메뉴 건너뛰기




Volumn 109, Issue , 2015, Pages 75-89

Temporal knowledge discovery in big BAS data for building energy management

Author keywords

Big data; Building automation system; Building energy management; Temporal knowledge discovery; Time series data mining

Indexed keywords

ASSOCIATION RULES; AUTOMATION; BUILDINGS; DATA MINING; DRUG PRODUCTS PLANTS; ENERGY MANAGEMENT; ENTERPRISE RESOURCE PLANNING; HISTORIC PRESERVATION; INFORMATION MANAGEMENT; INTELLIGENT BUILDINGS; TIME SERIES;

EID: 84944755202     PISSN: 03787788     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enbuild.2015.09.060     Document Type: Article
Times cited : (120)

References (48)
  • 1
    • 37349028760 scopus 로고    scopus 로고
    • A review on buildings energy consumption information
    • L. Perez-Lombard, J. Ortiz, and C. Pout A review on buildings energy consumption information Energy Build. 40 2008 394 398
    • (2008) Energy Build. , vol.40 , pp. 394-398
    • Perez-Lombard, L.1    Ortiz, J.2    Pout, C.3
  • 4
    • 84926181274 scopus 로고    scopus 로고
    • A framework for knowledge discovery in massive building automation data and its applications in building diagnostics
    • C. Fan, F. Xiao, and C.C. Yan A framework for knowledge discovery in massive building automation data and its applications in building diagnostics Autom. Constr. 50 2014 81 90
    • (2014) Autom. Constr. , vol.50 , pp. 81-90
    • Fan, C.1    Xiao, F.2    Yan, C.C.3
  • 5
    • 84865760825 scopus 로고    scopus 로고
    • Technology and information management for low-carbon building
    • F. Dalene Technology and information management for low-carbon building J. Renew. Sustain. Energy 4 2012 041402 10.1063/1.3694120
    • (2012) J. Renew. Sustain. Energy , vol.4 , pp. 041402
    • Dalene, F.1
  • 6
    • 13244270060 scopus 로고    scopus 로고
    • Applying support vector machines to predict building energy consumption in tropical region
    • B. Dong, C. Cao, and S.E. Lee Applying support vector machines to predict building energy consumption in tropical region Energy Build. 37 2005 545 553
    • (2005) Energy Build. , vol.37 , pp. 545-553
    • Dong, B.1    Cao, C.2    Lee, S.E.3
  • 8
    • 84899701114 scopus 로고    scopus 로고
    • Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques
    • C. Fan, F. Xiao, and S.W. Wang Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques Appl. Energy 127 2014 1 10
    • (2014) Appl. Energy , vol.127 , pp. 1-10
    • Fan, C.1    Xiao, F.2    Wang, S.W.3
  • 9
    • 84902674969 scopus 로고    scopus 로고
    • Minimization of energy consumption in HVAC systems with data-driven models and an interior-point method
    • A. Kusiak, G.L. Xu, and Z.J. Zhang Minimization of energy consumption in HVAC systems with data-driven models and an interior-point method Energy Convers. Manag. 85 2014 146 153
    • (2014) Energy Convers. Manag. , vol.85 , pp. 146-153
    • Kusiak, A.1    Xu, G.L.2    Zhang, Z.J.3
  • 10
    • 79953202125 scopus 로고    scopus 로고
    • An intelligent approach to assessing the effect of building occupancy on building cooling load prediction
    • S.K. Kwok, K.K. Yuen, and W.M. Lee An intelligent approach to assessing the effect of building occupancy on building cooling load prediction Build. Environ. 46 2011 1681 1690
    • (2011) Build. Environ. , vol.46 , pp. 1681-1690
    • Kwok, S.K.1    Yuen, K.K.2    Lee, W.M.3
  • 11
    • 34548279327 scopus 로고    scopus 로고
