메뉴 건너뛰기




Volumn 1354, Issue 1, 2015, Pages 1-11

Mechanisms of echinocandin antifungal drug resistance

Author keywords

Caspofungin; Chitin synthase; Echinocandin; FKS; Glucan synthase; Micafungin

Indexed keywords

ECHINOCANDIN; FKS PROTEIN; FUNGAL ENZYME; FUNGAL PROTEIN; GLUCAN SYNTHASE; UNCLASSIFIED DRUG; ANTIFUNGAL AGENT; BETA GLUCAN; BETA-1,3-GLUCAN; GLUCOSYLTRANSFERASE;

EID: 84945454920     PISSN: 00778923     EISSN: 17496632     Source Type: Journal    
DOI: 10.1111/nyas.12831     Document Type: Article
Times cited : (210)

References (133)
  • 1
    • 84871502341 scopus 로고    scopus 로고
    • Hidden killers: human fungal infections
    • 165rv113
    • Brown, G.D. et al. 2012. Hidden killers: human fungal infections. Sci. Transl. Med. 4: 165rv113.
    • (2012) Sci. Transl. Med , vol.4
    • Brown, G.D.1
  • 2
    • 0038341642 scopus 로고    scopus 로고
    • Antifungal agents: mechanisms of action
    • Odds, F.C., A.J. Brown & N.A. Gow . 2003. Antifungal agents: mechanisms of action. Trends Microbiol. 11: 272-279.
    • (2003) Trends Microbiol , vol.11 , pp. 272-279
    • Odds, F.C.1    Brown, A.J.2    Gow, N.A.3
  • 3
    • 60549098868 scopus 로고    scopus 로고
    • Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America
    • Pappas, P.G. et al. 2009. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 48: 503-535.
    • (2009) Clin. Infect. Dis , vol.48 , pp. 503-535
    • Pappas, P.G.1
  • 4
    • 84868019295 scopus 로고    scopus 로고
    • Changes in incidence and antifungal drug resistance in candidemia: results from population-based laboratory surveillance in Atlanta and Baltimore, 2008-2011
    • Cleveland, A.A. et al. 2012. Changes in incidence and antifungal drug resistance in candidemia: results from population-based laboratory surveillance in Atlanta and Baltimore, 2008-2011. Clin. Infect. Dis. 55: 1352-1361.
    • (2012) Clin. Infect. Dis , vol.55 , pp. 1352-1361
    • Cleveland, A.A.1
  • 5
    • 0033966183 scopus 로고    scopus 로고
    • Discovery of novel antifungal (1,3)-beta-d-glucan synthase inhibitors
    • Onishi, J. et al. 2000. Discovery of novel antifungal (1, 3)-beta-d-glucan synthase inhibitors. Antimicrob. Agents Chemother. 44: 368-377.
    • (2000) Antimicrob. Agents Chemother. , vol.44 , pp. 368-377
    • Onishi, J.1
  • 6
    • 33646558628 scopus 로고    scopus 로고
    • Emerging echinocandins for treatment of invasive fungal infections
    • Turner, M.S., R.H. Drew & J.R. Perfect . 2006. Emerging echinocandins for treatment of invasive fungal infections. Expert Opin. Emerg. Drugs. 11: 231-250.
    • (2006) Expert Opin. Emerg. Drugs , vol.11 , pp. 231-250
    • Turner, M.S.1    Drew, R.H.2    Perfect, J.R.3
  • 7
    • 79955625171 scopus 로고    scopus 로고
    • Current perspectives on echinocandin class drugs
    • Perlin, D.S. 2011. Current perspectives on echinocandin class drugs. Future Microbiol. 6: 441-457.
    • (2011) Future Microbiol , vol.6 , pp. 441-457
    • Perlin, D.S.1
  • 8
    • 28844509470 scopus 로고    scopus 로고
    • Comparison of the fungicidal activities of caspofungin and amphotericin B against Candida glabrata
    • Barchiesi, F. et al. 2005. Comparison of the fungicidal activities of caspofungin and amphotericin B against Candida glabrata. Antimicrob. Agents Chemother. 49: 4989-4992.
    • (2005) Antimicrob. Agents Chemother. , vol.49 , pp. 4989-4992
    • Barchiesi, F.1
  • 9
    • 0032965923 scopus 로고    scopus 로고
    • In vitro pharmacodynamic properties of MK-0991 determined by time-kill methods
    • Ernst, E.J. et al. 1999. In vitro pharmacodynamic properties of MK-0991 determined by time-kill methods. Diagn. Microbiol. Infect. Dis. 33: 75-80.
    • (1999) Diagn. Microbiol. Infect. Dis , vol.33 , pp. 75-80
    • Ernst, E.J.1
  • 10
    • 33845269301 scopus 로고    scopus 로고
    • Efficacy of caspofungin against Aspergillus flavus, Aspergillus terreus, and Aspergillus nidulans
    • Bowman, J.C. et al. 2006. Efficacy of caspofungin against Aspergillus flavus, Aspergillus terreus, and Aspergillus nidulans. Antimicrob. Agents Chemother. 50: 4202-4205.
    • (2006) Antimicrob. Agents Chemother. , vol.50 , pp. 4202-4205
    • Bowman, J.C.1
  • 11
    • 0036720290 scopus 로고    scopus 로고
    • The antifungal echinocandin caspofungin acetate kills growing cells of Aspergillus fumigatus in vitro
    • Bowman, J.C. et al. 2002. The antifungal echinocandin caspofungin acetate kills growing cells of Aspergillus fumigatus in vitro. Antimicrob. Agents Chemother. 46: 3001-3012.
    • (2002) Antimicrob. Agents Chemother. , vol.46 , pp. 3001-3012
    • Bowman, J.C.1
  • 12
    • 0346218267 scopus 로고    scopus 로고
    • Caspofungin activity against clinical isolates of fluconazole-resistant Candida
    • Pfaller, M.A. et al. 2003. Caspofungin activity against clinical isolates of fluconazole-resistant Candida. J. Clin. Microbiol. 41: 5729-5731.
    • (2003) J. Clin. Microbiol , vol.41 , pp. 5729-5731
    • Pfaller, M.A.1
  • 13
    • 0036266003 scopus 로고    scopus 로고
    • In vitro activity of caspofungin (MK-0991) against Candida albicans clinical isolates displaying different mechanisms of azole resistance
    • Bachmann, S.P., T.F. Patterson & J.L. Lopez-Ribot . 2002. In vitro activity of caspofungin (MK-0991) against Candida albicans clinical isolates displaying different mechanisms of azole resistance. J. Clin. Microbiol. 40: 2228-2230.
    • (2002) J. Clin. Microbiol , vol.40 , pp. 2228-2230
    • Bachmann, S.P.1    Patterson, T.F.2    Lopez-Ribot, J.L.3
  • 14
    • 33645785596 scopus 로고    scopus 로고
    • Overexpression of Candida albicans CDR1, CDR2, or MDR1 does not produce significant changes in echinocandin susceptibility
    • Niimi, K. et al. 2006. Overexpression of Candida albicans CDR1, CDR2, or MDR1 does not produce significant changes in echinocandin susceptibility. Antimicrob. Agents Chemother. 50: 1148-1155.
    • (2006) Antimicrob. Agents Chemother. , vol.50 , pp. 1148-1155
    • Niimi, K.1
  • 15
    • 0242322572 scopus 로고    scopus 로고
    • Antifungal combinations against Candida albicans biofilms in vitro
    • Bachmann, S.P. et al. 2003. Antifungal combinations against Candida albicans biofilms in vitro. Antimicrob. Agents Chemother. 47: 3657-3659.
    • (2003) Antimicrob. Agents Chemother. , vol.47 , pp. 3657-3659
    • Bachmann, S.P.1
  • 16
    • 70349318567 scopus 로고    scopus 로고
    • Biofilm formation and effect of caspofungin on biofilm structure of Candida species bloodstream isolates
    • Ferreira, J.A. et al. 2009. Biofilm formation and effect of caspofungin on biofilm structure of Candida species bloodstream isolates. Antimicrob. Agents Chemother. 53: 4377-4384.
