메뉴 건너뛰기




Volumn 49, Issue PA, 2015, Pages 1-17

Automated daily pattern filtering of measured building performance data

Author keywords

Building efficiency; Building performance analysis; Clustering; Diversity factors; Knowledge discovery; Occupancy patterns; Temporal data mining

Indexed keywords

ENERGY CONSERVATION; ENERGY MANAGEMENT SYSTEMS; FAULT DETECTION; HIERARCHICAL SYSTEMS; K-MEANS CLUSTERING; OFFICE BUILDINGS; POTENTIAL ENERGY; PREDICTIVE ANALYTICS;

EID: 84922522393     PISSN: 09265805     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.autcon.2014.09.004     Document Type: Article
Times cited : (163)

References (60)
  • 3
    • 84897695918 scopus 로고    scopus 로고
    • The gap between predicted and measured energy performance in buildings: A framework for investigation
    • P. de Wilde The gap between predicted and measured energy performance in buildings: a framework for investigation Autom. Constr. 41 C 2013 1 10
    • (2013) Autom. Constr. , vol.41 , Issue.C , pp. 1-10
    • De Wilde, P.1
  • 4
    • 84862336744 scopus 로고    scopus 로고
    • Predicted vs. Actual energy performance of non-domestic buildings: Using post-occupancy evaluation data to reduce the performance gap
    • A.C. Menezes, A. Cripps, D. Bouchlaghem, and R.A. Buswell Predicted vs. actual energy performance of non-domestic buildings: using post-occupancy evaluation data to reduce the performance gap Appl. Energy 97 2012 355 364
    • (2012) Appl. Energy , vol.97 , pp. 355-364
    • Menezes, A.C.1    Cripps, A.2    Bouchlaghem, D.3    Buswell, R.A.4
  • 5
    • 84860807867 scopus 로고    scopus 로고
    • Bridging the gap between predicted and actual energy performance in schools
    • UAE Abu Dhabi
    • C. Demanuele, T. Tweddell, and M. Davies Bridging the gap between predicted and actual energy performance in schools World Renewable Energy Congress XI 2010 UAE Abu Dhabi 25 30
    • (2010) World Renewable Energy Congress XI , pp. 25-30
    • Demanuele, C.1    Tweddell, T.2    Davies, M.3
  • 6
    • 64549115173 scopus 로고    scopus 로고
    • Energy performance of LEED for new construction buildings
    • C. Turner, and M. Frankel Energy performance of LEED for new construction buildings Tech. rep. 2008
    • (2008) Tech. Rep.
    • Turner, C.1    Frankel, M.2
  • 7
    • 37849186514 scopus 로고    scopus 로고
    • Using intelligent data analysis to detect abnormal energy consumption in buildings
    • J.E. Seem Using intelligent data analysis to detect abnormal energy consumption in buildings Energy Build. 39 1 2006 52 58
    • (2006) Energy Build. , vol.39 , Issue.1 , pp. 52-58
    • Seem, J.E.1
  • 8
    • 84922573603 scopus 로고    scopus 로고
    • Building performance tracking in large commercial buildings: Tools and strategies - Subtast 4.3 characterization of fault detection and diagnostic (FDD) and advanced energy information system (EIS) tools
    • J. Ulickey, T. Fackler, E. Koeppel, and J. Soper Building performance tracking in large commercial buildings: tools and strategies - subtast 4.3 characterization of fault detection and diagnostic (FDD) and advanced energy information system (EIS) tools Tech. rep. Sep. 2010
    • (2010) Tech. Rep.
    • Ulickey, J.1    Fackler, T.2    Koeppel, E.3    Soper, J.4
  • 10
    • 18944392642 scopus 로고    scopus 로고
    • Methods for fault detection, diagnostics, and prognostics for building systems - A review, part i
    • S. Katipamula, and M. Brambley Methods for fault detection, diagnostics, and prognostics for building systems - a review, part I HVAC&R Res. 11 1 2005 3 25
