메뉴 건너뛰기




Volumn 42, Issue 10, 2010, Pages 1637-1646

A decision tree method for building energy demand modeling

Author keywords

Building energy consumption; Classification analysis; Decision tree; Modeling

Indexed keywords

BUILDING ENERGY; BUILDING ENERGY CONSUMPTION; BUILDING ENERGY PERFORMANCE; CATEGORICAL VARIABLES; CLASSIFICATION ANALYSIS; COMPETITIVE ADVANTAGE; DATA RECORDS; DATA SUBSETS; DECISION TREE METHOD; HIGH BUILDING; MODELING TECHNIQUE; PREDICTIVE MODELS; REDUCING ENERGY CONSUMPTION; REGRESSION METHOD; RESIDENTIAL BUILDING; SIGNIFICANT FACTORS; TEST DATA; TRAINING DATA; TREE STRUCTURES;

EID: 77955585423     PISSN: 03787788     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enbuild.2010.04.006     Document Type: Article
Times cited : (509)

References (19)
  • 1
    • 37349028760 scopus 로고    scopus 로고
    • A review on buildings energy consumption information
    • L. Pérez-Lombard, J. Ortiz, and C. Pout A review on buildings energy consumption information Energy and Buildings 40 3 2008 394 398
    • (2008) Energy and Buildings , vol.40 , Issue.3 , pp. 394-398
    • Pérez-Lombard, L.1    Ortiz, J.2    Pout, C.3
  • 2
    • 64749095025 scopus 로고    scopus 로고
    • China building energy consumption: Situation, challenges and corresponding measures
    • W.G. Cai, Y. Wu, Y. Zhong, and H. Ren China building energy consumption: situation, challenges and corresponding measures Energy Policy 37 6 2009 2054 2059
    • (2009) Energy Policy , vol.37 , Issue.6 , pp. 2054-2059
    • Cai, W.G.1    Wu, Y.2    Zhong, Y.3    Ren, H.4
  • 3
    • 47649107696 scopus 로고    scopus 로고
    • Development and validation of regression models to predict monthly heating demand for residential buildings
    • T. Catalina, J. Virgone, and E. Blanco Development and validation of regression models to predict monthly heating demand for residential buildings Energy and Buildings 40 10 2008 1825 1832
    • (2008) Energy and Buildings , vol.40 , Issue.10 , pp. 1825-1832
    • Catalina, T.1    Virgone, J.2    Blanco, E.3
  • 4
    • 33645388374 scopus 로고    scopus 로고
    • Experimental estimation of building energy performance by robust regression
    • C. Ghiaus Experimental estimation of building energy performance by robust regression Energy and Buildings 38 6 2006 582 587
    • (2006) Energy and Buildings , vol.38 , Issue.6 , pp. 582-587
    • Ghiaus, C.1
  • 5
    • 57849122452 scopus 로고    scopus 로고
    • Optimization of ventilation systems in office environment. Part I. methodology
    • L. Zhou, and F. Haghighat Optimization of ventilation systems in office environment. Part I. methodology Building and Environment 44 2008 651 656
    • (2008) Building and Environment , vol.44 , pp. 651-656
    • Zhou, L.1    Haghighat, F.2
  • 6
    • 70350586743 scopus 로고    scopus 로고
    • Multiobjective optimization of building design using genetic algorithm and artificial neural network
    • L. Magnier, and F. Haghighat Multiobjective optimization of building design using genetic algorithm and artificial neural network Building and Environment 45 2010 739 746
    • (2010) Building and Environment , vol.45 , pp. 739-746
    • Magnier, L.1    Haghighat, F.2
  • 7
    • 77649183955 scopus 로고    scopus 로고
    • Development of artificial neural network based heat convection for thermal simulation of large rectangular cross-sectional area earth-to-earth heat exchanges
    • J. Zhang, and F. Haghighat Development of artificial neural network based heat convection for thermal simulation of large rectangular cross-sectional area earth-to-earth heat exchanges Energy and Buildings 42 4 2010 435 440
    • (2010) Energy and Buildings , vol.42 , Issue.4 , pp. 435-440
    • Zhang, J.1    Haghighat, F.2
  • 8
    • 38949180625 scopus 로고    scopus 로고
    • Simulation and experimental validation of the variable-refrigerant-volume (VRV) air-conditioning system in EnergyPlus
    • Y.P. Zhou, J.Y. Wu, R.Z. Wang, S. Shiochi, and Y.M. Li Simulation and experimental validation of the variable-refrigerant-volume (VRV) air-conditioning system in EnergyPlus Energy and Buildings 40 6 2008 1041 1047
    • (2008) Energy and Buildings , vol.40 , Issue.6 , pp. 1041-1047
    • Zhou, Y.P.1    Wu, J.Y.2    Wang, R.Z.3    Shiochi, S.4    Li, Y.M.5
  • 9
    • 38949103024 scopus 로고    scopus 로고
    • Simulation of energy consumption for Kuwaiti domestic buildings
    • F.F. Al-ajmi, and V.I. Hanby Simulation of energy consumption for Kuwaiti domestic buildings Energy and Buildings 40 6 2008 1101 1109
    • (2008) Energy and Buildings , vol.40 , Issue.6 , pp. 1101-1109
    • Al-Ajmi, F.F.1    Hanby, V.I.2
  • 11
    • 77955583012 scopus 로고    scopus 로고
    • A hybrid model combining case-based reasoning and fuzzy decision tree for medical data classification
    • in press, Corrected Proof
    • C.-Y. Fan, P.-C. Chang, J.-J. Lin, J. C. Hsieh. A hybrid model combining case-based reasoning and fuzzy decision tree for medical data classification. Applied Soft Computing, in press, Corrected Proof.
    • Applied Soft Computing
    • Fan, C.-Y.1    Chang, P.-C.2    Lin, J.-J.3    Hsieh., J.C.4
  • 12
    • 25844473529 scopus 로고    scopus 로고
    • Mining the Generation Xers' job attitudes by artificial neural network and decision tree - Empirical evidence in Taiwan
    • K.-Y. Tung, I.-C. Huang, S.-L. Chen, and C.-T. Shih Mining the Generation Xers' job attitudes by artificial neural network and decision tree - empirical evidence in Taiwan Expert Systems with Applications 29 4 2005 783 794
    • (2005) Expert Systems with Applications , vol.29 , Issue.4 , pp. 783-794
    • Tung, K.-Y.1    Huang, I.-C.2    Chen, S.-L.3    Shih, C.-T.4
  • 13
    • 34250170125 scopus 로고    scopus 로고
    • Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks
    • G.K.F. Tso, and K.K.W. Yau Predicting electricity energy consumption: a comparison of regression analysis, decision tree and neural networks Energy 32 9 2007 1761 1768
    • (2007) Energy , vol.32 , Issue.9 , pp. 1761-1768
    • Tso, G.K.F.1    Yau, K.K.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.