    • (2009) Antimicrob. Agents Chemother. , vol.53 , pp. 4377-4384
    • Ferreira, J.A.1
  • 17
    • 0036096359 scopus 로고    scopus 로고
    • Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins
    • Kuhn, D.M. et al. 2002. Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob. Agents Chemother. 46: 1773-1780.
    • (2002) Antimicrob. Agents Chemother. , vol.46 , pp. 1773-1780
    • Kuhn, D.M.1
  • 18
    • 84877856149 scopus 로고    scopus 로고
    • Species-specific and drug-specific differences in susceptibility of Candida biofilms to echinocandins: characterization of less common bloodstream isolates
    • Simitsopoulou, M. et al. 2013. Species-specific and drug-specific differences in susceptibility of Candida biofilms to echinocandins: characterization of less common bloodstream isolates. Antimicrob. Agents Chemother. 57: 2562-2570.
    • (2013) Antimicrob. Agents Chemother. , vol.57 , pp. 2562-2570
    • Simitsopoulou, M.1
  • 19
    • 78650808399 scopus 로고    scopus 로고
    • Echinocandin antifungal drugs in fungal infections: a comparison
    • Chen, S.C., M.A. Slavin & T.C. Sorrell . 2011. Echinocandin antifungal drugs in fungal infections: a comparison. Drugs 71: 11-41.
    • (2011) Drugs , vol.71 , pp. 11-41
    • Chen, S.C.1    Slavin, M.A.2    Sorrell, T.C.3
  • 20
    • 79955920230 scopus 로고    scopus 로고
    • Pharmacology and metabolism of anidulafungin, caspofungin and micafungin in the treatment of invasive candidosis: review of the literature
    • Kofla, G. & M. Ruhnke . 2011. Pharmacology and metabolism of anidulafungin, caspofungin and micafungin in the treatment of invasive candidosis: review of the literature. Eur. J. Med. Res. 16: 159-166.
    • (2011) Eur. J. Med. Res , vol.16 , pp. 159-166
    • Kofla, G.1    Ruhnke, M.2
  • 21
    • 35848946410 scopus 로고    scopus 로고
    • Effects of serum on in vitro susceptibility testing of echinocandins
    • Odabasi, Z. et al. 2007. Effects of serum on in vitro susceptibility testing of echinocandins. Antimicrob. Agents Chemother. 51: 4214-4216.
    • (2007) Antimicrob. Agents Chemother. , vol.51 , pp. 4214-4216
    • Odabasi, Z.1
  • 22
    • 34250175817 scopus 로고    scopus 로고
    • Serum differentially alters the antifungal properties of echinocandin drugs
    • Paderu, P. et al. 2007. Serum differentially alters the antifungal properties of echinocandin drugs. Antimicrob. Agents Chemother. 51: 2253-2256.
    • (2007) Antimicrob. Agents Chemother. , vol.51 , pp. 2253-2256
    • Paderu, P.1
  • 23
    • 34248397536 scopus 로고    scopus 로고
    • In vivo efficacy of anidulafungin and caspofungin against Candida glabrata and association with in vitro potency in the presence of sera
    • Wiederhold, N.P. et al. 2007. In vivo efficacy of anidulafungin and caspofungin against Candida glabrata and association with in vitro potency in the presence of sera. Antimicrob. Agents Chemother. 51: 1616-1620.
    • (2007) Antimicrob. Agents Chemother. , vol.51 , pp. 1616-1620
    • Wiederhold, N.P.1
  • 24
    • 73949126140 scopus 로고    scopus 로고
    • Wild-type MIC distributions and epidemiological cutoff values for the echinocandins and Candida spp
    • Pfaller, M.A. et al. 2010. Wild-type MIC distributions and epidemiological cutoff values for the echinocandins and Candida spp. J. Clin. Microbiol. 48: 52-56.
    • (2010) J. Clin. Microbiol. , vol.48 , pp. 52-56
    • Pfaller, M.A.1
  • 25
    • 15844412765 scopus 로고    scopus 로고
    • In vitro activity of 1,3-beta-d-glucan synthase requires the GTP-binding protein Rho1
    • Mazur, P. & W. Baginsky . 1996. In vitro activity of 1, 3-beta-d-glucan synthase requires the GTP-binding protein Rho1. J. Biol. Chem. 271: 14604-14609.
    • (1996) J. Biol. Chem , vol.271 , pp. 14604-14609
    • Mazur, P.1    Baginsky, W.2
  • 26
    • 14444283595 scopus 로고    scopus 로고
    • Cloning of the Candida albicans homolog of Saccharomyces cerevisiae GSC1/FKS1 and its involvement in beta-1,3-glucan synthesis
    • Mio, T. et al. 1997. Cloning of the Candida albicans homolog of Saccharomyces cerevisiae GSC1/FKS1 and its involvement in beta-1, 3-glucan synthesis. J. Bacteriol. 179: 4096-4105.
    • (1997) J. Bacteriol , vol.179 , pp. 4096-4105
    • Mio, T.1
  • 27
    • 0032925368 scopus 로고    scopus 로고
    • A glucan synthase FKS1 homolog in cryptococcus neoformans is single copy and encodes an essential function
    • Thompson, J.R. et al. 1999. A glucan synthase FKS1 homolog in cryptococcus neoformans is single copy and encodes an essential function. J. Bacteriol. 181: 444-453.
    • (1999) J. Bacteriol , vol.181 , pp. 444-453
    • Thompson, J.R.1
  • 28
    • 84869203438 scopus 로고    scopus 로고
    • Fks1 and Fks2 are functionally redundant but differentially regulated in Candida glabrata: Implications for echinocandin resistance
    • Katiyar, S.K. et al. 2012. Fks1 and Fks2 are functionally redundant but differentially regulated in Candida glabrata: Implications for echinocandin resistance. Antimicrob. Agents Chemother. 56: 6304-6309.
    • (2012) Antimicrob. Agents Chemother. , vol.56 , pp. 6304-6309
    • Katiyar, S.K.1
  • 29
    • 70349127708 scopus 로고    scopus 로고
    • Effect of Candida glabrata FKS1 and FKS2 mutations on echinocandin sensitivity and kinetics of 1,3-beta-d-glucan synthase: implication for the existing susceptibility breakpoint
    • Garcia-Effron, G. et al. 2009. Effect of Candida glabrata FKS1 and FKS2 mutations on echinocandin sensitivity and kinetics of 1, 3-beta-d-glucan synthase: implication for the existing susceptibility breakpoint. Antimicrob. Agents Chemother. 53: 3690-3699.
    • (2009) Antimicrob. Agents Chemother. , vol.53 , pp. 3690-3699
    • Garcia-Effron, G.1
  • 30
    • 84893467170 scopus 로고    scopus 로고
    • Multicenter study of anidulafungin and micafungin MIC distributions and epidemiological cutoff values for eight Candida species and the CLSI M27-A3 broth microdilution method
    • Pfaller, M.A. et al. 2014. Multicenter study of anidulafungin and micafungin MIC distributions and epidemiological cutoff values for eight Candida species and the CLSI M27-A3 broth microdilution method. Antimicrob. Agents Chemother. 58: 916-922.
    • (2014) Antimicrob. Agents Chemother. , vol.58 , pp. 916-922
    • Pfaller, M.A.1
  • 31
    • 84880631469 scopus 로고    scopus 로고
    • Echinocandin and triazole antifungal susceptibility profiles for clinical opportunistic yeast and mold isolates collected from 2010 to 2011: application of new CLSI clinical breakpoints and epidemiological cutoff values for characterization of geographic and temporal trends of antifungal resistance
    • Pfaller, M.A. et al. 2013. Echinocandin and triazole antifungal susceptibility profiles for clinical opportunistic yeast and mold isolates collected from 2010 to 2011: application of new CLSI clinical breakpoints and epidemiological cutoff values for characterization of geographic and temporal trends of antifungal resistance. J. Clin. Microbiol. 51: 2571-2581.