    • Understanding the indoor environment through mining sensory data - a case study
    • S.M. Wu, and D. Clements-Croome Understanding the indoor environment through mining sensory data - a case study Energy Build. 39 2007 1183 1191
    • (2007) Energy Build. , vol.39 , pp. 1183-1191
    • Wu, S.M.1    Clements-Croome, D.2
  • 12
    • 84879069972 scopus 로고    scopus 로고
    • Thermal comfort prediction of an underfloor air distribution system in a large indoor environment
    • G. Kim, L. Schaefer, T.S. Lim, and J.T. Kim Thermal comfort prediction of an underfloor air distribution system in a large indoor environment Energy Build. 64 2013 323 331
    • (2013) Energy Build. , vol.64 , pp. 323-331
    • Kim, G.1    Schaefer, L.2    Lim, T.S.3    Kim, J.T.4
  • 13
    • 77955585423 scopus 로고    scopus 로고
    • A decision tree method for building energy demand modeling
    • Z. Yu, F. Haghighat, C.M. Fung, and H. Yoshino A decision tree method for building energy demand modeling Energy Build. 42 2010 1637 1646
    • (2010) Energy Build. , vol.42 , pp. 1637-1646
    • Yu, Z.1    Haghighat, F.2    Fung, C.M.3    Yoshino, H.4
  • 14
    • 84890126054 scopus 로고    scopus 로고
    • Smart meter monitoring and data mining techniques for predicting refrigeration system performance
    • J.S. Chou, Y.C. Hsu, and L.T. Lin Smart meter monitoring and data mining techniques for predicting refrigeration system performance Expert Syst. Appl. 41 2014 2144 2156
    • (2014) Expert Syst. Appl. , vol.41 , pp. 2144-2156
    • Chou, J.S.1    Hsu, Y.C.2    Lin, L.T.3
  • 15
    • 78649316791 scopus 로고    scopus 로고
    • Prediction of thermodynamic properties of refrigerants using data mining
    • E.U. Kucuksille, R. Selbas, and A. Sencan Prediction of thermodynamic properties of refrigerants using data mining Energy Convers. Manag. 52 2011 836 848
    • (2011) Energy Convers. Manag. , vol.52 , pp. 836-848
    • Kucuksille, E.U.1    Selbas, R.2    Sencan, A.3
  • 16
    • 84875856634 scopus 로고    scopus 로고
    • Data association mining for identifying lighting energy waste patterns in educational institutes
    • D.F.M. Cabrera, and H. Zareipour Data association mining for identifying lighting energy waste patterns in educational institutes Energy Build. 62 2013 210 216
    • (2013) Energy Build. , vol.62 , pp. 210-216
    • Cabrera, D.F.M.1    Zareipour, H.2
  • 17
    • 84923239674 scopus 로고    scopus 로고
    • Fault detection analysis using data mining techniques for a cluster of smart office buildings
    • A. Capozzoli, F. Lauro, and I. Khan Fault detection analysis using data mining techniques for a cluster of smart office buildings Expert Syst. Appl. 42 2015 4324 4338
    • (2015) Expert Syst. Appl. , vol.42 , pp. 4324-4338
    • Capozzoli, A.1    Lauro, F.2    Khan, I.3
  • 18
    • 84897723089 scopus 로고    scopus 로고
    • Data mining in building automation system for improving building operational performance
    • F. Xiao, and C. Fan Data mining in building automation system for improving building operational performance Energy Build. 75 2014 109 118
    • (2014) Energy Build. , vol.75 , pp. 109-118
    • Xiao, F.1    Fan, C.2
  • 19
    • 84890815228 scopus 로고    scopus 로고
    • An interactive building power demand management strategy for facilitating smart grid optimization
    • X. Xue, S.W. Wang, Y.J. Sun, and F. Xiao An interactive building power demand management strategy for facilitating smart grid optimization Appl. Energy 116 2014 297 310
