메뉴 건너뛰기




Volumn 2, Issue 4, 2011, Pages

Temporal data mining approaches for sustainable chiller management in data centers

Author keywords

Chillers; Clustering; Data centers; Frequent episodes; Motifs; Sustainability

Indexed keywords

CHILLERS; CLUSTERING; DATA CENTERS; FREQUENT EPISODES; MOTIFS;

EID: 79960806016     PISSN: 21576904     EISSN: 21576912     Source Type: Journal    
DOI: 10.1145/1989734.1989738     Document Type: Article
Times cited : (18)

References (40)
  • 2
    • 40449106252 scopus 로고    scopus 로고
    • In the data center, power and cooling costs more than the IT equipment it supports
    • BELADY, C. 2007. In the data center, power and cooling costs more than the IT equipment it supports. Electron. Cool. 13, 1.
    • (2007) Electron. Cool. , vol.13 , pp. 1
    • Belady, C.1
  • 3
    • 77954569849 scopus 로고    scopus 로고
    • Hilighter: Automatically building robust signatures of performance behavior for small-and large-scale systems
    • BODIK, P. , GOLDSZMIDT, M. , AND FOX, A. 2008. Hilighter: Automatically building robust signatures of performance behavior for small-and large-scale systems. In Proceedings of the SysML Conference.
    • (2008) Proceedings of the SysML Conference
    • Bodik, P.1    Goldszmidt, M.2    Fox, A.3
  • 6
    • 84867136666 scopus 로고    scopus 로고
    • Querying and mining of time series data: Experimental comparison of representations and distance measures
    • DING, H. , TRAJCEVSKI, G. , SCHEUERMANN, P. , WANG, X. , AND KEOGH, E. 2008. Querying and mining of time series data: Experimental comparison of representations and distance measures. VLDB J. 1, 2, 1542-1552.
    • (2008) VLDB J. , vol.1 , Issue.2 , pp. 1542-1552
    • Ding, H.1    Trajcevski, G.2    Scheuermann, P.3    Wang, X.4    Keogh, E.5
  • 10
    • 33748055767 scopus 로고    scopus 로고
    • InteMon: Continuous mining of sensor data in large-scale self-infrastructures
    • DOI 10.1145/1151374.1151384
    • HOKE, E. , SUN, J. , STRUNK, J. D. , GANGER, G. R. , AND FALOUTSOS, C. 2006. Intemon: Continuous mining of sensor data in large-scale self-infrastructures. SIGOPS Oper. Syst. Rev. 40, 3, 38-44. (Pubitemid 44299044)
    • (2006) Operating Systems Review (ACM) , vol.40 , Issue.3 , pp. 38-44
    • Hoke, E.1    Sun, J.2    Strunk, J.D.3    Ganger, G.R.4    Faloutsos, C.5
  • 12
    • 79960770273 scopus 로고    scopus 로고
    • Computing's environmental cost
    • KOOMEY, J. 2008a. Computing's environmental cost. The Economist
    • (2008) The Economist
    • Koomey, J.1
  • 13
    • 84860283257 scopus 로고    scopus 로고
    • Power conversion in servers and data centers: A review of recent data and developments
    • (Print edition) KOOMEY, J. 2008b. Power conversion in servers and data centers: A review of recent data and developments. In Proceedings of the Applied Power Electronics Conference.
    • (2008) Proceedings of the Applied Power Electronics Conference
    • Koomey, J.1
  • 14
    • 21844451952 scopus 로고    scopus 로고
    • Diagnosing network-wide traffic anomalies
    • DOI 10.1145/1030194.1015492, Computer Communication Review - Proceedings of ACM SIGCOMM 2004: Conference on Computer Communications
    • LAKHINA, A. , CROVELLA, M. , AND DIOT, C. 2004. Diagnosing network-wide traffic anomalies. In Proceedings of Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM'04). ACM, New York, 219-230. (Pubitemid 40954882)
    • (2004) Computer Communication Review , vol.34 , Issue.4 , pp. 219-230
    • Lakhina, A.1    Crovella, M.2    Diot, C.3
  • 15
    • 28244452013 scopus 로고    scopus 로고
    • Discovering frequent episodes and learning hiddenmarkov models: A formal connection
    • LAXMAN, S. , SASTRY, P. , AND UNNIKRISHNAN, K. 2005. Discovering frequent episodes and learning hiddenmarkov models: A formal connection. IEEE Trans. Knowl. Data Engin. 17, 11.
    • (2005) IEEE Trans. Knowl. Data Engin. , vol.17 , pp. 11
    • Laxman, S.1    Sastry, P.2    Unnikrishnan, K.3
  • 17
    • 78649379570 scopus 로고    scopus 로고
    • Revealed: The environmental impact of google searches
    • LEAKE, J. AND WOODS, R. 2009. Revealed: The environmental impact of google searches. Times Online.
    • (2009) Times Online
    • Leake, J.1    Woods, R.2
  • 21
    • 34548093287 scopus 로고    scopus 로고
    • Experiencing SAX: A novel symbolic representation of time series
    • DOI 10.1007/s10618-007-0064-z