    • (2013) J. Clin. Microbiol. , vol.51 , pp. 2571-2581
    • Pfaller, M.A.1
  • 32
    • 84900829814 scopus 로고    scopus 로고
    • Breakpoints for antifungal agents: an update from EUCAST focussing on echinocandins against Candida spp. and triazoles against Aspergillus spp
    • Arendrup, M.C. et al. 2013. Breakpoints for antifungal agents: an update from EUCAST focussing on echinocandins against Candida spp. and triazoles against Aspergillus spp. Drug Resist. Updates 16: 81-95.
    • (2013) Drug Resist. Updates , vol.16 , pp. 81-95
    • Arendrup, M.C.1
  • 33
    • 79955538785 scopus 로고    scopus 로고
    • Clinical breakpoints for the echinocandins and Candida revisited: integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria
    • Pfaller, M.A. et al. 2011. Clinical breakpoints for the echinocandins and Candida revisited: integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Resist. Updates 14: 164-176.
    • (2011) Drug Resist. Updates , vol.14 , pp. 164-176
    • Pfaller, M.A.1
  • 34
    • 44449153708 scopus 로고    scopus 로고
    • Reduced Candida glabrata susceptibility secondary to an FKS1 mutation developed during candidemia treatment
    • Cleary, J.D. et al. 2008. Reduced Candida glabrata susceptibility secondary to an FKS1 mutation developed during candidemia treatment. Antimicrob. Agents Chemother. 52: 2263-2265.
    • (2008) Antimicrob. Agents Chemother. , vol.52 , pp. 2263-2265
    • Cleary, J.D.1
  • 35
    • 77951243444 scopus 로고    scopus 로고
    • Novel FKS mutations associated with echinocandin resistance in Candida species
    • Garcia-Effron, G. et al. 2010. Novel FKS mutations associated with echinocandin resistance in Candida species. Antimicrob. Agents Chemother. 54: 2225-2227.
    • (2010) Antimicrob. Agents Chemother. , vol.54 , pp. 2225-2227
    • Garcia-Effron, G.1
  • 36
    • 59749090444 scopus 로고    scopus 로고
    • Correlating echinocandin MIC and kinetic inhibition of fks1 mutant glucan synthases for Candida albicans: implications for interpretive breakpoints
    • Garcia-Effron, G., S. Park & D.S. Perlin . 2009. Correlating echinocandin MIC and kinetic inhibition of fks1 mutant glucan synthases for Candida albicans: implications for interpretive breakpoints. Antimicrob. Agents Chemother. 53: 112-122.
    • (2009) Antimicrob. Agents Chemother. , vol.53 , pp. 112-122
    • Garcia-Effron, G.1    Park, S.2    Perlin, D.S.3
  • 37
    • 34248375952 scopus 로고    scopus 로고
    • Acquired echinocandin resistance in a Candida krusei isolate due to modification of glucan synthase
    • Kahn, J.N. et al. 2007. Acquired echinocandin resistance in a Candida krusei isolate due to modification of glucan synthase. Antimicrob. Agents Chemother. 51: 1876-1878.
    • (2007) Antimicrob. Agents Chemother. , vol.51 , pp. 1876-1878
    • Kahn, J.N.1
  • 38
    • 33645111403 scopus 로고    scopus 로고
    • Progressive loss of echinocandin activity following prolonged use for treatment of Candida albicans oesophagitis
    • Laverdiere, M. et al. 2006. Progressive loss of echinocandin activity following prolonged use for treatment of Candida albicans oesophagitis. J. Antimicrob. Chemother. 57: 705-708.
    • (2006) J. Antimicrob. Chemother , vol.57 , pp. 705-708
    • Laverdiere, M.1
  • 39
    • 33744494301 scopus 로고    scopus 로고
    • Progressive esophagitis caused by Candida albicans with reduced susceptibility to caspofungin
    • Miller, C.D. et al. 2006. Progressive esophagitis caused by Candida albicans with reduced susceptibility to caspofungin. Pharmacotherapy 26: 877-880.
    • (2006) Pharmacotherapy , vol.26 , pp. 877-880
    • Miller, C.D.1
  • 40
    • 55849137651 scopus 로고    scopus 로고
    • Caspofungin-resistant Candida tropicalis strains causing breakthrough fungemia in patients at high risk for hematologic malignancies
    • Garcia-Effron, G. et al. 2008. Caspofungin-resistant Candida tropicalis strains causing breakthrough fungemia in patients at high risk for hematologic malignancies. Antimicrob. Agents Chemother. 52: 4181-4183.
    • (2008) Antimicrob. Agents Chemother. , vol.52 , pp. 4181-4183
    • Garcia-Effron, G.1
  • 41
    • 55849095115 scopus 로고    scopus 로고
    • Pyrosequencing to detect mutations in FKS1 that confer reduced echinocandin susceptibility in Candida albicans
    • Wiederhold, N.P. et al. 2008. Pyrosequencing to detect mutations in FKS1 that confer reduced echinocandin susceptibility in Candida albicans. Antimicrob. Agents Chemother. 52: 4145-4148.
    • (2008) Antimicrob. Agents Chemother. , vol.52 , pp. 4145-4148
    • Wiederhold, N.P.1
  • 42
    • 77954444121 scopus 로고    scopus 로고
    • Breakthrough invasive candidiasis in patients on micafungin
    • Pfeiffer, C.D. et al. 2010. Breakthrough invasive candidiasis in patients on micafungin. J. Clin. Microbiol. 48: 2373-2380.
    • (2010) J. Clin. Microbiol. , vol.48 , pp. 2373-2380
    • Pfeiffer, C.D.1
  • 43
    • 54049093652 scopus 로고    scopus 로고
    • Development of caspofungin resistance following prolonged therapy for invasive candidiasis secondary to Candida glabrata infection
    • Thompson, G.R., 3rd et al. 2008. Development of caspofungin resistance following prolonged therapy for invasive candidiasis secondary to Candida glabrata infection. Antimicrob. Agents Chemother. 52: 3783-3785.
    • (2008) Antimicrob. Agents Chemother. , vol.52 , pp. 3783-3785
    • Thompson, G.R.1
  • 44
    • 84882374510 scopus 로고    scopus 로고
    • Rapid emergence of Echinocandin resistance in Candida glabrata resulting in clinical and microbiologic failure
    • Lewis, J.S., 2nd et al. 2013. Rapid emergence of Echinocandin resistance in Candida glabrata resulting in clinical and microbiologic failure. Antimicrob. Agents Chemother. 57:4559-4561.
    • (2013) Antimicrob. Agents Chemother. , vol.57 , pp. 4559-4561
    • Lewis, J.S.1
  • 45
    • 84856576829 scopus 로고    scopus 로고
    • Candida spp. with acquired Echinocandin resistance, France, 2004-2010(1)
    • Dannaoui, E. et al. 2012. Candida spp. with acquired Echinocandin resistance, France, 2004-2010(1). Emerg. Infect. Dis. 18: 86-90.
    • (2012) Emerg. Infect. Dis. , vol.18 , pp. 86-90
    • Dannaoui, E.1
  • 46
    • 78649936372 scopus 로고    scopus 로고
    • Echinocandin and triazole antifungal susceptibility profiles for Candida spp., Cryptococcus neoformans, and Aspergillus fumigatus: application of new CLSI clinical breakpoints and epidemiologic cutoff values to characterize resistance in the SENTRY Antimicrobial Surveillance Program (2009)
    • Pfaller, M.A. et al. 2011. Echinocandin and triazole antifungal susceptibility profiles for Candida spp., Cryptococcus neoformans, and Aspergillus fumigatus: application of new CLSI clinical breakpoints and epidemiologic cutoff values to characterize resistance in the SENTRY Antimicrobial Surveillance Program (2009). Diagn. Microbiol. Infect. Dis. 69: 45-50.
    • (2011) Diagn. Microbiol. Infect. Dis , vol.69 , pp. 45-50
    • Pfaller, M.A.1
  • 47
    • 79958066469 scopus 로고    scopus 로고
    • Candida bloodstream infections: comparison of species distribution and resistance to echinocandin and azole antifungal agents in Intensive Care Unit (ICU) and non-ICU settings in the SENTRY Antimicrobial Surveillance Program (2008-2009)
    • Pfaller, M.A. et al. 2011. Candida bloodstream infections: comparison of species distribution and resistance to echinocandin and azole antifungal agents in Intensive Care Unit (ICU) and non-ICU settings in the SENTRY Antimicrobial Surveillance Program (2008-2009). Int. J. Antimicrob. Agents 38: 65-69.