    • (2014) Appl. Energy , vol.116 , pp. 297-310
    • Xue, X.1    Wang, S.W.2    Sun, Y.J.3    Xiao, F.4
  • 20
    • 44449171970 scopus 로고    scopus 로고
    • Improved estimation of electricity demand function by integration of fuzzy system and data mining approach
    • A. Azadeh, M. Saberi, S.F. Ghaderi, A. Gitiforouz, and V. Ebrahimipour Improved estimation of electricity demand function by integration of fuzzy system and data mining approach Energy Convers. Manag. 49 2008 2165 2177
    • (2008) Energy Convers. Manag. , vol.49 , pp. 2165-2177
    • Azadeh, A.1    Saberi, M.2    Ghaderi, S.F.3    Gitiforouz, A.4    Ebrahimipour, V.5
  • 22
    • 4544233556 scopus 로고    scopus 로고
    • Hourly cooling load prediction by a combined forecasting model based on analytic hierarchy process
    • Y. Yao, Z.W. Lian, S.Q. Liu, and Z.J. Hou Hourly cooling load prediction by a combined forecasting model based on analytic hierarchy process Int. J. Therm. Sci. 43 2004 1107 1118
    • (2004) Int. J. Therm. Sci. , vol.43 , pp. 1107-1118
    • Yao, Y.1    Lian, Z.W.2    Liu, S.Q.3    Hou, Z.J.4
  • 23
    • 0029224008 scopus 로고
    • Hourly thermal load prediction for the next 24 h by ARIMA, EWMA, LR, and an artificial neural network
    • M. Kawashima, C.E. Dorgan, and J.W. Mitchell Hourly thermal load prediction for the next 24 h by ARIMA, EWMA, LR, and an artificial neural network ASHRAE Trans. 101 1995 186 200
    • (1995) ASHRAE Trans. , vol.101 , pp. 186-200
    • Kawashima, M.1    Dorgan, C.E.2    Mitchell, J.W.3
  • 24
    • 34250884664 scopus 로고    scopus 로고
    • A multiple ARMAX modeling scheme for forecasting of air conditioning system performance
    • J.C.M. Yiu, and S.W. Wang A multiple ARMAX modeling scheme for forecasting of air conditioning system performance Energy Convers. Manag. 48 2007 2276 2285
    • (2007) Energy Convers. Manag. , vol.48 , pp. 2276-2285
    • Yiu, J.C.M.1    Wang, S.W.2
  • 25
    • 84894519500 scopus 로고    scopus 로고
    • Towards energy efficiency: forecasting indoor temperature via multivariate analysis
    • F. Zamora-Martinez, P. Romeu, P. Botella-Rocamora, and J. Pardo Towards energy efficiency: forecasting indoor temperature via multivariate analysis Energies 6 2013 4639 4659
    • (2013) Energies , vol.6 , pp. 4639-4659
    • Zamora-Martinez, F.1    Romeu, P.2    Botella-Rocamora, P.3    Pardo, J.4
  • 28
    • 84873893298 scopus 로고    scopus 로고
    • Building performance optimization using cross-domain scenario modeling, linked data, and complex event processing
    • J. O'Donnell, E. Corry, S. Hasan, M. Keane, and E. Curry Building performance optimization using cross-domain scenario modeling, linked data, and complex event processing Build. Environ. 62 2013 102 111
    • (2013) Build. Environ. , vol.62 , pp. 102-111
    • O'Donnell, J.1    Corry, E.2    Hasan, S.3    Keane, M.4    Curry, E.5
  • 29
    • 78649672225 scopus 로고    scopus 로고
    • A review on time series data mining
    • T.C. Fu A review on time series data mining Eng. Appl. Artif. Intell. 17 2011 164 181
    • (2011) Eng. Appl. Artif. Intell. , vol.17 , pp. 164-181
    • Fu, T.C.1
  • 30
    • 85055580977 scopus 로고    scopus 로고
    • 1st ed. Chapman & Hall/CRC Texts in Statistical Science
    • H. Madsen Time Series Analysis 1st ed. 2007 Chapman & Hall/CRC Texts in Statistical Science