    • (2005) HVAC&R Res. , vol.11 , Issue.1 , pp. 3-25
    • Katipamula, S.1    Brambley, M.2
  • 11
    • 84901601082 scopus 로고    scopus 로고
    • A review of methods to match building energy simulation models to measured data
    • D. Coakley, P. Raftery, and M.M. Keane A review of methods to match building energy simulation models to measured data Renew. Sust. Energ. Rev. 37 c 2014 123 141
    • (2014) Renew. Sust. Energ. Rev. , vol.37 , Issue.C , pp. 123-141
    • Coakley, D.1    Raftery, P.2    Keane, M.M.3
  • 12
    • 84922573602 scopus 로고    scopus 로고
    • Building performance tracking in large commercial buildings: Tools and strategies - Subtask 4.2 research report: Investigate energy performance tracking strategies in the market
    • M. Effinger, H. Friedman, and D. Moser Building performance tracking in large commercial buildings: tools and strategies - subtask 4.2 research report: investigate energy performance tracking strategies in the market Tech. rep. Sep. 2010
    • (2010) Tech. Rep.
    • Effinger, M.1    Friedman, H.2    Moser, D.3
  • 13
    • 84922573601 scopus 로고    scopus 로고
    • Building performance tracking in large commercial buildings: Tools and strategies - Subtask 4.4 research report: Characterization of building performance metrics tracking methodologies
    • E. Greensfelder, H. Friedman, and E. Crowe Building performance tracking in large commercial buildings: tools and strategies - subtask 4.4 research report: characterization of building performance metrics tracking methodologies Tech. rep. Nov. 2010
    • (2010) Tech. Rep.
    • Greensfelder, E.1    Friedman, H.2    Crowe, E.3
  • 16
    • 78651296664 scopus 로고    scopus 로고
    • Building energy information systems: User case studies
    • J. Granderson, M.A. Piette, and G. Ghatikar Building energy information systems: user case studies Energy Efficiency 4 1 2010 17 30
    • (2010) Energy Efficiency , vol.4 , Issue.1 , pp. 17-30
    • Granderson, J.1    Piette, M.A.2    Ghatikar, G.3
  • 18
    • 84887154819 scopus 로고    scopus 로고
    • Model-based real-time whole building energy performance monitoring and diagnostics
    • Z. O'Neill, X. Pang, M. Shashanka, P. Haves, and T. Bailey Model-based real-time whole building energy performance monitoring and diagnostics J. Build. Perform. Simul. 7 2 2014 83 99
    • (2014) J. Build. Perform. Simul. , vol.7 , Issue.2 , pp. 83-99
    • O'Neill, Z.1    Pang, X.2    Shashanka, M.3    Haves, P.4    Bailey, T.5
  • 19
    • 84869871543 scopus 로고    scopus 로고
    • Building operation and energy performance: Monitoring, analysis and optimisation toolkit
    • A. Costa, M.M. Keane, J.I. Torrens, and E. Corry Building operation and energy performance: monitoring, analysis and optimisation toolkit Appl. Energy 101 C 2013 310 316
    • (2013) Appl. Energy , vol.101 , Issue.C , pp. 310-316
    • Costa, A.1    Keane, M.M.2    Torrens, J.I.3    Corry, E.4
  • 20
    • 84893203922 scopus 로고    scopus 로고
    • Field implementation and evaluation of a decoupling-based fault detection and diagnostic method for chillers
    • X. Zhao, M. Yang, and H. Li Field implementation and evaluation of a decoupling-based fault detection and diagnostic method for chillers Energy Build. 72 2014 419 430
    • (2014) Energy Build. , vol.72 , pp. 419-430
    • Zhao, X.1    Yang, M.2    Li, H.3
  • 22
    • 84859636798 scopus 로고    scopus 로고
    • A method to compare simulated and measured data to assess building energy performance