    • (2011) Int. J. Antimicrob. Agents , vol.38 , pp. 65-69
    • Pfaller, M.A.1
  • 48
    • 78650924029 scopus 로고    scopus 로고
    • Geographic variations in species distribution and echinocandin and azole antifungal resistance rates among Candida bloodstream infection isolates: report from the SENTRY Antimicrobial Surveillance Program (2008 to 2009)
    • Pfaller, M.A. et al. 2011. Geographic variations in species distribution and echinocandin and azole antifungal resistance rates among Candida bloodstream infection isolates: report from the SENTRY Antimicrobial Surveillance Program (2008 to 2009). J. Clin. Microbiol. 49: 396-399.
    • (2011) J. Clin. Microbiol. , vol.49 , pp. 396-399
    • Pfaller, M.A.1
  • 49
    • 77952648499 scopus 로고    scopus 로고
    • Low prevalence of fks1 hot spot 1 mutations in a worldwide collection of Candida strains
    • Castanheira, M. et al. 2010. Low prevalence of fks1 hot spot 1 mutations in a worldwide collection of Candida strains. Antimicrob. Agents Chemother. 54: 2655-2659.
    • (2010) Antimicrob. Agents Chemother. , vol.54 , pp. 2655-2659
    • Castanheira, M.1
  • 50
    • 84878342622 scopus 로고    scopus 로고
    • Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations
    • Alexander, B.D. et al. 2013. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin. Infect. Dis. 56: 1724-1732.
    • (2013) Clin. Infect. Dis , vol.56 , pp. 1724-1732
    • Alexander, B.D.1
  • 51
    • 84863337736 scopus 로고    scopus 로고
    • Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata
    • Pfaller, M.A. et al. 2012. Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J. Clin. Microbiol. 50: 1199-1203.
    • (2012) J. Clin. Microbiol. , vol.50 , pp. 1199-1203
    • Pfaller, M.A.1
  • 52
  • 53
    • 78751679139 scopus 로고    scopus 로고
    • Recent exposure to caspofungin or fluconazole influences the epidemiology of candidemia: a prospective multicenter study involving 2441 patients
    • Lortholary, O. et al. 2011. Recent exposure to caspofungin or fluconazole influences the epidemiology of candidemia: a prospective multicenter study involving 2441 patients. Antimicrob. Agents Chemother. 55: 532-538.
    • (2011) Antimicrob. Agents Chemother. , vol.55 , pp. 532-538
    • Lortholary, O.1
  • 54
    • 84878833362 scopus 로고    scopus 로고
    • A 1-year prospective survey of candidemia in Italy and changing epidemiology over one decade
    • Tortorano, A.M. et al. 2013. A 1-year prospective survey of candidemia in Italy and changing epidemiology over one decade. Infection 41: 655-662.
    • (2013) Infection , vol.41 , pp. 655-662
    • Tortorano, A.M.1
  • 55
    • 84876257690 scopus 로고    scopus 로고
    • Rapid emergence of echinocandin resistance during Candida kefyr fungemia treatment with caspofungin
    • Fekkar, A. et al. 2013. Rapid emergence of echinocandin resistance during Candida kefyr fungemia treatment with caspofungin. Antimicrob. Agents Chemother. 57: 2380-2382.
    • (2013) Antimicrob. Agents Chemother. , vol.57 , pp. 2380-2382
    • Fekkar, A.1
  • 56
    • 84863337736 scopus 로고    scopus 로고
    • Frequency of decreased susceptibility and resistance to Echinocandins among Fluconazole-resistant bloodstream isolates of Candida glabrata: results from the SENTRY Antimicrobial Surveillance Program (2006-2010) and the Centers for Disease Control and Prevention Population-Based Surveillance (2008-2010)
    • Pfaller, M.A. et al. 2012. Frequency of decreased susceptibility and resistance to Echinocandins among Fluconazole-resistant bloodstream isolates of Candida glabrata: results from the SENTRY Antimicrobial Surveillance Program (2006-2010) and the Centers for Disease Control and Prevention Population-Based Surveillance (2008-2010). J. Clin. Microbiol. 50: 1199-1203.
    • (2012) J. Clin. Microbiol , vol.50 , pp. 1199-1203
    • Pfaller, M.A.1
  • 57
    • 84896994835 scopus 로고    scopus 로고
    • Real-world experience with echinocandin MICs against Candida species in a multicenter study of hospitals that routinely perform susceptibility testing of bloodstream isolates
    • Eschenauer, G.A. et al. 2014. Real-world experience with echinocandin MICs against Candida species in a multicenter study of hospitals that routinely perform susceptibility testing of bloodstream isolates. Antimicrob. Agents Chemother. 58: 1897-1906.
    • (2014) Antimicrob. Agents Chemother. , vol.58 , pp. 1897-1906
    • Eschenauer, G.A.1
  • 58
    • 84927788542 scopus 로고    scopus 로고
    • Echinocandin resistance: an emerging clinical problem?
    • Arendrup, M.C. & D.S. Perlin . 2014. Echinocandin resistance: an emerging clinical problem? Curr. Opin. Infect. Dis. 27: 484-492.
    • (2014) Curr. Opin. Infect. Dis , vol.27 , pp. 484-492
    • Arendrup, M.C.1    Perlin, D.S.2
  • 59
    • 84905378558 scopus 로고    scopus 로고
    • Role of FKS Mutations in Candida glabrata: MIC values, echinocandin resistance, and multidrug resistance
    • Pham, C.D. et al. 2014. Role of FKS Mutations in Candida glabrata: MIC values, echinocandin resistance, and multidrug resistance. Antimicrob. Agents Chemother. 58: 4690-4696.
    • (2014) Antimicrob. Agents Chemother , vol.58 , pp. 4690-4696
    • Pham, C.D.1
  • 60
    • 34447105864 scopus 로고    scopus 로고
    • Resistance to echinocandin-class antifungal drugs
    • Perlin, D.S. 2007. Resistance to echinocandin-class antifungal drugs. Drug Resist. Updates 10: 121-130.
    • (2007) Drug Resist. Updates , vol.10 , pp. 121-130
    • Perlin, D.S.1
  • 61
    • 33746922380 scopus 로고    scopus 로고
    • Candida albicans and Candida glabrata clinical isolates exhibiting reduced echinocandin susceptibility
    • Katiyar, S., M. Pfaller & T. Edlind . 2006. Candida albicans and Candida glabrata clinical isolates exhibiting reduced echinocandin susceptibility. Antimicrob. Agents Chemother. 50: 2892-2894.
    • (2006) Antimicrob. Agents Chemother. , vol.50 , pp. 2892-2894
    • Katiyar, S.1    Pfaller, M.2    Edlind, T.3
  • 62
    • 84903133610 scopus 로고    scopus 로고
    • Position and numbers of FKS mutations in C. albicans selectively influence in vitro and in vivo susceptibility to echinocandin treatment
    • Lackner, M. et al. 2014. Position and numbers of FKS mutations in C. albicans selectively influence in vitro and in vivo susceptibility to echinocandin treatment. Antimicrob. Agents Chemother. 58: 3626-3635.
    • (2014) Antimicrob. Agents Chemother. , vol.58 , pp. 3626-3635
    • Lackner, M.1
  • 63
    • 84865403438 scopus 로고    scopus 로고
    • The presence of an FKS mutation rather than MIC is an independent risk factor for failure of echinocandin therapy among patients with invasive candidiasis due to Candida glabrata
    • Shields, R.K. et al. 2012. The presence of an FKS mutation rather than MIC is an independent risk factor for failure of echinocandin therapy among patients with invasive candidiasis due to Candida glabrata. Antimicrob. Agents Chemother. 56: 4862-4869.
    • (2012) Antimicrob. Agents Chemother. , vol.56 , pp. 4862-4869
    • Shields, R.K.1
  • 64
    • 79960329629 scopus 로고    scopus 로고
    • A new Fks hotspot for acquired echinocandin resistance in yeast, and its contribution to intrinsic resistance of Scedosporium species
    • Johnson, M.E., S.K. Katiyar & T.D. Edlind . 2011. A new Fks hotspot for acquired echinocandin resistance in yeast, and its contribution to intrinsic resistance of Scedosporium species. Antimicrob. Agents Chemother. 55: 3774-3781.