    • (2007) Time Series Analysis
    • Madsen, H.1
  • 32
    • 84922522393 scopus 로고    scopus 로고
    • Automated daily pattern filtering of measured building performance data
    • C. Miller, Z. Nagy, and A. Schlueter Automated daily pattern filtering of measured building performance data Autom. Constr. 49 2015 1 17
    • (2015) Autom. Constr. , vol.49 , pp. 1-17
    • Miller, C.1    Nagy, Z.2    Schlueter, A.3
  • 33
    • 33845601607 scopus 로고    scopus 로고
    • Data analysis using regression and multi-level/hierarchical models
    • 1st ed. Cambridge University Press
    • A. Gelman, and J. Hill Data analysis using regression and multi-level/hierarchical models Analytical Methods for Social Research 1st ed. 2006 Cambridge University Press
    • (2006) Analytical Methods for Social Research
    • Gelman, A.1    Hill, J.2
  • 35
    • 0036207952 scopus 로고    scopus 로고
    • Outliers in process modeling and identification
    • R.K. Pearson Outliers in process modeling and identification IEEE Trans. Control Syst. Technol. 10 2002 55 63
    • (2002) IEEE Trans. Control Syst. Technol. , vol.10 , pp. 55-63
    • Pearson, R.K.1
  • 36
    • 34548093287 scopus 로고    scopus 로고
    • Experiencing SAX: a novel symbolic representation of time series
    • J. Lin, E. Keogh, L. Wei, and S. Lonardi Experiencing SAX: a novel symbolic representation of time series Data Min. Knowl. Discov. 15 2007 107 144
    • (2007) Data Min. Knowl. Discov. , vol.15 , pp. 107-144
    • Lin, J.1    Keogh, E.2    Wei, L.3    Lonardi, S.4
  • 37
    • 84892577847 scopus 로고    scopus 로고
    • Household energy consumption segmentation using hourly data
    • J. Kwac, J. Flora, and R. Rajagopal Household energy consumption segmentation using hourly data IEEE Trans. Smart Grid 5 2014 420 430
    • (2014) IEEE Trans. Smart Grid , vol.5 , pp. 420-430
    • Kwac, J.1    Flora, J.2    Rajagopal, R.3
  • 38
    • 85027951993 scopus 로고    scopus 로고
    • Segmentation and classification of commercial building occupants by energy-use efficiency and predictability
    • R. Gulbinas, A. Khosrowpour, and J. Taylor Segmentation and classification of commercial building occupants by energy-use efficiency and predictability IEEE Trans. Smart Grid 6 2015 1414 1424
    • (2015) IEEE Trans. Smart Grid , vol.6 , pp. 1414-1424
    • Gulbinas, R.1    Khosrowpour, A.2    Taylor, J.3
  • 39
    • 0037330341 scopus 로고    scopus 로고
    • A review of symbolic analysis of experimental data
    • C.S. Daw, C.E.A. Finney, and E.R. Tracy A review of symbolic analysis of experimental data Rev. Sci. Instrum. 74 2003 915 930
    • (2003) Rev. Sci. Instrum. , vol.74 , pp. 915-930
    • Daw, C.S.1    Finney, C.E.A.2    Tracy, E.R.3
  • 43
    • 15544364892 scopus 로고    scopus 로고
    • Discovery of time-series motif from multi-dimensional data based on MDL principle
    • Y. Tanaka, K. Iwamoto, and K. Uehara Discovery of time-series motif from multi-dimensional data based on MDL principle Mach. Learn. 58 2005 269 300
    • (2005) Mach. Learn. , vol.58 , pp. 269-300
    • Tanaka, Y.1    Iwamoto, K.2    Uehara, K.3
  • 46
    • 0034826102 scopus 로고    scopus 로고
    • SPADE: an efficient algorithm for mining frequent sequences
    • M.J. Zaki SPADE: an efficient algorithm for mining frequent sequences Mach. Learn. 42 2001 30 60
    • (2001) Mach. Learn. , vol.42 , pp. 30-60
    • Zaki, M.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.