    • T. Maile, V. Bazjanac, and M. Fischer A method to compare simulated and measured data to assess building energy performance Build. Environ. 56 2012 241 251
    • (2012) Build. Environ. , vol.56 , pp. 241-251
    • Maile, T.1    Bazjanac, V.2    Fischer, M.3
  • 23
    • 0027308013 scopus 로고
    • Daily variations in HVAC system electrical energy consumption in response to different weather conditions
    • D.L. Hadley Daily variations in HVAC system electrical energy consumption in response to different weather conditions Energy Build. 19 3 1993 235 247
    • (1993) Energy Build. , vol.19 , Issue.3 , pp. 235-247
    • Hadley, D.L.1
  • 24
    • 0038608665 scopus 로고
    • Reconciliation of a DOE2.1C model with monitored end-use data for a small office building
    • M. Kaplan, J. McFerran, J. Jansen, and R. Pratt Reconciliation of a DOE2.1C model with monitored end-use data for a small office building ASHRAE Trans. 93 1 1990 981 993
    • (1990) ASHRAE Trans. , vol.93 , Issue.1 , pp. 981-993
    • Kaplan, M.1    McFerran, J.2    Jansen, J.3    Pratt, R.4
  • 25
    • 84884896349 scopus 로고    scopus 로고
    • Revealing occupancy patterns in an office building through the use of occupancy sensor data
    • C. Duarte, K. Van Den Wymelenberg, and C. Rieger Revealing occupancy patterns in an office building through the use of occupancy sensor data Energy Build. 67 2013 587 595
    • (2013) Energy Build. , vol.67 , pp. 587-595
    • Duarte, C.1    Van Den Wymelenberg, K.2    Rieger, C.3
  • 26
    • 79951955862 scopus 로고    scopus 로고
    • Occupancy diversity factors for common university building types
    • J.A. Davis III, and D.W. Nutter Occupancy diversity factors for common university building types Energy Build. 42 9 2010 1543 1551
    • (2010) Energy Build. , vol.42 , Issue.9 , pp. 1543-1551
    • Davis, J.A.1    Nutter, D.W.2
  • 29
    • 6344282792 scopus 로고    scopus 로고
    • Pattern recognition algorithm for determining days of the week with similar energy consumption profiles
    • J.E. Seem Pattern recognition algorithm for determining days of the week with similar energy consumption profiles Energy Build. 37 2 2005 127 139
    • (2005) Energy Build. , vol.37 , Issue.2 , pp. 127-139
    • Seem, J.E.1
  • 31
    • 84897723089 scopus 로고    scopus 로고
    • Data mining in building automation system for improving building operational performance
    • F. Xiao, and C. Fan Data mining in building automation system for improving building operational performance Energy Build. 75 2014 109 118
    • (2014) Energy Build. , vol.75 , pp. 109-118
    • Xiao, F.1    Fan, C.2
  • 33
    • 44349159091 scopus 로고    scopus 로고
    • Clustering-based performance optimization of the boiler turbine system
    • A. Kusiak, and Z. Song Clustering-based performance optimization of the boiler turbine system IEEE Trans. Energy Convers. 23 2 2008 651 658
    • (2008) IEEE Trans. Energy Convers. , vol.23 , Issue.2 , pp. 651-658
    • Kusiak, A.1    Song, Z.2
  • 35
    • 77958022298 scopus 로고    scopus 로고
    • Classification of energy consumption in buildings with outlier detection
    • X. Li, C.P. Bowers, and T. Schnier Classification of energy consumption in buildings with outlier detection IEEE Trans. Ind. Electron. 57 11 2010 3639 3644
    • (2010) IEEE Trans. Ind. Electron. , vol.57 , Issue.11 , pp. 3639-3644
    • Li, X.1    Bowers, C.P.2    Schnier, T.3
  • 36
    • 77951523599 scopus 로고    scopus 로고