    • (2011) Antimicrob. Agents Chemother. , vol.55 , pp. 3774-3781
    • Johnson, M.E.1    Katiyar, S.K.2    Edlind, T.D.3
  • 65
    • 66149144294 scopus 로고    scopus 로고
    • Role for Fks1 in the intrinsic echinocandin resistance of Fusarium solani as evidenced by hybrid expression in Saccharomyces cerevisiae
    • Katiyar, S.K. & T.D. Edlind . 2009. Role for Fks1 in the intrinsic echinocandin resistance of Fusarium solani as evidenced by hybrid expression in Saccharomyces cerevisiae. Antimicrob. Agents Chemother. 53: 1772-1778.
    • (2009) Antimicrob. Agents Chemother. , vol.53 , pp. 1772-1778
    • Katiyar, S.K.1    Edlind, T.D.2
  • 66
    • 80755153763 scopus 로고    scopus 로고
    • Echinocandin-resistant Candida: molecular methods and phenotypes
    • Perlin, D.S. 2011. Echinocandin-resistant Candida: molecular methods and phenotypes. Curr. Fungal. Infect. Rep. 5: 113-119.
    • (2011) Curr. Fungal. Infect. Rep , vol.5 , pp. 113-119
    • Perlin, D.S.1
  • 67
    • 84860187010 scopus 로고    scopus 로고
    • Differential in vivo activity of Anidulafungin, Caspofungin and Micafungin against C. glabrata with and without FKS resistance mutations
    • Arendrup, M.C. et al. 2012. Differential in vivo activity of Anidulafungin, Caspofungin and Micafungin against C. glabrata with and without FKS resistance mutations. Antimicrob. Agents Chemother. 56: 2435-2442.
    • (2012) Antimicrob. Agents Chemother. , vol.56 , pp. 2435-2442
    • Arendrup, M.C.1
  • 68
    • 79954610785 scopus 로고    scopus 로고
    • Pharmacokinetics and pharmacodynamics of posaconazole for invasive pulmonary aspergillosis: clinical implications for antifungal therapy
    • Howard, S.J. et al. 2011. Pharmacokinetics and pharmacodynamics of posaconazole for invasive pulmonary aspergillosis: clinical implications for antifungal therapy. J. Infect. Dis. 203: 1324-1332.
    • (2011) J. Infect. Dis , vol.203 , pp. 1324-1332
    • Howard, S.J.1
  • 69
    • 79959192938 scopus 로고    scopus 로고
    • Disseminated Candidiasis caused by Candida albicans with amino acid substitutions in Fks1 at position Ser645 cannot be successfully treated with micafungin
    • Slater, J.L. et al. 2011. Disseminated Candidiasis caused by Candida albicans with amino acid substitutions in Fks1 at position Ser645 cannot be successfully treated with micafungin. Antimicrob. Agents Chemother. 55: 3075-3083.
    • (2011) Antimicrob. Agents Chemother. , vol.55 , pp. 3075-3083
    • Slater, J.L.1
  • 70
    • 79959277698 scopus 로고    scopus 로고
    • Caspofungin dose escalation for invasive candidiasis due to resistant Candida albicans
    • Wiederhold, N.P. et al. 2011. Caspofungin dose escalation for invasive candidiasis due to resistant Candida albicans. Antimicrob. Agents Chemother. 55: 3254-3260.
    • (2011) Antimicrob. Agents Chemother. , vol.55 , pp. 3254-3260
    • Wiederhold, N.P.1
  • 71
    • 84891506996 scopus 로고    scopus 로고
    • Frequency of fks mutations among Candida glabrata isolates from a 10-year global collection of bloodstream infection isolates
    • Castanheira, M. et al. 2014. Frequency of fks mutations among Candida glabrata isolates from a 10-year global collection of bloodstream infection isolates. Antimicrob. Agents Chemother. 58: 577-580.
    • (2014) Antimicrob. Agents Chemother. , vol.58 , pp. 577-580
    • Castanheira, M.1
  • 72
    • 0028556290 scopus 로고
    • The yeast FKS1 gene encodes a novel membrane protein, mutations in which confer FK506 and cyclosporin A hypersensitivity and calcineurin-dependent growth
    • Eng, W.K. et al. 1994. The yeast FKS1 gene encodes a novel membrane protein, mutations in which confer FK506 and cyclosporin A hypersensitivity and calcineurin-dependent growth. Gene 151: 61-71.
    • (1994) Gene , vol.151 , pp. 61-71
    • Eng, W.K.1
  • 73
    • 84872044632 scopus 로고    scopus 로고
    • Stepwise development of a homozygous S80P substitution in Fks1p, conferring echinocandin resistance in Candida tropicalis
    • Jensen, R.H., H.K. Johansen & M.C. Arendrup . 2013. Stepwise development of a homozygous S80P substitution in Fks1p, conferring echinocandin resistance in Candida tropicalis. Antimicrob. Agents Chemother. 57: 614-617.
    • (2013) Antimicrob. Agents Chemother. , vol.57 , pp. 614-617
    • Jensen, R.H.1    Johansen, H.K.2    Arendrup, M.C.3
  • 74
    • 37549010995 scopus 로고    scopus 로고
    • Emergence of Candida tropicalis resistant to caspofungin
    • Pasquale, T. et al. 2008. Emergence of Candida tropicalis resistant to caspofungin. J. Antimicrob. Chemother. 61: 219.
    • (2008) J. Antimicrob. Chemother , vol.61 , pp. 219
    • Pasquale, T.1
  • 75
    • 84863300556 scopus 로고    scopus 로고
    • Topological and mutational analysis of Saccharomyces cerevisiae Fks1
    • Johnson, M.E. & T.D. Edlind . 2012. Topological and mutational analysis of Saccharomyces cerevisiae Fks1. Eukary. Cell 11: 952-960.
    • (2012) Eukary. Cell , vol.11 , pp. 952-960
    • Johnson, M.E.1    Edlind, T.D.2
  • 76
    • 38149134281 scopus 로고    scopus 로고
    • In vitro susceptibility of invasive isolates of Candida spp. to anidulafungin, caspofungin, and micafungin: six years of global surveillance
    • Pfaller, M.A. et al. 2008. In vitro susceptibility of invasive isolates of Candida spp. to anidulafungin, caspofungin, and micafungin: six years of global surveillance. J. Clin. Microbiol. 46: 150-156.
    • (2008) J. Clin. Microbiol. , vol.46 , pp. 150-156
    • Pfaller, M.A.1
  • 77
    • 0037137576 scopus 로고    scopus 로고
    • Comparison of caspofungin and amphotericin B for invasive candidiasis
    • Mora-Duarte, J. et al. 2002. Comparison of caspofungin and amphotericin B for invasive candidiasis. N. Engl. J. Med. 347: 2020-2029.
    • (2002) N. Engl. J. Med , vol.347 , pp. 2020-2029
    • Mora-Duarte, J.1
  • 78
    • 78650184023 scopus 로고    scopus 로고
    • Comparative efficacy of echinocandins and nonechinocandins for the treatment of Candida parapsilosis Infections: a meta-analysis
    • Kale-Pradhan, P.B. et al. 2010. Comparative efficacy of echinocandins and nonechinocandins for the treatment of Candida parapsilosis Infections: a meta-analysis. Pharmacotherapy 30: 1207-1213.
    • (2010) Pharmacotherapy , vol.30 , pp. 1207-1213
    • Kale-Pradhan, P.B.1
  • 79
    • 0042410872 scopus 로고    scopus 로고
    • Global distribution and outcomes for Candida species causing invasive candidiasis: results from an international randomized double-blind study of caspofungin versus amphotericin B for the treatment of invasive candidiasis
    • Colombo, A.L. et al. 2003. Global distribution and outcomes for Candida species causing invasive candidiasis: results from an international randomized double-blind study of caspofungin versus amphotericin B for the treatment of invasive candidiasis. Eur. J. Clin. Microbiol. Infect. Dis. 22: 470-474.