    • LIN, J. , KEOGH, E. , WEI, L. , AND LONARDI, S. 2007. Experiencing SAX: A novel symbolic representation of time series. Data Min. Knowl. Discov. 15, 2, 107-144. (Pubitemid 47293484)
    • (2007) Data Mining and Knowledge Discovery , vol.15 , Issue.2 , pp. 107-144
    • Lin, J.1    Keogh, E.2    Wei, L.3    Lonardi, S.4
  • 25
    • 26944475145 scopus 로고    scopus 로고
    • Alert systems for production plants: A methodology based on conflict analysis
    • NIELSEN, T. D. AND JENS EN, F. V. 2005. Alert systems for production plants: A methodology based on conflict analysis. Symbol. Quant. Appro. Reason. Uncert. , 76-87.
    • (2005) Symbol. Quant. Appro. Reason. Uncert. , pp. 76-87
    • Nielsen, T.D.1    Jens, E.N.F.V.2
  • 28
    • 77951195723 scopus 로고    scopus 로고
    • Discovering excitatory networks from discrete event streams with applications to neuronal spike train analysis
    • IEEE Computer Society, Los Alamitos, CA
    • PATNAIK, D. , LAXMAN, S. , AND RAMAKRISHNAN, N. 2009a. Discovering excitatory networks from discrete event streams with applications to neuronal spike train analysis. In Proceedings of the 9th IEEE International Conference on Data Mining (ICDM'09). IEEE Computer Society, Los Alamitos, CA, 407-416.
    • (2009) Proceedings of the 9th IEEE International Conference on Data Mining (ICDM'09) , pp. 407-416
    • Patnaik, D.1    Laxman, S.2    Ramakrishnan, N.3
  • 30
    • 77953803530 scopus 로고    scopus 로고
    • 2010. Data mining for modeling chiller systems in data centers
    • P. Cohen et al. , Eds. Lecture Notes in Computer Science, Springer
    • PATNAIK, D. , MARWAH, M. , SHARMA, R. , AND RAMAKRISHNAN, N. 2010. Data mining for modeling chiller systems in data centers. In Advances in Intelligent Data Analysis IX, P. Cohen et al. , Eds. Lecture Notes in Computer Science, vol. 6065, Springer, 125-136.
    • Advances in Intelligent Data Analysis IX , vol.6065 , pp. 125-136
    • Patnaik Marwah, D.M.1    Sharma, R.2    Ramakrishnan, N.3
  • 31
    • 42149177266 scopus 로고    scopus 로고
    • Inferring neuronal network connectivity from spike data: A temporal data mining approach
    • Biological Data Mining
    • PATNAIK, D. , SASTRY, P. , AND UNNIKRISHNAN, K. 2008. Inferring neuronal network connectivity from spike data: A temporal data mining approach. Sci. Program. 16, 1, 49-77. (Pubitemid 351533810)
    • (2008) Scientific Programming , vol.16 , Issue.1 , pp. 49-77
    • Patnaik, D.1    Sastry, P.S.2    Unnikrishnan, K.P.3
  • 32
    • 41649090202 scopus 로고    scopus 로고
    • Exergy analysis of data center thermal management systems
    • SHAH, A. J. , CAREY, V. P. , BASH, C. E. , AND PATEL , C. D. 2008. Exergy analysis of data center thermal management systems. J. Heat Transfer 130, 2, 021401. 1-021401. 10.
    • (2008) J. Heat Transfer , vol.130 , Issue.2 , pp. 0214011-02140110
    • Shah, A.J.1    Carey, V.P.2    Bash, C.E.3    Patel, C.D.4
  • 34
    • 40449110797 scopus 로고    scopus 로고
    • Application of exploratory data analysis (eda) techniques to temperature data in a conventional data center
    • SHARMA, R. , SHIH, R. , PATEL , C. , AND SONTAG, J. 2007. Application of exploratory data analysis (eda) techniques to temperature data in a conventional data center. In Proceedings of the ASME IPACK'07 Conference.
    • (2007) Proceedings of the ASME IPACK'07 Conference
    • Sharma, R.1    Shih, R.2    Patel, C.3    Sontag, J.4
  • 35
    • 34547840228 scopus 로고    scopus 로고
    • Continuous hidden process model for time series expression experiments
    • SHI, Y. , KLUSTEIN, M. , SIMON, I. , MITCHELL, T. , AND BAR-JOSEPH, Z. 2007. Continuous hidden process model for time series expression experiments. Bioinf. 23, 13, 459-467.
    • (2007) Bioinf. , vol.23 , Issue.13 , pp. 459-467
    • Shi, Y.1    Klustein, M.2    Simon, I.3    Mitchell, T.4    Bar-Joseph, Z.5
  • 37
    • 54049122306 scopus 로고    scopus 로고
    • Adaptive learning of dynamic bayesian networks with changing structures by detecting geometric structures of time series
    • WANG, K. , ZHANG, J. , SHEN, F. , AND SHI, L. 2008. Adaptive learning of dynamic bayesian networks with changing structures by detecting geometric structures of time series. Knowl. Inf. Syst. 17, 1, 121-133.
    • (2008) Knowl. Inf. Syst. , vol.17 , Issue.1 , pp. 121-133
    • Zhang, W.K.1    Shen, F.J.2    Shi, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.