wong, C.S. Leung, and S.J. Chang Use of periodic and monotonic activation functions in multilayer feedforward neural networks trained by extended Kalman filter algorithm IEE Proceedings on Vision, Image and Signal Processing 149 4 2002 217 224
    • (2002) IEE Proceedings on Vision, Image and Signal Processing , vol.149 , Issue.4 , pp. 217-224
    • Wong, K.W.1    Leung, C.S.2    Chang, S.J.3
  • 30
    • 67650995440 scopus 로고    scopus 로고
    • Feature selection for multi-label naive Bayes classification
    • M.L. Zhang, J.M. Pena, and V. Robles Feature selection for multi-label naive Bayes classification Information Sciences 179 2009 3218 3229
    • (2009) Information Sciences , vol.179 , pp. 3218-3229
    • Zhang, M.L.1    Pena, J.M.2    Robles, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.