    • (2003) Eur. J. Clin. Microbiol. Infect. Dis , vol.22 , pp. 470-474
    • Colombo, A.L.1
  • 80
    • 63249086820 scopus 로고    scopus 로고
    • Differential in vitro activity of anidulafungin, caspofungin and micafungin against Candida parapsilosis isolates recovered from a burn unit
    • Ghannoum, M.A. et al. 2009. Differential in vitro activity of anidulafungin, caspofungin and micafungin against Candida parapsilosis isolates recovered from a burn unit. Clin. Microbiol. Infect. 15: 274-279.
    • (2009) Clin. Microbiol. Infect , vol.15 , pp. 274-279
    • Ghannoum, M.A.1
  • 81
    • 42149158264 scopus 로고    scopus 로고
    • Breakthrough C. parapsilosis and C. guilliermondii blood stream infections in allogeneic hematopoietic stem cell transplant recipients receiving long-term caspofungin therapy
    • Kabbara, N. et al. 2008. Breakthrough C. parapsilosis and C. guilliermondii blood stream infections in allogeneic hematopoietic stem cell transplant recipients receiving long-term caspofungin therapy. Haematologica 93: 639-640.
    • (2008) Haematologica , vol.93 , pp. 639-640
    • Kabbara, N.1
  • 82
    • 38749151566 scopus 로고    scopus 로고
    • Increasing incidence of Candida parapsilosis candidemia with caspofungin usage
    • Forrest, G.N., E. Weekes & J.K. Johnson . 2008. Increasing incidence of Candida parapsilosis candidemia with caspofungin usage. J. Infect. 56: 126-129.
    • (2008) J. Infect , vol.56 , pp. 126-129
    • Forrest, G.N.1    Weekes, E.2    Johnson, J.K.3
  • 83
    • 46249106060 scopus 로고    scopus 로고
    • A naturally occurring proline-to-alanine amino acid change in Fks1p in Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis accounts for reduced echinocandin susceptibility
    • Garcia-Effron, G. et al. 2008. A naturally occurring proline-to-alanine amino acid change in Fks1p in Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis accounts for reduced echinocandin susceptibility. Antimicrob. Agents Chemother. 52: 2305-2312.
    • (2008) Antimicrob. Agents Chemother , vol.52 , pp. 2305-2312
    • Garcia-Effron, G.1
  • 84
    • 79960329629 scopus 로고    scopus 로고
    • New Fks hot spot for acquired echinocandin resistance in Saccharomyces cerevisiae and its contribution to intrinsic resistance of Scedosporium species
    • Johnson, M.E., S.K. Katiyar & T.D. Edlind . 2011. New Fks hot spot for acquired echinocandin resistance in Saccharomyces cerevisiae and its contribution to intrinsic resistance of Scedosporium species. Antimicrob. Agents Chemother. 55: 3774-3781.
    • (2011) Antimicrob. Agents Chemother. , vol.55 , pp. 3774-3781
    • Johnson, M.E.1    Katiyar, S.K.2    Edlind, T.D.3
  • 85
    • 79960884598 scopus 로고    scopus 로고
    • The fitness and virulence cost of fks1 mutations causing echinocandin-resistance in Candida albicans
    • Ben-Ami, R. et al. 2011. The fitness and virulence cost of fks1 mutations causing echinocandin-resistance in Candida albicans. J. Infect. Dis. 204: 626-635.
    • (2011) J. Infect. Dis , vol.204 , pp. 626-635
    • Ben-Ami, R.1
  • 86
    • 33646068777 scopus 로고    scopus 로고
    • Biofilms and their role in the resistance of pathogenic Candida to antifungal agents
    • d'Enfert, C. 2006. Biofilms and their role in the resistance of pathogenic Candida to antifungal agents. Curr. Drug Targets 7: 465-470.
    • (2006) Curr. Drug Targets , vol.7 , pp. 465-470
    • d'Enfert, C.1
  • 87
    • 84875146956 scopus 로고    scopus 로고
    • Role of matrix beta-1,3 glucan in antifungal resistance of non-albicans Candida biofilms
    • Mitchell, K.F. et al. 2013. Role of matrix beta-1, 3 glucan in antifungal resistance of non-albicans Candida biofilms. Antimicrob. Agents Chemother. 57: 1918-1920.
    • (2013) Antimicrob. Agents Chemother. , vol.57 , pp. 1918-1920
    • Mitchell, K.F.1
  • 88
    • 84880065202 scopus 로고    scopus 로고
    • Regulatory role of glycerol in Candida albicans biofilm formation
    • e00637-e00612
    • Desai, J.V. et al. 2013. Regulatory role of glycerol in Candida albicans biofilm formation. MBio 4: e00637-00612.
    • (2013) MBio , vol.4
    • Desai, J.V.1
  • 90
    • 0346433839 scopus 로고    scopus 로고
    • The yeast protein kinase C cell integrity pathway mediates tolerance to the antifungal drug caspofungin through activation of Slt2p mitogen-activated protein kinase signaling
    • Reinoso-Martin, C. et al. 2003. The yeast protein kinase C cell integrity pathway mediates tolerance to the antifungal drug caspofungin through activation of Slt2p mitogen-activated protein kinase signaling. Eukary. Cell 2: 1200-1210.
    • (2003) Eukary. Cell , vol.2 , pp. 1200-1210
    • Reinoso-Martin, C.1
  • 91
    • 83455179434 scopus 로고    scopus 로고
    • Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway
    • Levin, D.E. 2011. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189: 1145-1175.
    • (2011) Genetics , vol.189 , pp. 1145-1175
    • Levin, D.E.1
  • 92
    • 33846976163 scopus 로고    scopus 로고
    • + signalling pathways co-ordinately regulate chitin synthesis in Candida albicans
    • + signalling pathways co-ordinately regulate chitin synthesis in Candida albicans. Mol. Microbiol. 63: 1399-1413.
    • (2007) Mol. Microbiol. , vol.63 , pp. 1399-1413
    • Munro, C.A.1
  • 93
    • 43049132192 scopus 로고    scopus 로고
    • Stimulation of chitin synthesis rescues Candida albicans from echinocandins
    • Walker, L.A. et al. 2008. Stimulation of chitin synthesis rescues Candida albicans from echinocandins. PLoS Pathog. 4: e1000040.
    • (2008) PLoS Pathog. , vol.4 , pp. e1000040
    • Walker, L.A.1
  • 94
    • 77958121046 scopus 로고    scopus 로고
    • PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90
    • LaFayette, S.L. et al. 2010. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90. PLoS Pathog. 6: e1001069.
    • (2010) PLoS Pathog. , vol.6 , pp. e1001069
    • LaFayette, S.L.1
  • 95
    • 70049109583 scopus 로고    scopus 로고
    • Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin
    • Singh, S.D. et al. 2009. Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLoS Pathog. 5: e1000532.
    • (2009) PLoS Pathog. , vol.5 , pp. e1000532
    • Singh, S.D.1
  • 96
    • 84866114557 scopus 로고    scopus 로고
    • The Hsp90 co-chaperone Sgt1 governs Candida albicans morphogenesis and drug resistance
    • Shapiro, R.S. et al. 2012. The Hsp90 co-chaperone Sgt1 governs Candida albicans morphogenesis and drug resistance. PLoS One 7: e44734.
    • (2012) PLoS One , vol.7 , pp. e44734
    • Shapiro, R.S.1
  • 97
    • 84863666582 scopus 로고    scopus 로고
    • Global analysis of the evolution and mechanism of echinocandin resistance in Candida glabrata
    • Singh-Babak, S.D. et al. 2012. Global analysis of the evolution and mechanism of echinocandin resistance in Candida glabrata. PLoS Pathog. 8: e1002718.
    • (2012) PLoS Pathog , vol.8 , pp. e1002718
    • Singh-Babak, S.D.1
  • 98
    • 70049108302 scopus 로고    scopus 로고
    • Hsp90 orchestrates stress response signaling governing fungal drug resistance
    • Cowen, L.E. 2009. Hsp90 orchestrates stress response signaling governing fungal drug resistance. PLoS Pathog. 5: e1000471.