    • Black-box models for fault detection and performance monitoring of buildings
    • D. Jacob, S. Dietz, S. Komhard, C. Neumann, and S. Herkel Black-box models for fault detection and performance monitoring of buildings J. Build. Perform. Simul. 3 1 2010 53 62
    • (2010) J. Build. Perform. Simul. , vol.3 , Issue.1 , pp. 53-62
    • Jacob, D.1    Dietz, S.2    Komhard, S.3    Neumann, C.4    Herkel, S.5
  • 39
    • 84857063430 scopus 로고    scopus 로고
    • A novel methodology for knowledge discovery through mining associations between building operational data
    • Z.J. Yu, F. Haghighat, B.C.M. Fung, and L. Zhou A novel methodology for knowledge discovery through mining associations between building operational data Energy Build. 47 2012 430 440
    • (2012) Energy Build. , vol.47 , pp. 430-440
    • Yu, Z.J.1    Haghighat, F.2    Fung, B.C.M.3    Zhou, L.4
  • 40
    • 84909945861 scopus 로고    scopus 로고
    • Classification of commercial building electrical demand profiles for energy storage applications
    • A.R. Florita, L.J. Brackney, T.P. Otanicar, and J. Robertson Classification of commercial building electrical demand profiles for energy storage applications J. Solar Energy Eng. Trans. ASME 135 3 2013 031020
    • (2013) J. Solar Energy Eng. Trans. ASME , vol.135 , Issue.3 , pp. 031020
    • Florita, A.R.1    Brackney, L.J.2    Otanicar, T.P.3    Robertson, J.4
  • 41
    • 84877707521 scopus 로고    scopus 로고
    • Extracting knowledge from building-related data - A data mining framework
    • Z.J. Yu, B.C.M. Fung, and F. Haghighat Extracting knowledge from building-related data - a data mining framework Build. Simul. 6 2 2013 207 222
    • (2013) Build. Simul. , vol.6 , Issue.2 , pp. 207-222
    • Yu, Z.J.1    Fung, B.C.M.2    Haghighat, F.3
  • 48
    • 84996245049 scopus 로고    scopus 로고
    • Visualizing and discovering non-trivial patterns in large time series databases
    • J. Lin, E.J. Keogh, and S. Lonardi Visualizing and discovering non-trivial patterns in large time series databases Inf. Vis. 4 2 2005 61 82
    • (2005) Inf. Vis. , vol.4 , Issue.2 , pp. 61-82
    • Lin, J.1    Keogh, E.J.2    Lonardi, S.3
  • 52
    • 34548093287 scopus 로고    scopus 로고
    • Experiencing SAX: A novel symbolic representation of time series
    • J. Lin, E.J. Keogh, L. Wei, and S. Lonardi Experiencing SAX: a novel symbolic representation of time series Data Min. Knowl. Disc. 15 2 2007 107 144
    • (2007) Data Min. Knowl. Disc. , vol.15 , Issue.2 , pp. 107-144
    • Lin, J.1    Keogh, E.J.2    Wei, L.3    Lonardi, S.4
  • 54
    • 24044470614 scopus 로고    scopus 로고
    • Clustering of time series data - A survey
    • T. Warren Liao Clustering of time series data - a survey Pattern Recogn. 38 11 2005 1857 1874
    • (2005) Pattern Recogn. , vol.38 , Issue.11 , pp. 1857-1874
    • Warren Liao, T.1
  • 55
    • 84874720586 scopus 로고    scopus 로고
    • Analysis of similarity measures in times series clustering for the discovery of building energy patterns
    • F. Iglesias, and W. Kastner Analysis of similarity measures in times series clustering for the discovery of building energy patterns Energies 6 2 2013 579 597
    • (2013) Energies , vol.6 , Issue.2 , pp. 579-597
    • Iglesias, F.1    Kastner, W.2
  • 58
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • P.J. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis J. Comput. Appl. Math. 20 1987 53 65
    • (1987) J. Comput. Appl. Math. , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.