    • (2009) PLoS Pathog , vol.5 , pp. e1000471
    • Cowen, L.E.1
  • 99
    • 25844530060 scopus 로고    scopus 로고
    • Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi
    • Cowen, L.E. & S. Lindquist . 2005. Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 309: 2185-2189.
    • (2005) Science , vol.309 , pp. 2185-2189
    • Cowen, L.E.1    Lindquist, S.2
  • 100
    • 84892648838 scopus 로고    scopus 로고
    • Transcriptional activation of heat shock protein 90 mediated via a proximal promoter region as trigger of caspofungin resistance in Aspergillus fumigatus
    • Lamoth, F. et al. 2014. Transcriptional activation of heat shock protein 90 mediated via a proximal promoter region as trigger of caspofungin resistance in Aspergillus fumigatus. J. Infect. Dis. 209: 473-481.
    • (2014) J. Infect. Dis , vol.209 , pp. 473-481
    • Lamoth, F.1
  • 101
    • 62449104891 scopus 로고    scopus 로고
    • Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease
    • Cowen, L.E. et al. 2009. Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proc. Natl. Acad. Sci. U.S.A. 106: 2818-2823.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 2818-2823
    • Cowen, L.E.1
  • 102
    • 38449083793 scopus 로고    scopus 로고
    • Immune recognition of Candida albicans beta-glucan by dectin-1
    • Gow, N.A. et al. 2007. Immune recognition of Candida albicans beta-glucan by dectin-1. J. Infect. Dis. 196: 1565-1571.
    • (2007) J. Infect. Dis , vol.196 , pp. 1565-1571
    • Gow, N.A.1
  • 103
    • 53049099570 scopus 로고    scopus 로고
    • Functional analysis of Candida albicans GPI-anchored proteins: roles in cell wall integrity and caspofungin sensitivity
    • Plaine, A. et al. 2008. Functional analysis of Candida albicans GPI-anchored proteins: roles in cell wall integrity and caspofungin sensitivity. Fungal Genet. Biol. 45: 1404-1414.
    • (2008) Fungal Genet. Biol , vol.45 , pp. 1404-1414
    • Plaine, A.1
  • 104
    • 84455161690 scopus 로고    scopus 로고
    • Elevated cell wall chitin in Candida albicans confers echinocandin resistance in vivo
    • Lee, K.K. et al. 2012. Elevated cell wall chitin in Candida albicans confers echinocandin resistance in vivo. Antimicrob. Agents Chemother. 56: 208-217.
    • (2012) Antimicrob. Agents Chemother. , vol.56 , pp. 208-217
    • Lee, K.K.1
  • 105
    • 84872031378 scopus 로고    scopus 로고
    • Elevated chitin content reduces the susceptibility of Candida species to caspofungin
    • Walker, L.A., N.A. Gow & C.A. Munro . 2013. Elevated chitin content reduces the susceptibility of Candida species to caspofungin. Antimicrob. Agents Chemother. 57: 146-154.
    • (2013) Antimicrob. Agents Chemother. , vol.57 , pp. 146-154
    • Walker, L.A.1    Gow, N.A.2    Munro, C.A.3
  • 106
    • 40549084007 scopus 로고    scopus 로고
    • Increases in SLT2 expression and chitin content are associated with incomplete killing of Candida glabrata by caspofungin
    • Cota, J.M. et al. 2008. Increases in SLT2 expression and chitin content are associated with incomplete killing of Candida glabrata by caspofungin. Antimicrob. Agents Chemother. 52: 1144-1146.
    • (2008) Antimicrob. Agents Chemother. , vol.52 , pp. 1144-1146
    • Cota, J.M.1
  • 107
    • 33748695822 scopus 로고    scopus 로고
    • Escape of Candida from caspofungin inhibition at concentrations above the MIC (paradoxical effect) accomplished by increased cell wall chitin; evidence for beta-1,6-glucan synthesis inhibition by caspofungin
    • Stevens, D.A. et al. 2006. Escape of Candida from caspofungin inhibition at concentrations above the MIC (paradoxical effect) accomplished by increased cell wall chitin; evidence for beta-1, 6-glucan synthesis inhibition by caspofungin. Antimicrob. Agents Chemother. 50: 3160-3161.
    • (2006) Antimicrob. Agents Chemother. , vol.50 , pp. 3160-3161
    • Stevens, D.A.1
  • 108
    • 33645797825 scopus 로고    scopus 로고
    • Assessment of the paradoxical effect of caspofungin in therapy of candidiasis
    • Clemons, K.V. et al. 2006. Assessment of the paradoxical effect of caspofungin in therapy of candidiasis. Antimicrob. Agents Chemother. 50: 1293-1297.
    • (2006) Antimicrob. Agents Chemother. , vol.50 , pp. 1293-1297
    • Clemons, K.V.1
  • 109
    • 4344587092 scopus 로고    scopus 로고
    • Paradoxical effect of caspofungin: reduced activity against Candida albicans at high drug concentrations
    • Stevens, D.A., M. Espiritu & R. Parmar . 2004. Paradoxical effect of caspofungin: reduced activity against Candida albicans at high drug concentrations. Antimicrob. Agents Chemother. 48: 3407-3411.
    • (2004) Antimicrob. Agents Chemother. , vol.48 , pp. 3407-3411
    • Stevens, D.A.1    Espiritu, M.2    Parmar, R.3
  • 110
    • 84867469852 scopus 로고    scopus 로고
    • CRS-MIS in Candida glabrata: sphingolipids modulate echinocandin-Fks interaction
    • Healey, K.R. et al. 2012. CRS-MIS in Candida glabrata: sphingolipids modulate echinocandin-Fks interaction. Mol. Microbiol. 86: 303-313.
    • (2012) Mol. Microbiol. , vol.86 , pp. 303-313
    • Healey, K.R.1
  • 111
    • 79960319993 scopus 로고    scopus 로고
    • Candida glabrata mutants demonstrating paradoxical reduced caspofungin susceptibility but increased micafungin susceptibility
    • Healey, K.R. et al. 2011. Candida glabrata mutants demonstrating paradoxical reduced caspofungin susceptibility but increased micafungin susceptibility. Antimicrob. Agents Chemother. 55: 3947-3949.
    • (2011) Antimicrob. Agents Chemother. , vol.55 , pp. 3947-3949
    • Healey, K.R.1
  • 112
    • 0025244281 scopus 로고
    • Characterization of the sequence of colonization and nosocomial candidemia using DNA fingerprinting and a DNA probe
    • Reagan, D.R. et al. 1990. Characterization of the sequence of colonization and nosocomial candidemia using DNA fingerprinting and a DNA probe. J. Clin. Microbiol. 28: 2733-2738.
    • (1990) J. Clin. Microbiol. , vol.28 , pp. 2733-2738
    • Reagan, D.R.1
  • 113
    • 80755129005 scopus 로고    scopus 로고
    • Importance of Candida-bacterial polymicrobial biofilms in disease
    • Harriott, M.M. & M.C. Noverr . 2011. Importance of Candida-bacterial polymicrobial biofilms in disease. Trends Microbiol. 19: 557-563.
    • (2011) Trends Microbiol , vol.19 , pp. 557-563
    • Harriott, M.M.1    Noverr, M.C.2
  • 114
    • 84903214575 scopus 로고    scopus 로고
    • Candida glabrata intra-abdominal candidiasis is characterized by persistence within the peritoneal cavity and abscesses
    • Cheng, S. et al. 2014. Candida glabrata intra-abdominal candidiasis is characterized by persistence within the peritoneal cavity and abscesses. Infect. Immun. 82: 3015-3022.
    • (2014) Infect. Immun , vol.82 , pp. 3015-3022
    • Cheng, S.1
  • 115
    • 84906058648 scopus 로고    scopus 로고
    • Emergence of echinocandin-resistant Candida spp. in a hospital setting: a consequence of 10 years of increasing use of antifungal therapy?
    • Fekkar, A. et al. 2014. Emergence of echinocandin-resistant Candida spp. in a hospital setting: a consequence of 10 years of increasing use of antifungal therapy? Eur. J. Clin. Microbiol. Infect. Dis. 33: 1489-1496.
    • (2014) Eur. J. Clin. Microbiol. Infect. Dis , vol.33 , pp. 1489-1496
    • Fekkar, A.1
  • 116
    • 84906936191 scopus 로고    scopus 로고
    • FKS mutant Candida glabrata: risk factors and outcomes in patients with candidemia
    • Beyda, N.D. et al. 2014. FKS mutant Candida glabrata: risk factors and outcomes in patients with candidemia. Clin. Infect. Dis. 59: 819-825.
    • (2014) Clin. Infect. Dis , vol.59 , pp. 819-825
    • Beyda, N.D.1
  • 117
    • 80054709630 scopus 로고    scopus 로고
    • Prior caspofungin exposure in patients with hematological malignancies is a risk factor for subsequent fungemia due to decreased susceptibility in Candida spp.: a case-control study in Paris, France
    • Blanchard, E. et al. 2011. Prior caspofungin exposure in patients with hematological malignancies is a risk factor for subsequent fungemia due to decreased susceptibility in Candida spp.: a case-control study in Paris, France. Antimicrob. Agents Chemother. 55: 5358-5361.
    • (2011) Antimicrob. Agents Chemother , vol.55 , pp. 5358-5361
    • Blanchard, E.1
  • 118
    • 84867713245 scopus 로고    scopus 로고
    • Micafungin: a review of its use in the prophylaxis and treatment of invasive Candida infections
    • Scott, L.J. 2012. Micafungin: a review of its use in the prophylaxis and treatment of invasive Candida infections. Drugs 72: 2141-2165.
    • (2012) Drugs , vol.72 , pp. 2141-2165
    • Scott, L.J.1
  • 119
    • 84867702520 scopus 로고    scopus 로고
    • ESCMID* guideline for the diagnosis and management of Candida diseases 2012: prevention and management of invasive infections in neonates and children caused by Candida spp
    • Hope, W.W. et al. 2012. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: prevention and management of invasive infections in neonates and children caused by Candida spp. Clin. Microbiol. Infect. 18(Suppl 7): 38-52.
    • (2012) Clin. Microbiol. Infect , vol.18 , pp. 38-52
    • Hope, W.W.1
  • 120
    • 84896948821 scopus 로고    scopus 로고
    • Micafungin: an evidence-based review of its place in therapy
    • dela Torre, P. & A.C. Reboli . 2014. Micafungin: an evidence-based review of its place in therapy. Core Evid. 9: 27-39.
    • (2014) Core Evid. , vol.9 , pp. 27-39
    • de la Torre, P.1    Reboli, A.C.2
  • 121
    • 8744314133 scopus 로고    scopus 로고
    • Micafungin versus fluconazole for prophylaxis against invasive fungal infections during neutropenia in patients undergoing hematopoietic stem cell transplantation
    • van Burik, J.A. et al. 2004. Micafungin versus fluconazole for prophylaxis against invasive fungal infections during neutropenia in patients undergoing hematopoietic stem cell transplantation. Clin. Infect. Dis. 39: 1407-1416.
    • (2004) Clin. Infect. Dis , vol.39 , pp. 1407-1416
    • van Burik, J.A.1
  • 122
    • 36849019427 scopus 로고    scopus 로고
    • Caspofungin as primary antifungal prophylaxis in stem cell transplant recipients
    • Chou, L.S. et al. 2007. Caspofungin as primary antifungal prophylaxis in stem cell transplant recipients. Pharmacotherapy 27: 1644-1650.
    • (2007) Pharmacotherapy , vol.27 , pp. 1644-1650
    • Chou, L.S.1
  • 123
    • 29944444166 scopus 로고    scopus 로고
    • Open-label, randomized comparison of itraconazole versus caspofungin for prophylaxis in patients with hematologic malignancies
    • Mattiuzzi, G.N. et al. 2006. Open-label, randomized comparison of itraconazole versus caspofungin for prophylaxis in patients with hematologic malignancies. Antimicrob. Agents Chemother. 50: 143-147.
    • (2006) Antimicrob. Agents Chemother. , vol.50 , pp. 143-147
    • Mattiuzzi, G.N.1
  • 124
    • 84863105125 scopus 로고    scopus 로고
    • Caspofungin as antifungal prophylaxis in pediatric patients undergoing allogeneic hematopoietic stem cell transplantation: a retrospective analysis
    • Doring, M. et al. 2012. Caspofungin as antifungal prophylaxis in pediatric patients undergoing allogeneic hematopoietic stem cell transplantation: a retrospective analysis. BMC Infect. Dis. 12: 151.
    • (2012) BMC Infect. Dis , vol.12 , pp. 151
    • Doring, M.1
  • 125
    • 84873284787 scopus 로고    scopus 로고
    • Newer antifungal agents for fungal infection prevention during hematopoietic cell transplantation: a meta-analysis
    • Xu, S.X. et al. 2013. Newer antifungal agents for fungal infection prevention during hematopoietic cell transplantation: a meta-analysis. Transpl. Proc. 45: 407-414.
    • (2013) Transpl. Proc , vol.45 , pp. 407-414
    • Xu, S.X.1
  • 126
    • 84894026947 scopus 로고    scopus 로고
    • Systemic antifungal prophylaxis after hematopoietic stem cell transplantation: a meta-analysis
    • e291
    • Ziakas, P.D., I.S. Kourbeti & E. Mylonakis . 2014. Systemic antifungal prophylaxis after hematopoietic stem cell transplantation: a meta-analysis. Clin. Ther. 36: 292-306, e291.
    • (2014) Clin. Ther , vol.36 , pp. 292-306
    • Ziakas, P.D.1    Kourbeti, I.S.2    Mylonakis, E.3
  • 127
    • 84896930228 scopus 로고    scopus 로고
    • Breakthrough candidemia due to multidrug-resistant Candida glabrata during prophylaxis with a low dose of micafungin
    • Bizerra, F.C. et al. 2014. Breakthrough candidemia due to multidrug-resistant Candida glabrata during prophylaxis with a low dose of micafungin. Antimicrob. Agents Chemother. 58: 2438-2440.
    • (2014) Antimicrob. Agents Chemother. , vol.58 , pp. 2438-2440
    • Bizerra, F.C.1
  • 128
    • 84901931370 scopus 로고    scopus 로고
    • Development of echinocandin-resistant Candida albicans candidemia following brief prophylactic exposure to micafungin therapy
    • Ruggero, M.A. & J.E. Topal . 2014. Development of echinocandin-resistant Candida albicans candidemia following brief prophylactic exposure to micafungin therapy. Transpl. Infect. Dis. 16: 469-472.
    • (2014) Transpl. Infect. Dis , vol.16 , pp. 469-472
    • Ruggero, M.A.1    Topal, J.E.2
  • 129
    • 47049090269 scopus 로고    scopus 로고
    • Stress, drugs, and evolution: the role of cellular signaling in fungal drug resistance
    • Cowen, L.E. & W.J. Steinbach . 2008. Stress, drugs, and evolution: the role of cellular signaling in fungal drug resistance. Eukary. Cell 7: 747-764.
    • (2008) Eukary. Cell , vol.7 , pp. 747-764
    • Cowen, L.E.1    Steinbach, W.J.2
  • 130
    • 84898956673 scopus 로고    scopus 로고
    • A tetraploid intermediate precedes aneuploid formation in yeasts exposed to fluconazole
    • Harrison, B.D. et al. 2014. A tetraploid intermediate precedes aneuploid formation in yeasts exposed to fluconazole. PLoS Biology 12: e1001815.
    • (2014) PLoS Biology , vol.12 , pp. e1001815
    • Harrison, B.D.1
  • 132
    • 84862777815 scopus 로고    scopus 로고
    • Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy
    • Chen, G. et al. 2012. Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature 482: 246-250.
    • (2012) Nature , vol.482 , pp. 246-250
    • Chen, G.1
  • 133
    • 80051871652 scopus 로고    scopus 로고
    • Aneuploidy drives genomic instability in yeast
    • Sheltzer, J.M. et al. 2011. Aneuploidy drives genomic instability in yeast. Science 333: 1026-1030.
    • (2011) Science , vol.333 , pp. 1026-1030
    • Sheltzer, J.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.